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Abstract. The present study aimed to investigate the effects 
of strontium ranelate (SR), an anti‑osteoporotic drug, on 
osteolysis in an experimental mouse model of aseptic loos-
ening. A total of 45 female C57BL/6J mice each received 
implantation of one titanium alloy pin into the tibia, followed 
by intraarticular injection of titanium particles. One week 
following surgery, mice were randomly divided into three 
groups: Control group (no additional treatment), SR625 group 
(treated with SR at a dose of 625 mg/kg/day), and SR1800 
group (treated with SR at a dose of 1,800 mg/kg/day). SR 
was administered via oral gavage once every day for 
12 weeks. Micro‑computed tomography scanning and hema-
toxylin/eosin staining were used to assess osteolysis around 
the prosthesis. Immunohistochemistry and reverse tran-
scription‑quantitative polymerase chain reaction analysis 
were used to measure the expression of receptor activator 
of nuclear factor‑κB ligand (RANKL) and osteoprotegerin 
(OPG). Compared with the control, the SR625 and SR1800 
groups exhibited a significantly increased pulling force of the 
titanium alloy pin. Bone volume and the bone surface/volume 
ratio in the periprosthetic tissue were significantly increased 
in the SR‑treated groups. Significant differences were 

observed between the SR1800 group and control group 
with respect to trabecular thickness and trabecular number. 
Mechanistically, SR downregulated the expression of 
RANKL and upregulated the expression of OPG in the peri-
prosthetic tissue. In addition, SR was observed to inhibit wear 
particle‑associated osteolysis in a dose‑dependent manner. 
In conclusion, the present data illustrated that SR inhibited 
titanium particle‑induced osteolysis in vivo.

Introduction

Aseptic loosening induced by wear particles has become one 
of the most critical contributors to arthroplasty failure (1). 
Wear particles are debris from joint replacement implants that 
are able to induce inflammation and bone resorption at the 
interface between the prosthesis and its adjoining bone (2,3). 
Various measures have been used for the prevention and 
treatment of aseptic loosening. Strontium ranelate (SR) is an 
anti‑osteoporotic drug, and has the potential to reduce the risk 
of spinal and hip fractures in postmenopausal women (4). SR 
is able to promote the proliferation of pre‑osteoblasts, suppress 
the production and activity of osteoclasts, and increase osteo-
clast apoptosis (5,6). Therefore, SR may be considered to be a 
potential treatment for aseptic loosening.

Receptor activator of nuclear factor‑κB ligand (RANKL) 
is secreted by osteoblasts and other cell types, including 
endothelial and active T cells (7,8), and various inflamma-
tory factors may stimulate its secretion (9‑11). Upon binding 
to its membrane receptor (RANK), RANKL activates the 
nuclear factor (NF)‑κB signaling pathway and induces 
osteoclast differentiation, inhibits osteoclast apoptosis, and 
promotes osteoclast adhesion to the bone surface  (12‑14). 
Osteoprotegerin (OPG), a soluble competitive decoy receptor 
for RANK, is able to inhibit the NF‑κB signaling pathway by 
interfering with the RANKL‑RANK interaction (11,15). OPG 
is secreted by a number of types of cells, including osteoblasts 
and mesenchymal stem cells (16). The interaction between 
OPG, RANKL and RANK, therefore, may serve an essential 
role in the regulation of bone metabolism (17‑19).
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The present study aimed to investigate whether treatment 
with SR may inhibit aseptic loosening in an experimental 
mouse model that simulates artificial joint replacement, and 
reflects the interaction between wear particles and peripros-
thetic tissues (20), and to examine the potential biochemical 
mechanisms of action of SR.

Materials and methods

Preparation of wear particles. Unmixed titanium (Ti) particles 
(Zimmer Biomet, Warsaw, IN, USA) with an average size of 
5 µm were used. Prior to injection, the particles were rinsed 
in 70% ethanol for 48 h at room temperature, washed twice 
in PBS, and autoclaved at 180˚C for 6 h to remove endotoxins. 
A commercial detection kit (E‑Toxate; Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) was used to test whether the 
treated wear debris contained endotoxins or not (21).

Animal experiment. A total of 45 10‑week‑old female C57BL/6J 
mice, each weighing 20±2 g, were used in the present study. 
All mice were maintained with pressure‑controlled ventilation 
at a constant temperature of 25˚C and a relative humidity of 
40‑70% in a 12/12‑h light/dark cycle, and were given lab chow 
and water ad libitum. The study protocol was approved by 
the Animal Ethics Committee of Ningxia Medical University 
(Yinchuan, China).

Animal experiments were performed as previously 
described  (20). In all mice, an intraperitoneal injection of 
Nembutal (0.6% pentobarbital sodium) was given to induce 
general anesthesia, and the murine joint prosthesis model 
was established in the right lower extremities. Under sterile 
conditions, the tibial plateau was exposed through the medial 
parapatellar approach and one Ti pin was gently implanted into 
the proximal tibia, with the pin head being maintained in the 
same plane as the tibial plateau surface. The skin incision was 
washed with normal saline containing 100 U/ml penicillin and 
100 mg/ml streptomycin, and each layer was separately closed 
with absorbable sutures (20). Prior to surgically inserting the 
Ti pin, the mouse tibial canal was injected with 10 µl Ti suspen-
sion (4x104 particles of Ti in normal saline). Subsequently, 
every 2  weeks following surgery, 20  µl Ti particles were 
injected into the joint capsule at week 2, 4, 6, 8, 10 and 12. 
Mice were randomly divided into three groups for treatment 
with SR (S12911‑2; PROTELOS®; Servier, Stoke Poges, UK): 
Control group (joint prosthesis only), SR625 group (joint pros-
thesis and SR at a dose of 625 mg/kg/day), and SR1800 group 
(joint prosthesis and SR at a dose of 1,800 mg/kg/day). A total 
of 7 days post‑surgery, mice were given SR via intragastric 
gavage. Animals were treated consecutively for 12 weeks and 
were sacrificed for histological analysis, immunohistochem-
ical (IHC) analysis, Ti prosthesis steadiness examination and 
micro‑computed tomography (µCT) analysis.

Pullout test to assess Ti prosthesis steadiness. Following 
sacrifice, the tibia containing the Ti pin was removed (20). 
To expose the Ti pin head, all muscles and tissues around the 
bone were carefully removed. Each bone was fixed to a special 
clamp using dental cement, which was designed to align the 
long axis of the implant with the long axis of the HP‑100 
Control Electronic Universal Testing Machine (Yueqing 

Zhejiang Instrument Scientific Co., Ltd). With the position of 
the mouse limb and the custom fixture controlled, the pin was 
pulled out of the tibial canal at a rate of 2.0 mm/min. Load 
data were recorded using automatic software (Edburg version 
1.0; Yueqing Instrument Co., Ltd., Yueqing, China).

µCT scans. Following removal of all soft tissues, tibias from 
four mice per group were fixed in 4% paraformaldehyde, at 
4˚C for 4 weeks. The fixed shin bones were scanned by µCT 
(SkyScan 1176; Bruker microCT, Kontich, Belgium) at a reso-
lution of 9 µm. The µCT scans were acquired at a 900‑ms 
exposure time, 45‑kW voltage and 550‑mA current. Automatic 
data analysis software (NRecon version 1.1.11; Bruker 
microCT) was used to reconstruct and acquire images based 
on the µCT analyses, and to determine the bone volume frac-
tion (BV/TV), trabecular thickness (Tb.Th), trabecular number 
(Tb.N), bone volume (BV), and specific bone surface (BS/BV) 
of the shin bone surrounding the Ti pin. All horizontal cutting 
images were captured at two‑fifths of the titanium nail, which 
was 2 mm from the lower edge of the top hat.

RNA isolation and reverse transcription‑quantitative poly‑
merase chain reaction (RT‑qPCR) analysis. Total RNA 
was extracted using TRIzol reagent (Invitrogen; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), according to the 
manufacturer's protocol. The 260/280 absorbance ratio was 
measured to verify RNA purity (NanoDrop; Thermo Fisher 
Scientific, Inc., Wilmington, DE, USA). First strand cDNA 
was synthesized with 1 µg total RNA using the RevertAid 
First Strand cDNA Synthesis kit (Thermo Fisher Scientific, 
Inc.). A total of 2 µl cDNA was used for each PCR mixture, 
containing SYBR® Premix Ex Taq™ II (Tli RNaseH Plus; 
Takara Biotechnology Co., Ltd., Dalian, China). The reaction 
was subjected to a 40‑cycle amplification of 95˚C for 30 sec, 
95˚C for 5  sec, and 60˚C for 30  sec. The relative mRNA 
expression of selected genes was normalized to GAPDH and 
quantified using the 2‑ΔΔCq method (22).

PCR primers used in the present study were: RANKL 
forward, 5'‑TCC​TGA​GCC​TCC​ATG​AAA​ACG‑3' and reverse, 
5'‑CCC​ACA​CTG​TGT​TGC​AGT​TC‑3'; OPG forward, 5'‑TGA​
AGT​ACC​GGA​GCT​GTC​CCC‑3' and reverse, 5'‑AGG​CCA​
TAT​GTG​CTG​CAG​TTC​G‑3'; and GAPDH forward, 5'‑TTG​
TCA​AGC​TCA​TTG​GGC​TCA​TTT‑3' and reverse, 5'‑GCC​
ATG​TAG​GTC​CAC​CCA​TG‑3'.

Histopathological and IHC analysis. The tibia was fixed in 
4% paraformaldehyde for 24 h at 4˚C, and immersed in EDTA 
solution for decalcification. The samples were dehydrated in 
a graded series of ethanol followed by xylene, prior to being 
embedded in paraffin at 60˚C. Sections (5  µm) were cut 
perpendicular to the long axis of the tibia using an RM2235 
Rotary Microtome‑Basic Instrument (Leica Microsystems, 
Inc., Buffalo Grove, IL, USA). Sections were stained with 
hematoxylin and eosin (H&E) for histomorphometric analysis: 
0.5% water‑soluble Eosin for 5 min at 23˚C and Hematoxylin 
for 3 min at 23˚C. IHC staining for OPG and RANKL was 
implemented to assess the activity of osteoclastogenesis. 
EDTA was preheated to 60˚C in a pressure cooker, then glass 
slides added to the autoclave for 2 min, then allowed to cool for 
20 min. Following washing with PBS, the slides were incubated 
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at 23˚C for 10 min with 3% hydrogen peroxide, washed again 
with PBS and incubated with primary antibodies overnight 
at 4˚C. The primary antibodies used were: Rabbit polyclonal 
anti‑OPG (cat. no. ab183910; 1:300; Abcam, Cambridge, UK); 
and rabbit polyclonal anti‑RANKL (cat. no. ab9957; 1:300; 
Abcam). To exclude the possibility of nonspecific staining, 
negative controls were performed with PBS instead of primary 
antibodies. Then the slides were incubated with secondary 
antibodies (Enzyme‑labeled goat anti‑rabbit IgG polymer) part 
of the PV‑9001 kit (Sino Biological, Beijing, China) at 23˚C for 
40 min. Standardized IHC images were obtained with a micro-
scopic imaging system (DM2000 LED; Leica Microsystems, 
Inc.), and positive expression was calculated using Image‑Pro 
Plus version 6.0 software (Media Cybernetics Inc., Rockville, 
MD, USA).

Statistical analysis. Data are presented as the mean ± standard 
deviation. Results were analyzed by one‑way analysis of vari-
ance, among the three groups. The least significant difference 
post‑hoc test was performed for the distinction of means 
between different groups. P<0.05 was considered to indicate 
a statistically significant difference. SPSS 19.0 (IBM Corp., 
Armonk, NY, USA) was used for statistical analysis.

Results

Treatment with SR increases the pulling force of the Ti pin. The 
average pulling load was 1.21±0.61 N for the control group. 
Compared with the control group, significant increases in 
pulling force were detected in the SR625 group (8.51±0.52N, 
P<0.01) and SR1800 group (13.42±0.13N, P<0.01). A signifi-
cant difference in pulling load was additionally observed 
between the SR625 and SR1800 groups (P<0.01; Fig. 1).

Treatment with SR improves bone microstructure around 
the prosthesis. µCT scanning demonstrated differences in 
the bone microstructure among the three groups. Osteolysis 
around the control group pin was most marked (Fig.  2). 
Tb.Th, Tb.N, BS/BV, BV and BV/TV data were obtained 
from µCT analysis of the region of interest. Compared with 
the control group (11.709±0.720%), BV/TV was significantly 
increased in the SR625 group (13.390±0.628%, P=0.048) and 
SR1800 group (15.288±0.184%, P=0.002) in a dose‑dependent 
manner (P=0.031). Similarly, compared with the control 
group (0.109±0.006 mm3), BV was significantly increased in 
the SR625 group (0.125±0.004 mm3, P=0.048) and SR1800 
group (0.142±0.002  mm3, P=0.002) in a dose‑dependent 
manner (P=0.031). Conversely, compared with the control 
group (75.89±1.82 1/mm), a significant decline in BS/BV was 
observed in the SR625 group (64.98±1.77 1/mm, P=0.005) and 
SR1800 group (60.36±1.06 1/mm, P=0.001), although without 
a dose‑dependent effect (P=0.123).

Additionally, compared with the control group 
(0.041±0.001  mm), Tb.Th was increased in the SR625 
group (0.043±0.001  mm, P=0.175) and significantly 
increased in the SR1800 group (0.047±0.001 mm, P=0.011; 
Fig.  3D). Furthermore, compared with the control group 
(2.841±0.218 1/mm), Tb.N was increased in the SR625 group 
(3.050±0.157 1/mm, P=0.154) and significantly increased in 
the SR1800 group (3.219±0.027 1/mm, P=0.028; Fig. 3E).

Treatment with SR increases OPG expression and decreases 
RANKL expression in the periprosthetic tissue. H&E staining 
indicated areas of bone resorption (Fig. 4). IHC was used 
to detect the expression of OPG and RANKL in all groups. 
Fig. 5 illustrates the expression of OPG and RANKL in the 
bone around prosthesis. Compared with the control group, 

Figure 2. Sagittal‑sectional and cross‑sectional micro‑computed tomography 
scans of titanium implants. SR, strontium ranelate.

Figure 1. Pulling force required to remove the titanium pin implant in the 
three groups **P<0.01. SR, strontium ranelate.
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the expression level of OPG was significantly increased in 
the SR1800 group (0.422±0.010 vs. 0.770±0.012, respectively; 
P<0.001; Fig.  6A) and the expression levels of RANKL 
were significantly decreased (0.723±0.011 vs. 0.221±0.009, 
respectively; P<0.01; Fig. 6B). Similarly, compared with the 
control group, expression levels of OPG were significantly 
increased in the SR625 group (0.422±0.010 vs. 0.590±0.007, 
respectively; P<0.01; Fig. 6A) and levels of RANKL were 
significantly decreased (0.723±0.011 vs. 0.400±0.018, respec-
tively; P<0.01; Fig. 6B). In addition, the expression levels of 

OPG and RANKL were significantly increased and decreased, 
respectively, to a greater extent in the SR1800 group compared 
with the SR625 group (P<0.01).

RT‑qPCR analysis of OPG and RANKL in periprosthetic 
tissues demonstrated that, compared with the control group, 
the expression of OPG was significantly upregulated and the 
expression of RANKL was significantly decreased in response 
to treatment with SR (P<0.01). Additionally, this effect was 
significantly enhanced in the SR1800 group compared with 
the SR625 group (P<0.05; Fig. 7).

Figure 3. Micro‑computed tomography analysis of bone microstructure. (A) Bone volume, (B) percentage bone volume, (C) bone surface density, (D) trabecular 
thickness and (E) trabecular number were measured. *P<0.05; **P<0.01. SR, strontium ranelate.
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Discussion

Total knee arthroplasty is an effective and reliable treat-
ment for the terminal stage of knee arthritis. Following 
surgery, symptoms may effectively be controlled and join 
function restored (23‑25). Aseptic loosening is one of the 

long‑term complications of total joint replacement and is an 
important factor affecting the success rate of joint replace-
ment. The pathogenesis of aseptic loosening is not clear, 
although previous studies indicated that an imbalance of 
osteogenesis and osteolysis around the prosthesis is the root 
cause (5,6).

Figure 5. Immunohistochemical staining of OPG and RANKL. Scale bar=100 µm. OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor‑κB 
ligand; SR, strontium ranelate.

Figure 4. Histological assessment of periprosthetic tissue. Scale bar=100 µm. SR, strontium ranelate.
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In the present study, the pulling force to remove the Ti 
implant from the bone was enhanced following treatment with 
SR in a dose‑dependent manner. This finding supports the idea 
that SR may be potentially effective against bone resorption. In 
accordance with the above, Liu et al (26) demonstrated that BV 
and BV/TV were significantly increased following treatment with 
SR. In another study by Lu et al (27), following treatment with 
SR, Tb.Th, bone density and BV/TV were significantly enhanced 
compared with the control. However, no significant differences in 
bone mineral density were noted between the treatment groups 
and the control. In the present study, BV and BV/TV around the 
periprosthetic tissue were significantly different between the 
control group and treatment groups. In addition, BV/TV was 
observed to be negatively associated with the dose of SR. SR 
dose did not significantly affect BS/BV in the present study.

An aim of the present study was to determine the effect of 
SR on Tb.Th and Tb.N in mice with periprosthetic osteolysis. 
There were no statistically significant differences in Tb.Th or 
Tb.N between the SR625 group and the control group. However, 
significant differences in these parameters were observed 
between the SR1800 group and the control group. These results 

indicated that SR was able to increase BV, BS/BV (though 
not significantly), BV/TV, Tb.N and Tb.Th following aseptic 
loosening induced by wear particles, suggesting that SR may 
inhibit the development of aseptic loosening. µCT and H&E 
staining indicated that SR significantly reduced bone osteolysis 
compared with the control group. In this experiment, the bone 
formation rate was not measured, which is a limitation of the 
present study and requires investigation in the future.

In agreement with previous studies (3,28), it was demon-
strated that SR significantly decreased the level of RANKL 
and increased the secretion of OPG. The ratio of OPG to 
RANKL serves an important role in the balance of bone mass 
and bone metabolism (29‑32). The homeostasis between bone 
formation and resorption is essential for the regulation of bone 
mass (33‑36). Osteoclasts are responsible for dynamic bone 
resorption, and their differentiation and apoptosis are regulated 
by the ratio of OPG to RANKL (37,38). The binding of RANKL 
to RANK may be prevented by OPG, therefore the concentra-
tion of OPG and RANKL has an important influence on bone 
resorption (39,40). The present study demonstrated that OPG 
and RANKL were significantly upregulated and downregulated, 

Figure 6. Immunohistochemical staining of OPG and RANKL. Semi‑quantification of (A) OPG and (B) RANKL protein expression levels in periprothetic 
tissues. The ratios of the number of positively stained for OPG and RANKL cells to the total number of cells were plotted. **P<0.01. OPG, osteoprotegerin; 
RANKL, receptor activator of nuclear factor‑κB ligand; SR, strontium ranelate.

Figure 7. RT‑qPCR analysis of OPG and RANKL. Relative mRNA expression levels of (A) OPG and (B) RANKL in periprosthetic tissue, as assessed by 
RT‑qPCR analysis. *P<0.05; **P<0.01. OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor‑κB ligand; SR, strontium ranelate; RT‑qPCR, 
reverse transcription‑quantitative polymerase chain reaction.
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respectively, in the SR groups compared with the control group, 
at the mRNA and protein level. These findings support a key role 
of SR in inhibiting the differentiation of osteoclasts by regulating 
the ratio of RANKL/OPG in the aseptic loosening model.

It may be noted that previous studies have reported serious 
side effects with SR, such as Stevens‑Johnson syndrome and 
toxic epidermal necrolysis (41,42) although these were not 
observed in the present study. Topical application of SR is a 
promising method (43). Prostheses coated with SR may be able 
to inhibit aseptic loosening (44,45).

In conclusion, SR inhibited wear particle‑associated oste-
olysis effectively, in a dose‑dependent manner. SR additionally 
downregulated the RANKL/OPG ratio, implying that SR may 
be a potential therapy for aseptic loosening.
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