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Abstract. Arsenic is a toxic metal, which ultimately leads to 
cell apoptosis. ERK is considered a key transcriptional regu-
lator of arsenic-induced apoptosis. Due to a few controversial 
issues about arsenic-mediated extracellular signal-regulated 
MAP kinases (ERK) signaling, a meta-analysis was 
performed. Subgroup analyses demonstrated that high doses 
(≥2  µmol/l)  of  arsenic  increased  the  expression  of  Ras, 
ERK, ERK1, ERK2, phosphorylated (p)-ERK, p-ERK1, and 
p‑ERK2, while low doses (<2 µmol/l) decreased the expres-
sion of Ras, ERK1, p-ERK, and p-ERK2 when compared to 
control groups. Long term exposure (>24 h) to arsenic led 
to inhibition of expression of ERK1, p-ERK1, and p-ERK2, 
whereas short‑term exposure (≤24 h) triggered the expression 
of ERK1, ERK2, p-ERK, p-ERK1, and p-ERK2. Furthermore, 
normal cells exposed to arsenic exhibited higher production 
levels of Ras and p-ERK. Conversely, exposure of cancer 
cells to arsenic showed a lower level of production of Ras 
and p-ERK as well as higher level of p-ERK1 and p-ERK2 
as compared to control group. Short-term exposure of normal 
cells to high doses of arsenic may promote ERK signaling 
pathway. In contrast, long-term exposure of cancer cells to 
low doses of arsenic may inhibit ERK signaling pathway. 
This study may be helpful in providing a theoretical basis 

for the diverging result of arsenic adverse effects on one 
hand and therapeutic mechanisms on the other concerning 
arsenic-induced apoptosis.

Introduction

Arsenic (As) is a naturally occurring toxic metal which was 
classified as potentially poisonous substance (1). Excessive 
exposure to arsenic damages multiple organs (2). Presently, a 
mounting number of studies preferably examined the molec-
ular mechanisms of apoptosis induced by arsenic (3,4). It was 
believed that the mitogen-activated protein kinases (MAPK) 
signaling pathway was implicated in cell injury, proliferation, 
and apoptosis (5). The extracellular signal-regulated MAP 
kinases (ERK), an important member of the MAPK families, 
became phosphorylated and activated in response to diverse 
environmental stimuli (6).

It had been postulated that ERK was consequently a 
participant in arsenic-induced apoptosis (7,8). In all these 
studies, however, not all scholars were in agreement on 
the issue of arsenic mediating ERK signaling. Escudero-
Lourdes et al (9) found that exposure of urothelial cells to 
0.05 µmol/l of arsenic for 12 months significantly increased 
protein expression of p-ERK1 and p-ERK2, which indicated 
that the ERK signaling pathway was activated by arsenic. 
Conversely, Wang et al (10) drew a different conclusion 
stating that arsenic restrained the ERK signaling pathway 
due to the fact that inhibition and lowering of p-ERK1 
and p-ERK2 levels were observed in human leukemia cell 
lines after being exposed to 2.5 µmol/l of arsenic for 24 h. 
Evidently, the effects of arsenic on ERK signaling pathway 
remained a debatable issue.

To probe the role of ERK signaling pathway in 
arsenic-induced apoptosis, a meta-analysis of experimental 
studies published in domestic and foreign literature was 
performed in our paper. The present study may be helpful in 
providing a theoretical basis for the diverging result of arsenic 
adverse effects on one hand and therapeutic mechanisms on 
the other concerning arsenic-induced apoptosis.

Materials and methods

Inclusion criteria. Inclusion Criteria and literature search 
terms were identified according to the PICO principle.
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Study design. Experimental studies published in Chinese and 
English.

Participants (P). All cell lines and animals, disregarding age, 
gender and weight.

Intervention (I). All experimental groups treated with any 
kind of arsenic or its compounds. Arsenic model groups might 
show the change in indicators associated with ERK signaling 
pathway and apoptosis. If variable dosages of arsenic or expo-
sure times were used in a study, the highest or longest one was 
chosen for this analysis.

Comparison (C). The control group without any intervention 
(blank control group).

Outcome (O). Following indicators in mediating of ERK signaling 
were used, Ras (or p21) protein, Raf protein, Mitogen-induced 
extracellular kinase (MEK), Total extracellular signal-regulated 
MAP kinases (ERK), Extracellular signal-regulated kinase 1 
(ERK1), Extracellular signal-regulated kinase 2 (ERK2), Total 
phosphorylated extracellular signal-regulated kinase (p-ERK), 
Phosphorylated extracellular signal-regulated kinase 1 (p-ERK1), 
Phosphorylated extracellular signal-regulated kinase 2 (p-ERK2), 
Cysteinyl aspartate‑specific protease‑3 (caspase‑3), Apoptotic 
cells (%), Pro-apoptotic protein-Bcl-associated X protein 
(Bax), Anti‑apoptotic  protein‑B‑cell  lymphoma/leukemia‑2 
protein (Bcl-2).

Exclusion criteria. We excluded the studies upon following 
criteria: i) the papers focused only on ERK but not arsenic; ii) 
the papers focused on arsenic without investigating ERK; iii) 
no outcome indicators (as stated in ‘2.1.5 Outcome’); iv) 
duplicate publications; v) review articles; vi) inadequate 
information; and vii) no available data.

Search strategy. A systematic search was conducted using 
Cochrane Library, PubMed, Excerpta Medica database 
(EMBASE), Springer, Web of Science, Chinese Biomedical 
Literature Database (CBM), China National Knowledge 
Infrastructure (CNKI) and Wan Fang Data databases 
(last search conducted on January 24th, 2017). The key 
search string was ‘arsenic AND (Ras OR Raf OR MEK OR 
ERK)’.

Quality assessment. The Cochrane collaboration's tool for bias 
risk assessment was used to evaluate the quality of 42 articles 
identified in the present study. The evaluation system consisted 
of seven aspects, viz. i) Random sequence generation (selection 
bias); ii) allocation concealment (selection bias); iii) blinding 
of participants and personnel (performance bias); iv) blinding 
of outcome assessment (detection bias); v) incomplete outcome 
data (attrition bias); vi) Selective reporting (reporting bias); 
and vii) other bias. The rating criteria were as follows, low risk 
of bias, unclear risk of bias and high risk of bias.

Data collection. Two reviewers (Dongjie Li and Yutao Wei) 
independently extracted data which was then cross-checked 
before putting the results into a collective spreadsheet. If 
the results seem to be inconsistent, Dr. Shugang Li and 

Mingxia Jing were asked to verify before final confirmation. 
The following information was documented meticulously 
out of completed manuscripts from each qualified study: 
i) information about the paper including title, first author, 
publication date and the name of the journal where published; 
ii) characteristics of the research object including the type and 
source of cell lines and breed of animals; iii) type, dosage 
and exposure time of arsenic; iv) outcome indicators; and v) 
baseline data for experimental and control groups, viz. number 
of groups (n), mean and standard deviation (SD).

Data analysis. Forty-two articles were analyzed using Review 
Manager Version 5.2 (The Nordic Cochrane Centre, The 
Cochrane Collaboration 2012, Portland, OR, USA) and Stata 
12.0 (StataCorp LP, College Station, TX, USA). Standardized 
mean difference (SMD) was chosen for consolidating statis-
tical data. Heterogeneity was detected by calculating the I2 
index. I2 ≤50% and >50% represented low and high levels 
of heterogeneity, respectively. Random effects model was 
chosen when P<0.05 and I2 >50%, and fixed effects model 
was used when P>0.05 and I2 ≤50%. Subgroup analyses and 
meta-regression analyses (including univariate and multi-
variate meta-regression analyses) were conducted to examine 
sources of heterogeneity among 42 studies. Subgroup analyses 
were performed on the basis of the source (normal and cancer 
cells), exposure time (>24 h and ≤24 h) and dosage of arsenic 
(≥2  and  <2 µmol/l).  The  combined  effect was  estimated 
as SMD with 95% confidence interval (95% CI) between 
arsenic model and control group. All reported P-values were 
two-sided and P<0.05 was considered to indicate a statisti-
cally significant difference. Small‑study effects were assessed 
by using funnel plots. Egger's tests and sensitivity analyses 
were conducted using Stata 12.0.

Results

Search results. A total of 2,123 articles were initially identified 
by search criteria. Utilizing our inclusion and exclusion criteria, 
42 of those articles were qualified for meta‑analysis (Fig. 1).

Basic characteristics of included studies. Characteristics of 
the studies included in this meta‑analysis were listed in Table Ⅰ. 
In the present study, the effects of arsenic on ERK signaling 
pathway was assessed. Arsenic model groups encompasses 

Figure 1. Flow chart of identifying and including studies. ERK, extracellular 
signal-regulated MAP kinases.
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Table I. Characteristics of the studies included in the meta-analysis.

    Type of Dosage of Time of
    arsenical arsenic, exposure, Type of Outcome
Author (Refs.)  Year  Language  n  compounds  µmol/l  h  cells  indicators

Yen et al (2) 2011 English 12 As2O3 <2 >24 Normal cells 5, 6, 8, 9, 11, 12
Eguchi et al (3) 2011 English 3 As2O3  ≥2  ≤24  Cancer cells  5, 6, 8, 9, 11
Ray et al (4) 2013 English 3 As2O3  ≥2  ≤24  Normal cells  4, 7, 11
Lau et al (5) 2004 English 3 NaAsO2  ≥2  ≤24  Normal cells  5, 6, 8, 9
Li et al (6) 2006 English 3 NaAsO2  ≥2  ≤24  Cancer cells  6, 8, 9
Lozano-Santos 2015 English 3 As2O3 <2 >24 Cancer cells 7, 12, 13
et al (7)
Ge et al (8)  2005  Chinese  3  AA  ≥2  >24  Cancer cells  10
Escudero-Lourdes 2010 English 3 MMA <2 >24 Normal cells 4, 5, 6, 8, 9
et al (9)
Wang et al (10) 2012 Chinese 3 As2O3  ≥2  ≤24  Cancer cells  8, 9, 11
Daum et al (11) 2001 English 3 NaAsO2  ≥2  ≤24  Normal cells  8, 9
Benbrahim-Tallaa 2005 English 3 NaAsO2  ≥2  >24  Normal cells  1
et al (12)
Chowdhury et al (13) 2010 English 3 NaAsO2  ≥2  ≤24  Normal cells  5, 6, 8, 9
Li et al (14) 2010 Chinese 3 NaAsO2  ≥2  ≤24  Normal cells  7
Suzuki et al (15) 2011 English 3 As2O3  ≥2  ≤24  Cancer cells  5, 6, 8, 9
Guilbert et al (16)  2013  English  3  As2O3  ≥2  ≤24  Cancer cells  4, 8, 9
Huff et al (17) 2016 English 3 NaAsO2  <2  ≤24  Cancer cells  5, 6, 8, 9
Wang et al (18) 2012 English 3 As2O3  ≥2  ≤24  Normal cells  5, 6, 8, 9(18)
Aodengqimuge 2014 English 3 NaAsO2  ≥2  ≤24  Normal cells  4, 7, 10
et al (19)
Gong et al (20) 2016 English 3 NaAsO2  ≥2  ≤24  Normal cells  5, 6, 8, 9, 10, 12
Person et al (21) 2015 English 3 NaAsO2  ≥2  >24  Normal cells  1, 4, 7
Huang et al (22) 1999 English 3 NaAsO2  ≥2  ≤24  Cancer cells  5, 6, 8, 9
Martinez-Finley 2011 English 4 NaAsO2 <2 >24 Normal cells 1, 2, 5, 6, 8, 9
et al (23)
Estañ et al (24) 2012 English 3 As2O3  ≥2  ≤24  Cancer cells  5, 6, 8, 9, 10, 11,12
Zheng et al (25) 2006 Chinese 3 As2O3  ≥2  ≤24  Cancer cells  4, 10, 11
Zhang et al (26) 2015 Chinese 3 NaAsO2  ≥2  >24  Normal cells  1, 2, 3, 5, 6, 7
Luo et al (27) 2012 Chinese 3 NaAsO2  ≥2  ≤24  Normal cells  5, 6, 8, 9, 10, 11, 12, 13
Banerjee et al (28)  2011  English  3  As2O3  <2  ≤24  Normal cells  4, 7, 11
Wu et al (29) 2008 Chinese 3 As2O3  ≥2  >24  Cancer cells  8, 9, 10, 13
Li et al (30) 2016 Chinese 8 As2O3  <2  ≤24  Cancer cells  1, 2, 3, 4, 11, 12, 13
Ye (31) 2006 Chinese 3 As2O3  <2  ≤24  Cancer cells  5, 6, 10
Iwama et al (32) 2001 English 3 As2O3  ≥2  ≤24  Cancer cells  3, 5, 6, 8, 9, 10, 11, 13
Calviño et al (33) 2011 English 3 As2O3  ≥2  ≤24  Cancer cells  4, 7, 10, 11, 12
Liu et al (34) 2006 English 3 As2O3  ≥2  ≤24  Cancer cells  1, 6, 8, 9
Huang et al (35) 2006 English 3 As2O3  ≥2  ≤24  Cancer cells  1, 4, 5, 6, 7
Liao et al (36) 2015 English 3 NaAsO2  ≥2  ≤24  Normal cells  5, 6,7
Wang (37) 2012 Chinese 3 NaAsO2  ≥2  ≤24  Normal cells  8, 9
Ngalame et al (38) 2014 English 3 NaAsO2  ≥2  >24  Normal cells  1, 7
Ju (39) 2007 Chinese 3 As2O3  ≥2  ≤24  Cancer cells  8, 9, 10, 11
Petit et al (40) 2013 English 3 As2O3  ≥2  ≤24  Cancer cells  5, 6, 8, 9
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those cell lines which were treated with various forms of arsenic 
including sodium arsenite (NaAsO2), arsenic trioxide (As2O3), 
monomethyl arsenous acid (MMA) and arsenious acid (AA). 
The control models were blank controls without any exposure 
to arsenic. In subgroup analyses, arsenic exposure time varied 
among the studies and hence was stratified into ≤24 h (n=30) 
and >24 h (n=12). The dosage of arsenic was also variable and 
thus was differentiated into ≥2 µmol/l (n=32) and <2 µmol/l 
(n=10) groups. Likewise, different cell lines were separated 
into normal cells (n=19) and cancer cells (n=23). In this review, 
cancer cells included the following ones, U937 cells (human 
leukemia cell line), A431 cells (human epidermoid carcinoma 
cells), CL3 cell line (non-small-cell lung carcinoma cell line), 
Flt3-ITD cells (acute myeloid leukemia cells), JB6 Cl 41 mass 
cells, NCI-H2052 cells (human mesothelioma cells), HL-60 
cells  (human  leukemia  cell  line),  SGC7901/ADM  (human 
gastric cancer cell line), MDA-MB-468 (breast cancer cells), 
SH-SY5Y (human neuroblastoma cells), Neuro-2a cells (murine 
neuroblastoma cell line), CLL cells (chronic lymphocytic 
leukemia cell line, but not the WSU‑CLL cell line), SGC7901/S 
(human gastric cancer cell line), NCI-H1793 (non-small-cell 
lung carcinoma cell line), U-251 MG cells (human glioma cells), 
NCI-H157 (non-small-cell lung carcinoma cell line), BEL-7402 
cells (human hepatocarcinoma cells), FRO (anaplastic 
thyroid cancer cell line) and Hela cells (cervical cancer cells). 
NCI‑H157 was a misidentified cell line according to http://icl 
ac.org/wp‑content/uploads/Cross‑Contaminations‑v8_0.pdf. Taking 
all these factors into consideration, we have arrived at the 
conclusion that  time (P=0.012) and dosage (P=0.037) were 
statistically significant in the univariate meta-regression 
analysis. Outcome variables were assessed for any association 
with apoptosis (including apoptotic cells, caspase-3, Bax, and 
Bcl-2) and ERK signaling pathway (i.e., Ras, Raf, MEK, ERK, 
ERK1, ERK2, p-ERK, p-ERK1, and p-ERK2).

Quality assessment of included studies. The quality of the 
42 articles identified in the study was evaluated (Table Ⅱ) and the 
proportion of low risk was accounted for more than 75% (Fig. 2).

Meta‑analysis of arsenic‑related apoptosis. A pooled analysis 
showed that apoptotic cell levels were 3.84-fold higher in 

arsenic exposed group compared to those of control (95% 
CI (1.44, 6.24)). Levels of caspase-3 were 11.67 times higher 
in the exposed group than in control group (95% CI (7.06, 
16.28)). Bax levels were 5.27-fold higher in the exposed group 
compared to control group (95% CI (2.18, 8.36)). Levels of 
Bcl-2 were 2.08 times lower in the exposed group than in 
control group (95% CI (-2.96, -1.21)) (Fig. 3).

Meta‑analysis regarding arsenic and level of ERK. Levels of 
p-ERK1 were 3.59 times higher in exposed group as compared 
to control group (95% CI (0.45, 6.74)). The levels of p-ERK2 
were comparatively 4.39 times higher in exposed than in 
control group (95% CI (0.12, 8.67)). Raf levels were 1.78-fold 
lower in exposed than in control group (95% CI (-2.72, -0.85)). 
Similarly, MEK levels were 1.61 times lower in exposed group 
as compared to control group (95% CI (-2.59, -0.63)). There 
was no statistical difference in Ras, ERK, ERK1, ERK2, and 
p-ERK levels (P>0.05) (Fig. 4).

Subgroup analyses of arsenic exposure effects
Subgroup analyses based on sources of arsenic. The analysis 
had demonstrated that arsenic promoted the expressions of 
Ras and p-ERK (P<0.05) in normal cells. Though, in cancer 
cells, arsenic decreased the expressions of Ras and p-ERK 
as well as caused an increase in p-ERK1 and p-ERK2 levels 
(P<0.05) (Fig. 5).

Subgroup analyses based on exposure time of arsenic. 
Our results showed that arsenic exposure time of >24 h 
had suppressed the levels of ERK1, p-ERK1, and p-ERK2 
(P<0.05), conversely arsenic exposure time of ≤24 h promoted 
the levels of ERK1, ERK2, p-ERK, p-ERK1, and p-ERK2 
(P<0.05) (Figs. 6, 7).

Subgroup analyses based on arsenic dose. Subgroup analyses 
exhibited  increased  expressions  of Ras  (SMD=7.29,  95% 
CI  (0.90,  13.68)), ERK  (SMD=4.62,  95% CI  (0.17,  9.07)), 
ERK1 (SMD=5.28, 95% CI (1.02, 9.54)), ERK2 (SMD=8.17, 
95% CI  (2.73,  13.62)),  p‑ERK  (SMD=6.15,  95% CI  (0.20, 
12.11)), p‑ERK1 (SMD=4.48, 95% CI (1.67, 7.30)), p‑ERK2 
(SMD=7.28, 95% CI (2.87, 11.70)) with high doses of arsenic 

Table I. Continued.

    Type of Dosage of Time of
    arsenical arsenic, exposure, Type of Outcome
Author/(Refs.)  Year  Language  n  compounds  µmol/l  h  cells  indicators

Lu et al (41) 2014 English 3 As2O3  ≥2  ≤24  Cancer cells  5, 6, 8, 9, 11, 12, 13
Liu et al (42) 2013 Chinese 3 As2O3 <2 >24 Cancer cells 1, 7 
Zhao et al (43) 2015 English 3 As2O3 <2 >24 Cancer cells 1

n, number of experimental group; N, normal cells; C, cancer cells; ERK, extracellular signal-regulated MAP kinases; MEK, mitogen-induced 
extracellular kinase; p‑ERK, phosphorylated extracellular signal‑regulated kinase; Raf, serine/threonine‑specific protein kinases; Bcl‑2, B‑cell 
lymphoma/leukemia‑2  protein;  Bax,  Bcl‑associated X  protein;  caspase‑3,  cysteinyl  aspartate‑specific  protease‑3;  RTKs,  receptor  tyrosine 
kinases. 1, Ras; 2, Raf; 3, MEK; 4, ERK; 5, ERK1; 6, ERK2; 7, p-ERK; 8, p-ERK1; 9, p-ERK2; 10, Apoptotic cells; 11, caspase-3; 12, Bax; 
13, Bcl-2.
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Table II. Quality assessment of included studies.

Author/(Refs.)  Year  1  2  3  4  5  6  7

Huang et al (22) 1999 L L L L L L L
Iwama et al (32) 2001 L L L L L L L
Daum et al (11) 2001 L U L L L L L
Benbrahim-Tallaa et al (12) 2005 L L L L L L L
Liu et al (34) 2006 L L L L L L L
Huang et al (35) 2006 L L L L L L L
Li  et al (6) 2006 L L L L L L L
Chowdhury et al (13) 2010 L L H L L U L
Li et al (14) 2010 L L L L L L L
Calviño et al (33) 2011 L L L L L L L
Suzuki et al (15) 2011 L L L L L L L
Banerjee et al (28) 2011 L L L L L L L
Eguchi et al (3) 2011 L L L L L L L
Martinez-Finley et al (23) 2011 L L L L L L L
Estañ et al (24) 2012 L L L L L L L
Wang et al (10) 2012 L U L L L L L
Liu et al (42) 2013 L L L L L L L
Guilbert et al (16) 2013 L L L L L L L
Ray et al (4) 2013 L L L L L L L
Ngalame et al (38) 2014 L L L L L L L
Lu et al (41) 2014 L L L L L L L
Lozano-Santos et al (7) 2015 L L H L L L L
Zhao et al (43) 2015 L L L L L L L
Huff et al (17) 2016 L L L L L L L
Zheng et al (25) 2006 L U L L L L L
Liao et al (36) 2015 L L L L L L L
Wu et al (29) 2008 L L L L L L L
Zhang (26) 2015 L L L L L L L
Escudero-Lourdes et al (9) 2010 L L L L L L L
Yen et al (2) 2011 L L L L L L L
Wang et al (18) 2012 L L L L L L L
Aodengqimuge et al (19) 2014 L L L L L L L
Gong et al (20) 2016 L L L L L L L
Ju (39) 2007 L L L L L L L
Ge et al (8) 2005 L U L L L L L
Luo (27) 2012 L U L L L L L
Li et al (30) 2016 L L L L L L L
Wang et al (10) 2012 L L L L L L L
Ye (31) 2006 L L L L L L L
Person et al (21) 2015 L L L L L L L
Lau et al (5) 2004 L L L L L L L

1, Random sequence generation (selection bias); 2, Allocation concealment (selection bias); 3, Blinding of participants and personnel (perfor-
mance bias); 4, Blinding of outcome assessment (detection bias); 5, Incomplete outcome data (attrition bias); 6, selective reporting (reporting 
bias); 7, Other bias; L, low risk of bias; U, unclear risk of bias; H, high risk of bias.
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(≥2  µmol/l).  Conversely  decreased  expressions  of  Ras 
(SMD=‑3.96, 95% CI  (‑5.36,  ‑2.56)), ERK1  (SMD=‑10.11, 
95% CI (‑18.40, ‑1.81) ), p‑ERK (SMD=‑6.07, 95% CI (‑11.89, 
‑0.26)), p‑ERK2 (SMD=‑20.34, 95% CI (‑39.58, ‑1.11)) were 
seen with low doses (<2 µmol/l) (Fig. 8).

Small‑study effect evaluation. The funnel plot (Fig. 9) shows 
that there was a symmetrical distribution of all the studies, 
suggesting no significant small‑study effects.

Sensitivity analysis. A sensitivity analysis was performed for 
p-ERK. The results of all the studies were distributed evenly 

from the center line and no significant deviation was seen. 
Thus, there seems to be no individual study affecting the 
combined results (Fig. 10).

Discussion

Arsenic contributes to cell apoptosis (3) leading to serious 
damage (23). However, arsenic has recently been explored for 
its anti-tumor ability in leukemia and other malignant tumors 

Figure 2. Risk of bias graph.

Figure 3. Effects of arsenic on apoptosis. SMD, standardized mean differ-
ence; caspase-3, cysteinyl aspartate-specific protease-3; Bcl-2, B-cell 
lymphoma/leukemia‑2 protein; Bax, Bcl‑associated X protein.

Figure 4. Effects of arsenic exposure on ERK. SMD, standardized mean 
difference; ERK, extracellular signal-regulated MAP kinases; MEK, 
mitogen-induced extracellular kinase; p-ERK, phosphorylated extracellular 
signal‑regulated kinase; Raf, serine/threonine‑specific protein kinases.

Figure 5. Subgroup analyses to determine the effects of arsenic on ERK 
based on source. SMD, standardized mean difference; ERK, extracellular 
signal-regulated MAP kinases; MEK, mitogen-induced extracellular kinase; 
p-ERK, phosphorylated extracellular signal-regulated kinase.
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using its induction of apoptosis (24). ERK had been reported 
to participate in arsenic-induced apoptosis (25), but reports on 
the interaction between arsenic and ERK signaling pathway 
were inconsistent. In our meta-analysis, we found that arsenic 

had a bidirectional effect on ERK signaling pathway. Arsenic 
could activate it in the normal cell, but inhibit ERK pathway in 
cancer cell line, which was also related to dosage and exposure 
time. These findings provided a divergent theoretical basis 

Figure 6. Subgroup analyses to determine the effects of arsenic on p-ERK1 based on exposure time. Forest plot showing the impact of arsenic treatment on 
p-ERK1 compared to controls. Total column represents total number of studies performed. SMD, standardized mean difference; IV, independent variable; 95% 
CI, 95% confidence interval; SD, standard deviation.

Figure 7. Subgroup analyses to determine the effects of arsenic on p-ERK2 based on exposure time. Forest plot showing the impact of arsenic treatment on 
p-ERK2 compared to controls. Total column represents total number of studies performed. SMD, standardized mean difference; IV, independent variable; 95% 
CI, 95% confidence interval; SD, standard deviation.
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of injurious as well as beneficial therapeutic mechanisms of 
arsenic.

Apoptosis is of great significance in maintaining normal 
development and homeostasis (26). As shown in Fig. 3, apoptotic 
cells, pro-apoptotic protein (Bax) and activity of caspase-3 had 
increased while anti-apoptotic protein (Bcl-2) had decreased 
suggesting an undoubted proof of arsenic-induced apoptosis.

Present results suggested that ERK plays an opposing role 
in normal and cancer cells. Luo (27) and Banerjee et al (28) 
had reported that in normal cells, arsenic-induced apoptosis 
was brought about by activation of ERK signaling pathway. 
As shown in Fig. 5, it can be seen that arsenic increased levels 
of Ras and p-ERK in normal cells indicating that arsenic led 
to ERK signaling pathway activation. As for cancer cells, 
induction of apoptosis is one of the most efficient approaches 
for the clinical treatment of cancer. It had been reported that 
arsenic-induced apoptosis of cancer cells was correlated with 
inhibition of ERK (29-32). Furthermore, arsenic inhibition 
of ERK signaling pathway in human leukemia cells was also 
verified as a fact (7,10,24,33). Likewise, decreased levels of 
both Ras and p-ERK were shown in cancer cells (Fig. 5) along 
with restraint of ERK signaling. Obviously, the mechanism of 
arsenic-induced apoptosis is different between normal cells 
and cancer cells.

ERK was also considered an important mechanism of 
arsenic causing toxic injury (34,35). Our results showed that 
arsenic increased the levels of Ras and p-ERK in normal cells 
(Fig. 5), suggesting that arsenic may activate ERK signaling 
pathway  via Ras/Raf/MEK/ERK pathways.  Some  studies 
stated that the activation of ERK signaling pathway leads to 
DNA damage steering genetic toxicity (36,37). These results 

also demonstrated that arsenic, through activation of ERK 
signaling pathway in normal cells, causes toxicity. Activated 
ERK had been reported to be involved in pathogenesis and 
development of tumor and cancer (30,38). In this study, cancer 
cells exposed to arsenic had decreased levels of Ras and 
p-ERK (Fig. 5) and thus induced suppression of ERK signaling 
pathway. Therefore, arsenic could inhibit the development of 
tumor by restraining ERK signaling.

A difference in arsenic doses and exposure time could 
account for opposite effects caused by arsenic on ERK 
activity. Ju (39) found out that high doses and short expo-
sure time of arsenic led to activation of ERK. This point 
was also testified by other studies (40,41). However, some 
studies (42,43) showed that low doses and long exposure 
time of arsenic contributed to inactivation of ERK signaling 
pathway. These discoveries were consistent with the results 
of this meta-analysis, suggesting that high dose and short 
exposure time may lead to ERK signaling pathway activa-
tion, while low dose and long exposure time depress the 
activation of ERK signaling.

From what has been discussed above, we may reasonably 
conclude that ERK signaling pathway was activated when 
normal cells were exposed to high doses of arsenic for a short 
period of time, contributing to cell apoptosis, explaining the 
toxic injury caused by arsenic (Fig. 11A). As for cancer cells, 
low dose arsenic intervention for long period of time may play 
a role in promoting cell apoptosis by inhibiting ERK signaling 
pathway thus suppressing the growth of the tumor (Fig. 11B). 
These findings not only contributed to a potential approach for 
seeking ERK inhibitors which work against toxic injury but 
also provided a reference for a long-term treatment of cancer 
with low doses of arsenic.

The literature incorporated in this study exhibit heteroge-
neity. It may also be related to certain factors such as strains 
of objects, the method of arsenic exposure and possibly others 
in addition to the factors shown in subgroup analysis. The 
existing literature did not provide a detailed description of the 
said factors. Moreover, the data in the selected papers do not 
support our comparison of time and dose together. Arsenic 
also affects JNK, p38 and other MAPK signaling pathways 
and whether ERK interacts with all these may be regarded as 
a new direction for future research.

Figure 8. Subgroup analysis based on dosage of arsenic. SMD, standardized 
mean difference. ERK, extracellular signal-regulated MAP kinases; MEK, 
mitogen-induced extracellular kinase; p-ERK, phosphorylated extracellular 
signal-regulated kinase.

Figure 9. Funnel Plot for p-ERK. Blue-dotted line shows overall estimated 
standard mean difference. Evidence for publication bias was not found 
(P=0.490). SMD, standard mean difference; SE, standard error; p‑ERK, 
phosphorylated extracellular signal-regulated kinase.
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Figure 10. Sensitivity analysis for p‑ERK. Stable results were observed for all the studies, indicating no individual study influencing the combined results. CI, 
confidence interval; p‑ERK, phosphorylated extracellular signal‑regulated kinase.

Figure 11. The ERK signaling pathway. (A) shows that high doses of arsenic for a short period of time enhances Ras, Raf, MEK and ERK phosphorylation in 
normal cells, thereby the activated ERK translocates from cytoplasm into nucleus, increases levels of Bax protein, decreases levels of Bcl-2 protein and cleaves 
caspase-3, contributing to cell apoptosis. (B) indicates that, in cancer cells, low dose arsenic intervention for long period of time suppresses phosphorylation 
of Ras, Raf, MEK and ERK, blocking ERK translocation from cytoplasm into nucleus, thereby increases levels of Bax protein, decreases levels of Bcl-2 
protein and cleaves caspase-3, contributing to cell apoptosis. ERK, extracellular signal-regulated MAP kinases; MEK, mitogen-induced extracellular kinase; 
p‑ERK, phosphorylated extracellular signal‑regulated kinase; Raf, serine/threonine‑specific protein kinases; Bcl‑2, B‑cell lymphoma/leukemia‑2 protein; 
Bax, Bcl‑associated X protein; caspase‑3, cysteinyl aspartate‑specific protease‑3; RTKs, receptor tyrosine kinases.
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