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Abstract. Hypertensive nephrosclerosis (HNS) is a major risk 
factor for end-stage renal disease. However, the underlying 
pathogenesis of HNS remains to be fully determined. The gene 
expression profile of GSE20602, which consists of 14 glom-
eruli samples from patients with HNS and 4 normal glomeruli 
control samples, was obtained from the Gene Expression 
Omnibus database. Gene ontology (GO) and pathway enrich-
ment analyses were performed in order to investigate the 
functions and pathways of differentially expressed genes 
(DEGs). Pathway relation and co‑expression networks were 
constructed in order to identify key genes and signaling 
pathways involved in HNS. In total, 483 DEGs were identified 
to be associated with HNS, including 302 upregulated genes 
and 181 downregulated genes. Furthermore, GO analysis 
revealed that DEGs were significantly enriched in the small 
molecule metabolic process. In addition, pathway analysis also 
revealed that DEGs were predominantly involved in metabolic 

pathways. The tricarboxylic acid (TCA) cycle was identified 
as the hub pathway in the pathway relation network, whereas 
the sorbitol dehydrogenase (SORD) and cubulin (CUBN) 
genes were revealed to be the hub genes in the co-expression 
network. The present study revealed that the SORD, CUBN 
and albumin genes as well as the TCA cycle and metabolic 
pathways are involved in the pathogenesis of HNS. The results 
of the present study may contribute to the determination of the 
molecular mechanisms underlying HNS, and provide insight 
into the exploration of novel targets for the diagnosis and 
treatment of HNS.

Introduction

Hypertensive nephrosclerosis (HNS), also termed hyperten-
sive nephropathy or ‘benign’ nephrosclerosis, is one of the 
major risk factors for end-stage renal disease (ESRD) (1). 
The development of HNS has previously been reported to be 
closely associated with hypertension, race and aging (2-4), 
for which the diagnosis is predominantly based on clinical 
manifestations (5). However, despite numerous studies 
investigating HNS, the underlying pathogenic mechanisms 
of this disease remain to be elucidated, which limits the 
ability to pertinently treat and improve prognosis. Therefore, 
clarifying the molecular mechanisms of HNS is imperative 
for the development of effective diagnostics and therapeutic 
strategies.

In a disease network, a systems biology approach can be 
adopted as a means to reveal complex molecular interactions, 
rather than single molecular components (6). The ‘omics’ anal-
yses, which represent major cornerstones of systems biology 
research, are considered to be unbiased methods for the 
identification of biomarkers and to elucidate the pathological 
mechanisms of chronic kidney disease (7). These analyses are 
invaluable tools in nephrology research, and greatly facilitate 
the work of scientists (8). Bioinformatics has the potential to 
enable scientists to comprehensively analyze altered mRNA 
or microRNA expression patterns in a disease and identify 
key genes and pathways via construction of correlative 
networks (9). This analytical approach has been widely used 
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in order to reveal the potential mechanisms of renal diseases, 
including lupus nephritis (10), membranous nephropathy (11) 
and diabetic nephropathy (12). The findings of these analyses 
have greatly contributed to the development of knowledge 
with regards to renal diseases. However, to the best of our 
knowledge, the bioinformatics network analysis of HNS has 
not previously been reported.

The present study aimed to use different bioinfor-
matics approaches in order to determine the differentially 
expressed genes (DEGs) in HNS. The original GSE20602 
dataset was downloaded in order to identify the DEGs 
between glomeruli specimens from patients with HNS and 
normal glomeruli specimens. This dataset was published by 
Neusser et al (13). Subsequently, pathway enrichment and 
network analysis were performed in order to identify the 
key genes and signaling pathways implicated in HNS. The 
results of the present study may improve understanding of 
the pathogenesis of HNS and be valuable for future studies 
investigating HNS.

Materials and methods

Microarray data. The gene expression profile GSE20602 
was downloaded from the Gene Expression Omnibus (GEO, 
www.ncbi.nlm.nih.gov/geo/) database, and it was based on the 
platform of GPL96 [HG‑U133A] Affymetrix Human Genome 
U133A Array. The dataset included 14 renal biopsy samples 
from patients with HNS and four healthy control samples. 
Identification of HNS samples was based upon light and 
electron microscopy analysis and associated predetermined 
clinical and histological criteria, as well as immunofluores-
cence examination (14-16). The control samples were derived 
from normal kidney tissues of patients with tumor nephrec-
tomy (13). The patient glomeruli were microdissected from 
biopsy tissues for RNA isolation and further microarray 
experiments (13).

Data pre‑processing and differential analysis. Based on 
the Gene‑Cloud Biotechnology Information (www.gcbi.
com.cn) platform, the raw CEL files were transformed 
into probe-level data, and subsequently converted into 
corresponding gene symbols. According to the algorithms 
described by Bolstad (17), the Robust Multi-chip Average 
method was used in order to compute expression levels of 
probes, which consisted of three steps: Background correc-
tion, data normalization and expression measure. Briefly, 
the background corrected intensities on every GeneChip 
were computed for every perfect match cell. Following this, 
normalization data was then acquired using the quantile 
normalization algorithm, among which individual values 
were replaced with the mean of original values if the values 
were the same as another perfectly matched cell. Finally, the 
expression level for each probe was determined via an addi-
tive linear model. The Student's t-test was used in order to 
calculate the P-values of genes, and Hochberg's method (18) 
was used to adjust the raw P-value via calculation of the false 
discovery rate (FDR). Only genes with |log2 fold-change 
(FC)|>1 and FDR<0.05 were selected as DEGs for further 
investigation (19). Hierarchical clustering analyses of DEGs 
were performed as previously described (20).

Gene ontology (GO) and pathway enrichment analyses. 
GO analysis may be applied for the annotation of genes 
of high-throughput genomic or transcriptomic data (21). 
It is capable of predicting the function of genes in three 
aspects, including biological processes, molecular func-
tion and cellular components. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG, www.genome.jp) is a 
recognized pathway-associated database for the systematic 
analysis of gene function (22). The Database for Annotation, 
Visualization and Integrated Discovery (DAVID, david.
ncifcrf.gov) is an online bioinformatics resource for the 
systematic extraction of biological function from large gene 
or protein lists (23). In the present study, DAVID was applied 
in order to conduct GO and KEGG pathway enrichment 
analyses of the 483 identified DEGs. Fisher's exact test was 
used to calculate the P-value, and the FDR was calculated 
to correct this. The P<0.05 and FDR<0.05 were set as the 
significance threshold.

Network construction and hub module identification. Hub 
nodes have increased complex correlativity compared with 
other genes within the networks, therefore the are more likely 
to be involved in the underlying mechanisms of disease (24). 
Pathway relation network analysis can simultaneously reveal 
the pathway that has the greatest regulatory effect on both 
the highest and lowest stream pathways. Gene co‑expression 
network analysis determines the association between genes, 
and can aid in the search for the key gene from complex regu-
latory associations. The networks in the present study were 
constructed by Genminix Informatics Co., Ltd. (Shanghai, 
China) (25). The algorithms heavily reference previously 
published methods (26). Briefly, in networks, the nodes repre-
sent genes or pathways, and the edges indicate interactional 
relationships among them. The centrality of a network is 
represented by the central degree, which is the contribution 
of one gene (or pathway) to the genes (or pathways) in the 
vicinity and is represented by the area of nodes. The greater 
the degree value, the greater the area of the node. Therefore, 
the key genes and pathways may be distinctly identified 
from the networks.

Results

Clinical and histological characteristics. Of the 14 patients 
with HNS, 11 were males, and 3 were females. The mean age 
was 58 years. The mean systolic blood pressure was 143 mmHg, 
and the mean diastolic blood pressure was 86 mmHg. The 
mean creatinine, estimated glomerular filtration rate (eGFR) 
and proteinuria level were 2.3 mg/dl, 42 ml/min and 1.6 g/24 h, 
respectively. In the control group, the mean age, creatinine and 
eGFR level were 65 years, 1.0 mg/dl and 59 ml/min, respec-
tively. The mean systolic and diastolic blood pressures were 
not available for this group. No proteinuria was detected in the 
control group (Table I). The clinical and histological charac-
teristics of patients with HNS and controls were presented in a 
study by Neusser et al (13).

Identification of DEGs. According to the cut-off criteria 
of |log2FC|>1 and FDR<0.05, a total of 483 DEGs were 
identified in HNS samples compared with control samples, 
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including 302 upregulated genes and 181 downregulated 
genes. The results of DEG identification are presented in the 
form of a heat map and a volcano plot (Fig. 1), and the top 10 
dysregulated genes are presented in Table II. As revealed 
by Fig. 1A, the 4 control samples form a sub-cluster with 
some of the HNS samples. The most significantly upregu-
lated and downregulated genes are albumin (ALB; FC=9.74) 
and DEAD-box helicase 3, Y linked (DDX3Y; FC=-9.14) 
(Table III).

GO and KEGG pathway enrichment analyses. All DEGs were 
uploaded to the DAVID software in order to perform GO and 
KEGG analyses. GO analysis revealed that 384 significant 
GO categories (FDR<0.05) were regulated by DEGs, and 
the top 10 significantly enriched GO terms are presented in 
Fig. 2A and Table IV. Among them, the small molecule meta-
bolic process (P=1.10x10-37) was most significantly associated 
with HNS, which contained 76 DEGs. Pathway analysis 
demonstrated that 112 pathway categories (FDR<0.05) were 
affected by DEGs. Both Fig. 2B and Table IV present the 
top 10 significantly enriched pathways, the most prominent 
of which were the metabolic pathways (P=1.32x10-31), with 
65 DEGs.

Pathway association network analysis. The pathway associa-
tion network analysis was conducted based on the interrelation 
of the aforementioned 112 enriched pathway categories from 
KEGG, and this analysis revealed that the 59 nodes 
(representing pathways) and 172 edges (representing line 
connections between pathways) were assigned to the network 
(Fig. 3). The top ten hub nodes with higher degrees included 
the tricarboxylic acid (TCA) cycle, glycolysis/gluconeogen-
esis, mitogen-activated protein kinase (MAPK) signaling 
pathway, pyruvate metabolism, pathways associated with 
cancer, propanoate metabolism, cell adhesion molecules, 
T-cell receptor signaling pathway, ascorbate and aldarate 
metabolism and the synthesis and degradation of ketone 
bodies (Table V).

Gene co‑expression net work analysis.  The gene 
co-expression network was constructed with respect to 

gene function associations (25) and contained 51 nodes 
(representing the DEGs) and 168 edges (representing 
line connections between nodes; Fig. 4). Based on the 
connectivity degree, the hub genes were revealed to be 
sorbitol dehydrogenase (SORD), glycine-N-acyltransferase 
(GLYAT), cubilin (CUBN), pipecolic acid oxidase (PIPOX), 
ureidopropionase β (UPB1), 4-hydroxyphenyl pyruvate diox-
ygenase (HPD), dihydropyrimidinase (DPYS), solute carrier 
family 7 member 9 (SLC7A9), kynurenine 3-monoxygenase 
(KMO) and serine hydroxymethyltransferase 1 (SHMT1; 
Table VI).

Discussion

HNS is a common disease of the kidney, which significantly 
impacts patient quality of life. However, the exact molecular 
mechanisms underpinning HNS remain to be determined. 
High-throughput technologies can simultaneously reveal the 
expression levels of thousands of molecules and thus can be 
used for the prediction of potential therapeutic targets for 
kidney diseases (27).

In the present study, gene expression data was extracted 
from the GSE20602 dataset in order to identify the underlying 
molecular mechanisms of HNS via application of numerous 
bioinformatics approaches. A total of 483 DEGs, including 
302 upregulated and 181 downregulated genes, were selected 
for in the present study. ALB demonstrated the highest FC of 
all identified DEGs in HNS. ALB encodes albumin, the most 
abundant protein in human blood. Notably, urinary albumin has 
previously been demonstrated to be a risk factor for HNS (28). 
Gupta et al (29) revealed that patients with nephrotic protein-
uria and a serum albumin >35 g/l suffered from HNS and had 
poor renal survival. Furthermore, a recent study using mice 
demonstrated that clinical outcomes of kidney disease were 
significantly improved following gene knockdown of ALB, 
which therefore suggested that filtered albumin is deleterious 
to kidney cells (30).

In the present study, GO analysis was conducted with the 
aim of improving current understanding of the main functions 
of DEGs with regards to HNS. The results of this analysis 
yielded 384 significant GO terms, including small molecule 
metabolic process, cellular nitrogen compound metabolic 
process, transmembrane transport and the xenobiotic metabolic 
process. Among them, the small molecule metabolic process 
was the most significant. It is one of the GO terms that belongs 
to the biological process domain. This gene function category 
includes thousands of small molecules, and GO analysis 
revealed that there were 76 DEGs enriched in the small mole-
cule metabolic process term. These metabolic processes are 
considered to be involved in homeostasis, and individuals with 
abnormal metabolic statuses are at a significantly increased 
risk of developing chronic kidney disease (31). However, due 
to the differences of data preprocessing and filtering criteria, 
the DEGs associated with HNS revealed by the present study 
differ from those obtained by Neusser et al (13). In terms of 
GO analysis, Neusser et al (13) predominantly focused on the 
role of hypoxia in nephrosclerosis, thus the results of the GO 
analysis were hypoxia-associated biological processes, such 
as angiogenesis, inflammation and renal fibrosis. The present 
study, however, aimed to reveal the pathogenesis of HNS via 

Table I. Characteristics of patients with HNS (n=14) and controls 
(n=4). Data are presented as mean ± standard deviation.

Category HNS  Control

Gender (male/female/NA) 11/3/0 0/2/2
Age (years)   58±12 65±9
BP systolic (mmHg) 143±18 NA
BP diastolic (mmHg)   86±13 NA
Creatinine (mg/dl)   2.3±1.7 1.0±0
Estimated glomerular   42±24  59±1
filtration rate (ml/min)
Proteinuria (g/24 h)   1.6±1.7 0

BP, blood pressure; NA, not applicable; HNS, hypertensive 
nephrosclerosis.
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Table II. Top 10 differentially expressed genes associated with hypertensive nephrosclerosis.

Gene symbol Gene description Fold‑change P‑value False discovery rate

ALB Albumin 9.74 1.42x10-3 1.24x10-3

DDX3Y DEAD-box helicase 3, Y-linked -9.14 2.18x10-2 2.11x10-2

EGR1 Early growth response 1 6.78 4.60x10-5 0
FOS FBJ murine osteosarcoma viral oncogene homolog 6.06 1.90x10-4 0
HPD 4‑hydroxyphenylpyruvate dioxygenase 6.04 3.95x10-3 1.83x10-3

RPS4Y1 Ribosomal protein S4, Y-linked 1 -5.92 3.23x10-2 3.17x10-2

ABP1 Amiloride binding protein 1 (amine oxidase (copper‑containing)) 5.62 8.38x10-3 5.04x10-3

CYP4A11 Cytochrome P450, family 4, subfamily A, polypeptide 11 5.48 2.18x10-3 1.24x10-3

ALDOB Aldolase B, fructose-bisphosphate 5.37 7.44x10-3 5.04x10-3

BBOX1 γ-butyrobetaine hydroxylase 1 5.05 4.00x10-3 3.23x10-3

Figure 1. DEGs between HNS and control samples. (A) Heat map of the DEGs, red indicates upregulated genes and green indicates downregulated genes. 
(B) Volcano plot of the DEGs (Yellow indicates DEGs with |log2 fold‑change|>1 and false discovery rate <0.05. Blue indicates non‑DEGs). HNS, hypertensive 
nephrosclerosis; DEG, differentially expressed genes.

Table III. Top 10 significant gene ontology terms of differentially expressed genes associated with hypertensive nephrosclerosis.

Gene ontology name Differentially expressed genes P‑value False discovery rate

Small molecule metabolic process 76 1.10x10-37 2.14x10-34

Cellular nitrogen compound metabolic process 21 6.42x10-17 6.25x10-14

Transmembrane transport 30 4.48x10-15 2.91x10-12

Xenobiotic metabolic process 16 2.80x10-13 1.36x10-10

Response to drug 20 1.72x10-12 6.71x10-10

Cellular response to calcium ion 9 7.68x10-12 2.49x10-9

Platelet degranulation 12 1.68x10-11 4.67x10-9

Platelet activation 16 1.16x10-10 2.82x10-8

Steroid metabolic process 10 1.36x10-10 2.95x10-8

Gluconeogenesis 9 3.41x10-10 6.64x10-8
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global bioinformatics analysis; therefore, the GO findings of 
the present study are inconsistent with those determined by 
Neusser et al (13).

Similar to the GO analysis, pathway enrichment analysis 
was also performed to further investigate the DEGs in HNS. 
It was revealed that the DEGs were predominantly involved in 
metabolic pathways and the peroxisome proliferator-activated 

receptors (PPAR) signaling pathway. The kidney is an 
important metabolic organ; therefore, the metabolic 
pathway that included 65 DEGs was proven to be the most 
significant pathway in the present study. PPARs are nuclear 
hormone receptors and are critical for lipid metabolism (32). 
A previous study demonstrated that PPARs are highly 
expressed in the kidney (33). The PPAR signaling pathway 

Figure 2. Histogram of the top 10 significant (A) GO categories and (B) pathways of differentially expressed genes associated with hypertensive nephrosclerosis. 
GO, gene ontology; PPAR, peroxisome proliferator‑activated receptor.

Table IV. Top 10 significant pathways of differentially expressed genes associated with hypertensive nephrosclerosis.

Pathway name Differentially expressed genes P-value False detection rate

Metabolic pathways 65 1.32x10-31 2.69x10-29

PPAR signaling pathway 13 1.29x10-13 1.32x10-11

Protein digestion and absorption 12 4.61x10-11 3.13x10-9

Cell adhesion molecules  14 1.27x10-10 6.50x10-9

Arginine and proline metabolism 10 1.64x10-10 6.68x10-9

Drug metabolism-cytochrome P450 10 2.38x10-9 8.10x10-8

Glycine, serine and threonine metabolism 7 6.81x10-8 1.98x10‑6

Proximal tubule bicarbonate reclamation 6 8.44x10-8 2.15x10‑6

Tryptophan metabolism 7 1.20x10-7 2.73x10‑6

Carbohydrate digestion and absorption 7 2.82x10-7 5.76x10‑6
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Figure 3. Relationship network of significant pathways associated with hypertensive nephrosclerosis. Nodes represent pathways. The size of the nodes repre-
sents the associated degree value. Lines with arrows represent interactions between pathways, whereas the pathways with arrow tails regulate pathways with 
the associated arrow's head. Red nodes represent upregulated pathways, blue nodes represent downregulated pathways, and yellow nodes indicate that there 
were genes associated with the pathway that were both up and downregulated. PPAR, peroxisome proliferator-activated receptor; MAPK, mitogen-activated 
protein kinase; ECM, extracellular matrix.

Figure 4. Gene co‑expression network of differentially expressed genes associated with hypertensive nephrosclerosis. Nodes denote genes; edges represent 
gene-gene interactions and the size of the nodes represents the associated degree value.
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was previously revealed to be a common pathway associated 
with renal dysfunction, such as hypertensive nephropathy (34). 
However, GO and pathway enrichment are preliminary 
analyses of DEGs and whether DEGs are implicated in the 
progression of HNS remained to be verified by network 
analysis.

Following pathway analyses, 59 significantly enriched 
pathways were selected in order to establish a pathway rela-
tion network. The TCA cycle, glycolysis/gluconeogenesis, 
MAPK signaling pathway and pyruvate metabolism were 
identified as the core pathways. The TCA cycle is a mito-
chondria-dependent process, and the cell bodies of podocytes 
contain a substantial number of mitochondria (35). Previous 
studies have revealed that the TCA cycle functions as a 
bridge in order to connect other metabolic pathways to one 
another (36,37). Dysfunction of the TCA cycle was previ-
ously demonstrated to be associated with kidney injury (38). 
In the present study, 3 DEGs phosphoenol pyruvate 
carboxykinase 1 (PCK1), PCK2 and oxoglutarate dehydro-
genase like (OGDHL) were revealed to be involved in the 
TCA cycle. The PCK1 gene encodes the cytosolic isozyme 
of phosphoenolpyruvate carboxykinase (PEPCK), whereas 
PCK2 encodes the mitochondrial isozyme of PEPCK (39). 
PEPCK is a rate-limiting enzyme of gluconeogenesis occur-
ring in the liver and renal cortex, and it is essential for 
glucose homeostasis (40). Numerous studies have revealed 
that PCK1 is a multi-functional gene and is implicated in 
physiological processes in the liver, kidney and adipose 
tissues (41-43). Therefore, the TCA cycle and its associated 
pathways and DEGs may take part in the regulation of HNS 
development.

Finally, a gene co-expression network analysis was 
conducted in order to reveal hub genes associated with HNS. 
A number of prominent genes were identified as a result of 
their degree value. The majority of these genes encoded 
metabolic enzymes, such as SORD, GLYAT, PIPOX, UPB1, 
HPD, DPYS, KMO and SHMT1. For example, SORD is the 

second enzyme of the polyol pathway (involved in glycolysis), 
which catalyzes the conversion of sorbitol to fructose and is 
highly expressed in the kidney (44). Due to the polymorphic 
variation of the SORD gene, both the accumulation and 
toxicity of sorbitol are associated with the development of 
microvascular problems (45), which may be one of underlying 
risk factors for HNS. Furthermore, SORD and aldolase B, 
another upregulated gene, are both implicated in the sorbitol 
pathway, which is closely associated with hyperglycemia (46). 
Furthermore, synthesis and degradation of ketone bodies was 
identified as one of the hub pathways, which is also associated 
with diabetes. Whether the results of the present study are 
also affected by hyperglycemia remains to be investigated by 
further studies.

In addition to metabolism-associated genes, CUBN was 
also identified as a hub gene (Table VI). CUBN encodes 
cubilin, a proximal tubular epithelial cell protein, which 
was also revealed to be expressed in glomerular podo-
cytes (47). Mutations in CUBN have been associated with 
the susceptibility to ESRD (48). Considering the association 
between HNS and ESRD, it may be suggested that CUBN 
may be involved in the progression of HNS. Furthermore, 
the megalin protein, encoded by LRP2, is implicated in the 
facilitation of the internalization of the cubilin-albumin 
complex (49) and is expressed in the proximal tubule and 
the glomerulus (50). LRP2 was also screened as a DEG, 
which confirmed the potential role of CUBN in the patho-
genesis of HNS. Further studies on these hub genes may 
contribute to the development of more effective therapeutic 
approaches for patients with HNS. However, due to limited 
experimental conditions, the results of the current study 
were predicted using only bioinformatics approaches. 
Further molecular biology studies are required in order to 
verify these results.

In conclusion, the present study aimed to investigate the 
potential underlying molecular mechanisms of HNS using 
bioinformatics analysis. A total of 483 DEGs were identified 

Table V. Top 10 key pathways according to the degree.

 Out In Total
Pathway name degree degree degree

Tricarboxylic acid cycle  6 13 19
Glycolysis/gluconeogenesis 4 12 16
MAPK signaling pathway 0 16 16
Pyruvate metabolism 7 8 15
Pathways in cancer 12 0 12
Propanoate metabolism 6 5 11
Cell adhesion molecules  4 7 11
T cell receptor signaling pathway 3 8 11
Ascorbate and aldarate metabolism 4 4 8
Synthesis and degradation of 4 4 8
ketone bodies

Out degree, number of downstream pathways; In degree, number of 
upstream pathways; Total degree, sum of out degree and in degree 
values.

Table VI. Top 10 key genes according to the degree value.

Gene  Description Degree

SORD Sorbitol dehydrogenase 22
GLYAT Glycine‑N‑acyltransferase 21
CUBN Cubilin (intrinsic factor-cobalamin 15
 receptor)
PIPOX Pipecolic acid oxidase 14
UPB1 Ureidopropionase, β  14
HPD 4-hydroxyphenylpyruvate dioxygenase 14
DPYS Dihydropyrimidinase 14
SLC7A9 Solute carrier family 7 member 9 14
KMO Kynurenine 3-monooxygenase 13
 (kynurenine 3-hydroxylase)
SHMT1 Serine hydroxymethyltransferase 1 13
 (soluble)

Degree, number of the associated gene interactions with the key gene 
in the network.
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in HNS samples compared with control samples. Furthermore, 
the present study revealed that SORD, CUBN and ALB genes, 
as well as the TCA cycle and metabolic pathways, may be 
implicated in the pathogenesis of HNS. These results may 
prove valuable for further studies aiming to investigate novel 
targets for the diagnosis and treatment of HNS.
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