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Abstract. Trastuzumab, the first targeted antibody against 
human epidermal growth factor receptor 2 (HER2), has been 
used to treat gastric cancer patients with HER2 overexpres-
sion. However, trastuzumab resistance often occurs following 
an initial period of benefits, and the underlying mechanisms 
remain largely unclear. The present study revealed that 
collagen type IV α1 chain (COL4A1), whose expression is 
upregulated in gastric cancer tissues and trastuzumab‑resis-
tant gastric cancer cells, may potentially confer trastuzumab 
resistance in gastric cancer. By performing bioinformatics 
analysis of 2 microarray datasets, the present study initially 
identified COL4A1, overexpressed in gastric cancer tissues and 
trastuzumab‑resistant gastric cancer cells, as a potential candi-
date for inducing trastuzumab resistance. The drug resistance 
function of COL4A1 in gastric cancer was then validated by 
performing protein/gene interactions and biological process 
annotation analyses, and further validated by analyzing the 
functionality of microRNAs that target COL4A1 mRNA. 
Collectively, these data indicated that COL4A1 may confer 
trastuzumab resistance in gastric cancer.

Introduction

Gastric cancer is the third most frequently diagnosed cancer 
type, and has been the leading cause of cancer‑related death in 

less‑developed countries (1). Although advances in therapeutic 
strategies such as surgery and systemic chemotherapy, have 
improved the clinical outcomes for gastric cancer patients, the 
prognosis of these patients remains poor because of frequent 
cancer recurrence (2). Nevertheless, due to the encouraging 
development in newly targeted therapies, such a disappointing 
clinical condition has been improving. Trastuzumab, the first 
targeted antibody against human epidermal growth factor 
receptor 2 (HER2), has been approved for the treatment of 
patients with HER2‑positive metastatic gastric cancer (3). 
However, even with trastuzumab resistance, gastric cancer 
almost inevitably progresses, as the tumors become resistant 
to trastuzumab after an initial period of clinical benefits (4). 
Mechanisms leading to trastuzumab resistance in breast 
cancer, such as cross‑talk between HER2 and other intra-
cellular kinase receptors, have been described recently (5), 
however, the underlying mechanisms of trastuzumab resis-
tance in gastric cancer remain largely unknown.

Cancer cells are able to activate alternative survival 
pathways yielding drug resistance in response to chemo-
therapy, and thereby leads to the chemotherapeutic 
treatment failure (6). Since drug resistance is a common 
cause limiting the efficacy of cancer treatment, several 
mechanisms are elucidated to be responsible for the resis-
tance development, such as increased rates of drug efflux, 
apoptosis resistance, and microRNAs (miRNAs) mediated 
overexpression of many drug resistance‑related genes (7). 
Microarray technology, a high‑throughput platform that 
analyzes gene expression, in combination with bioinfor-
matics analysis has been widely used as a promising tool 
to acquire gene signature during tumorigenesis or drug 
resistance, and identify prognostic biomarkers in cancer 
patients (8-10). Abnormal expression patterns of drug 
resistance‑related genes commonly play important roles 
in drug resistance (11), thus, exploring and identifying the 
critical drug resistance‑related genes based on microarray 
analysis would have a significant impact.

Therefore, in the present study, we sought to identify the 
potential genes that promote trastuzumab resistance in gastric 
cancer through retrieving microarray data from public data-
bases and comprehensive bioinformatics analysis.
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Materials and methods

Microarray data. The gene expression profiles of GSE26899, 
GSE77346, GSE54129, and GSE65801 were obtained from the 
Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo). 
In detail, GSE26899 dataset is consisted of 96 clinical gastric 
tumor tissues and 12 adjacent normal tissues; GSE77346 
dataset is consisted of 1 trastuzumab‑sensitive cell line and 
4 trastuzumab‑resistant cell lines (12); GSE54129 includes 
111 human gastric cancer tissues and 21 non‑cancerous tissues; 
GSE65801 contains 32 gastric cancer tissues and 32 paired 
non‑cancerous tissues (13).

Processing of microarray data. The raw microarray data 
files of the datasets downloaded from the GEO website were 
subsequently analyzed via using the GEO2R (www.ncbi.nlm.
nih.gov/geo/geo2r/), an online tool comparing two or more 
groups of samples in the same experimental setting (14). False 
Discovery Rate (FDR) of P‑value adjusted (adj. P) to 0.05 and 
|logFC|>1 were set as the cut‑off criteria.

Functional and pathway enrichment analyses. Gene ontology 
(GO) analysis is a commonly used approach for functional 
studies with three ontologies including biological process, 
molecular function, and cellular component (15), while Kyoto 
Encyclopedia of Genes and Genomes (KEGG) is a knowl-
edge base for the systematic study of gene functions (16). To 
study the functional annotations of differentially expressed 
genes (DEGs), we next employed Database for Annotation, 
Visualization and Integrated Discovery (DAVID, david.abcc.
ncifcrf.gov/,) to process the GO and KEGG analyses of DEGs 
identified in gastric cancer samples. P<0.05 was set as the 
threshold.

Protein‑protein interaction (PPI) network construction and 
module analysis. The Search Tool for the Retrieval of Interacting 
Genes (STRING), an online database (string‑db.org) designed 
to evaluate PPI information, covers 9,643,763 proteins from 
more than 2,000 organisms, which was used to construct the 
PPI. To evaluate the interactive associations of DEGs identi-
fied from GSE26899, we mapped these DEGs to the STRING 
(version 10.5) database. Confidence score >0.4 was selected as 
significant. PPI networks were constructed by STRING and 
visualized by Cytoscape. Subsequently, the plug‑in Molecular 
Complex Detection (MCODE) was employed to screen the 
modules of PPI networks in Cytoscape with the threshold set 
as follows: MCODE scores >10.

Survival analysis of collagen type IV α1 chain (COL4A1). 
To evaluate the association between COL4A1 level and its 
clinical outcomes, Kaplan‑Meier plotter (KM plotter; www.
kmplot.com), an online survival analysis tool, was performed. 
KM plotter is capable of assessing the effect of 54,675 genes 
on overall survival via using 10,188 cancer samples including 
4,142 breast, 1,648 ovarian, 2,437 lung, and 1,065 gastric 
cancer patients (17). Patients with gastric cancer were sepa-
rated into high‑ and low‑expression groups according to the 
level of COL4A1, and the overall survival was then analyzed. 
The hazard ratio (HR) with 95% confidence intervals and log 
rank P‑value were calculated.

Analysis of COL4A1 by geneMANIA and coremine. 
GeneMANIA, an online tool (www.genemania.org/), can be 
used to generate hypotheses of gene function, analyze gene 
lists, and prioritize genes for functional assays (18). After 
selecting Homo sapiens from the nine optional organisms, 
COL4A1 was entered into the search bar and the results were 
then collected. Annotation of biological processes involving 
COL4A1 was performed by consulting the Coremine Medical 
online database (www.coremine.com/medical/).

Prediction of miRNAs. To predict the miRNAs targeting 
the mRNA of COL4A1, miRWalk (version 2.0, zmf.umm.
uni‑heidelberg.de/apps/zmf/mirwalk2/), an online platform 
supplying information about predicted and experimentally 
validated miRNA‑target interactions, was then employed (19). 
Herein, nine prediction programs (miRWalk, miRanda, 
miRDB, miRNAMap, Pictar2, PITA, RNA22, RNAhybrid and 
Targetscan) were selected. These predicted miRNAs were then 
overlapped by at least seven programs, and selected for further 
analysis. Pathway enrichment analysis of these miRNAs 
was performed by using the DIANA‑mirPath web server 
(snf‑515788.vm.okeanos.grnet.gr/index.php?r=mirpath) (20).

Statistical analysis. SPSS 22.0 software (IBM Corp., Armonk, 
NY, USA) was used to analyze data. Two tailed Student's t‑test 
was used to compare the two groups. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Module acquisition based on the DEGs identified in gastric 
cancer tissues. Drug resistance‑related genes identified from 
in vitro drug‑induced resistant models may simply repre-
sent transcriptional changes, thus, complementary agents 
targeting these genes are usually failure to translate into 
clinical practice (21). Because drug resistance acquisition 
can arise before the malignant transformation stage (22), 
the genes playing important roles in tumorigenesis and drug 
resistance is thereby more likely to be critical for resistance 
occurrence. Therefore, we first identified 509 DEGs in 
gastric cancer tissues from the GSE26899 dataset using a 
2‑fold‑change and adj. P<0.05 as the threshold cutoff. Among 
these DEGs, the expression of these 172 genes was signifi-
cantly upregulated, while that of 337 genes was significantly 
downregulated in cancer tissues (Fig. 1A). To explore the 
potential roles of these significantly upregulated DEGs, GO 
and KEGG pathway analyses, which can provide valuable 
insights regarding protein function, were performed (23). As 
shown in Fig. 1B, GO results showed that these significantly 
upregulated DEGs were largely associated with extracel-
lular region part, collagen, extracellular matrix, and cell or 
biological adhesion processes. KEGG results also consis-
tently revealed that these DEGs were highly enriched in 
extracellular matrix‑receptor interaction and focal adhesion 
pathways (Fig. 1C). Based on further DEGs analysis with the 
STRING database, the PPI network of these DEGs, which 
contained 505 nodes and 1,207 edges, was subsequently 
constructed. Using the MCODE plug‑in in Cytoscape, we 
obtained the module with the highest score (Fig. 2A), and 
also performed a cluster analysis of these genes in the module 
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Figure 1. Identification of DEGs from GSE26899 dataset. (A) Volcano plot of DEGs between gastric cancer tissues and surrounding normal tissues. Red dots 
represent significantly upregulated DEGs in gastric cancer tissues; green dots represent significantly downregulated DEGs in gastric cancer tissues; gray dots 
represent no significant difference. P<0.05 and fold‑change >2 were regarded as significant. (B) GO analysis of significantly upregulated DEGs in gastric 
cancer tissues. Top 5 enriched GO categories under ‘biological process’, ‘cellular component’ and ‘molecular function’ were indicated. (C) KEGG pathway 
enrichment analysis of significantly upregulated DEGs in gastric cancer tissues. Top 5 enriched pathways were indicated. DEGs, differentially expressed 
genes; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix.

Figure 2. Module with the highest score, obtained based on the DEGs identified from GSE26899 dataset. (A) Module with the highest score generated from 
the protein‑protein interaction network of significantly upregulated DEGs in gastric cancer tissues. (B) Heat map of the 17 genes from the selected module. 
Red, upregulation; Blue, downregulation; DEGs, differentially expressed genes; COL, collagen; PLOD3, procollagen‑lysine, 2‑oxoglutarate 5‑dioxygenase 3; 
SERPINH1, serpin family H member 1.
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(Fig. 2B). The module with the highest score was selected 
based on these DEGs identified from gastric cancer tissues 
via bioinformatics methods.

Expression of COL4A1, overexpressed in gastric cancer 
tissues, is also upregulated in trastuzumab‑resistant gastric 
cancer cells. To further explore the potential genes contrib-
uting to trastuzumab resistance, we retrieved GSE77346 data, 
a microarray dataset consisted of one trastuzumab‑sensitive 
gastric cancer cell line and four trastuzumab‑resistant gastric 
cancer cell lines (12). After screening the significantly upregu-
lated DEGs in trastuzumab‑resistant cancer cells, COL4A1, 
one of hub genes in the selected module (Fig. 2A), was also 
found to be significantly upregulated in trastuzumab‑resistant 
cells (Fig. 3A), suggesting COL4A1 might be important in 
both tumorigenesis and trastuzumab resistance. Since the gene 
expression is not always consistent with its protein amount (24), 
further validation of COL4A1 protein level in clinical gastric 
cancer tissues is quite necessary. By employing the Human 
Protein Atlas database, an online tool analyzing protein level 
from clinical specimens, we observed that COL4A1 was 
positively expressed in gastric cancer tissue, but negatively 
expressed in normal gastric tissue (Fig. 3B). Two other datasets, 
including GSE54129 and GSE65801 were also used to validate 
the mRNA level of COL4A1, which was indeed significantly 
upregulated in clinical gastric cancer samples (Fig. 3C and D). 
To investigate potential regulation mechanisms of COL4A1 
in gastric cancer, the genomic alteration of COL4A1 in The 

Cancer Genome Atlas (TCGA) cohort was analyzed using the 
cBioPortal (www.cbioportal.org/) (25). As shown in Fig. 3E, 
the amplification, missense mutation, truncating mutation, and 
deletion of COL4A1 accounted for 4.3, 4.8, 2.0, and 0.5% of 
stomach adenocarcinoma cases, respectively. The prognostic 
value of COL4A1 in patients with gastric cancer was analyzed 
using the KM plotter according to the low and high expres-
sion of COL4A1. As shown in Fig. 3F, the high mRNA level 
of COL4A1 [HR 1.56 (1.31‑1.86)] was associated with poor 
overall survival of gastric cancer patients. Altogether, these 
data suggest that COL4A1 is a potential gene candidate that 
promotes the development of gastric cancer and subsequent 
trastuzumab resistance.

Drug resistance function of COL4A1 is validated by 
protein/gene interactions and biological process annotation 
analyses. As a user‑friendly web interface for functional 
prediction of genes, GeneMANIA has been widely used as an 
effective tool to predict and explore drug resistance‑related 
genes (18). Accordingly, COL4A1 showed interactions with 
20 proteins/genes; among these 6 genes were involved in 
conferring drug resistance in cancer (Fig. 4A). The mRNA 
expression of these 6 genes in gastric cancer cells and 
trastuzumab‑resistant gastric cancer cells were also evalu-
ated using the microarray data of GSE77346. As shown 
in Fig. 4B, the mRNA level of angiopoietin 2 (ANGPT2), 
COL3A1, COL15A1, and secreted protein acidic and cysteine 
rich (SPARC) were upregulated in trastuzumab‑resistant 

Figure 3. COL4A1 in the selected module is significantly upregulated in trastuzumab resistant gastric cancer cells. (A) Volcano plot of DEGs between 
trastuzumab‑resistant and sensitive gastric cancer cells. Red dots represent significantly upregulated DEGs in trastuzumab‑resistant gastric cancer cells; green 
dots represent significantly downregulated DEGs in trastuzumab‑sensitive gastric cancer cells; and gray dots represent no significant difference. P<0.05 and 
fold‑change >2 were regarded as significant. (B) The expression of COL4A1 in normal gastric tissue and gastric cancer tissue, respectively. Representative 
immunohistochemistry staining results were obtained from the Human Protein Atlas online database (magnification, x40). The relative mRNA level of 
COL4A1 was validated by two other datasets including (C) GSE54129 and (D) GSE65801. The values are expressed as the mean ± standard deviation. **P<0.01, 
as indicated. (E) Proportion of genetic alterations of COL4A1 retrieved from the cBioportal (n=393; www.cbioportal.org/). (F) Kaplan‑Meier survival analysis 
of COL4A1 in gastric cancer patients that was obtained from www.kmplot.com. HR, hazard ratio; DEGs, differentially expressed genes; COL4A1, collagen 
type IV α1.
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gastr ic cancer cells. Among these genes, COL4A1 
co‑expressed and co‑localized with ANGPT2, collagen 
type VI α 3 chain (COL6A3), and SPARC, respectively. It 
has been reported bevacizumab resistance in glioblastoma 
and doxorubin resistance in liver cancer are largely medi-
ated by an enforcement of ANGPT2/TIE2 signaling (26,27). 
Additionally, overexpression of COL6A3, one of the most 
highly upregulated genes in oxaliplatin and cisplatin resis-
tant ovarian cancer cells, has also been recognized to confer 
cisplatin resistance in sensitive cancer cells (28). Moreover, 
the accumulation of intracellular SPARC can drive imatinib 
resistance in chronic myelogenous leukemia cells (29), 
and also modulate cisplatin resistance via modulating the 
Let‑7f‑1 miRNA/HMGB1 signaling in medulloblastoma 
cells (30). COL3A1 and COL15A1, two types of fibrillar 
collagen highly expressed in chemotherapeutic drugs 
resistant ovarian cancer cells (31), were also exhibited 
to co‑express, share protein domains, and co‑localize 
with COL4A1 (Fig. 4A). Additionally, COL4A1 also was 
co‑expressed, shared pathways, and had physical interac-
tions with platelet derived growth factor subunit B (PDGFB). 
Akt/PDGF‑B signaling can regulate Akt, and thus confer 
the hypoxia‑induced cisplatin resistance in liver cancer 
cells (32). PDGFB may contribute to the resistant phenotype 
and sustain signaling through MAPK and Akt in breast 
cancer cells (33). The Coremine Medical database is a freely 
available online tool for obtaining information on health, 

medicine, and biology (33); thus, we used this database to 
annotate the biological process of COL4A1. As shown in 
Fig. 4C, 12 biological processes significantly associated 
with COL4A1, gastric cancer, and drug resistance (P<0.01) 
were annotated. Considering that the close relationships of 
COL4A1 with these processes and the close relationships 
of the 12 processes with gastric cancer and drug resistance, 
COL4A1 might be involved in the development of drug 
resistance in gastric cancer via its effect on these biological 
processes. In detail, cell growth related biological processes 
(including 4 cell growth, cell proliferation, and apoptotic 
process), gene expression regulation‑related (including gene 
expression, RNA interference, and reverse transcription), 
and especially, the epithelial‑mesenchymal transition (EMT) 
biological process were identified to be closely associated 
with the development of COL4A1 in the gastric cancer drug 
resistance. Therefore, these results suggest that COL4A1 
may confer drug resistance in gastric cancer via regulating 
cell growth, gene expression, and in particular, epithelial 
mesenchymal transition (EMT) processes.

Drug resistance function of COL4A1 is further validated 
by analyzing functionality of miRNAs that target COL4A1 
mRNA. Post‑transcriptional gene expression regulated 
by miRNAs is important for multiple cellular processes 
during development and pathogenesis (34). Amplification 
and overexpression of tumor‑promoting miRNAs or 

Figure 4. Validation of drug resistance function of COL4A1. (A) Protein/gene‑protein/gene interaction network of COL4A1 generated using the GeneMANIA 
online tool. The network legends refer to the interaction types between proteins/genes. The interaction types between proteins/genes were illustrated as 
indicated by the network legend. (B) Relative mRNA level of 6 genes interacting with COL4A1 based on the microarray data of GSE77346. Red column, 
relative expression >1; Black column, relative expression <1. (C) Annotation of biological processes of COL4A1 with gastric cancer and drug resistance using 
the Coremine Medical online tool. DEGs, differentially expressed genes; COL4A1, collagen type IV α1.
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genetic loss of tumor‑suppressing miRNAs are tightly 
correlated with the development of cancer and chemothera-
peutic resistance (35). Therefore, studying target genes of 
miRNAs is a focus of interest due to the diagnostic and 
therapeutic relevance, and the gene functions can also be 
predicted according to functionality of these miRNAs 
targeting the gene (36). To obtain the miRNAs targeting 
COL4A1 mRNA, the miRNA‑mRNA interaction analysis 
was performed by using the miRWalk. We identified 553 
miRNAs predicted to transcriptionally target COL4A1 
mRNA, indicating the regulation of COL4A1 by miRNAs. 
These miRNAs predicted by at least 8 of 9 prediction tools 
were then submitted to pathway enrichment using DIANA 
miRPath (20). As shown in Table I, the top 5 highly associated 
pathway were ECM‑receptor interaction, TGF‑β signaling 
pathway, viral carcinogenesis, proteoglycans in cancer, and 
Hippo signaling pathway, which are almost reported to be 
related with drug resistance (37-41). It has been established 
TGFβ signaling can activate autophagy process, and thereby 
lead to the oxaliplatin resistance in colorectal cancer (38). 
In addition, the activation of Hippo signaling also contrib-
utes to the drug resistance and cancer relapse (42). YAP, an 
effector of hippo signaling, has also been reported to alter 
clinical response of EGFR‑tyrosine kinase inhibitors in lung 
cancer patients (43). Furthermore, it has also been reported 
that inactivation of Hippo pathway can restore gemcitabine 
sensitivity among a variety of cancers (44). In the present 
study, as shown in Table II, 9 of top 10 miRNAs that target 
COL4A1 mRNA were tightly associated with drug resis-
tance in cancers (45-51). For instance, loss of intracellular 
miR‑29b promotes cisplatin resistance in gastric cancer. 
Consistently, ectopic overexpression of miR‑29b in chol-
angiocarcinoma cells can confer gemcitabine sensitivity 

to HuH28 cells (45). MiR‑506 overexpression can confer 
hydroxycamptothecin resistance in colon cancer cells by 
inhibiting PPARα expression (50). Collectively, these data 
provide further supports for the drug resistance function of 
COL4A1 in gastric cancer.

Discussion

In the present study, based on the bioinformatics analysis of 
two microarray datasets including GSE26899 and GSE77346, 
COL4A1, which was overexpressed in gastric cancer tissues 
and trastuzumab‑resistant gastric cancer cells, was identi-
fied as a potential gene that promotes gastric cancer and 
trastuzumab resistance. By combining the protein/gene inter-
actions, biological process annotation, and miRNAs‑mRNA 
interaction analyses, we showed that COL4A1 may confer 
trastuzumab resistance in gastric cancer.

Traditional chemotherapy and newly targeted therapy 
are two important methods of cancer treatment; however, the 
clinical efficacy of both is largely limited due to the occurrence 
of subsequent drug resistance (52). Mechanisms underlying 
drug resistance, such as alteration of drug targets or metabolism 
and genetic mutation (11) have been elucidated. Similar to that 
in breast cancer, the HER2‑positivity rate in gastric cancer can 
range from 20 to 42% (53). However, although the benefits of 
trastuzumab against HER2‑positive gastric cancer have been 
formally established (3,53), trastuzumab resistance is almost 
inevitable and eventually leads to the therapeutic failure (4). 
Interfering with the combination of trastuzumab and HER2 (54) 
and constitutive dimerization of the HER2 receptor (55) have 
been recognized as causes of trastuzumab resistance. Recently, 
abnormal expression of tumorigenesis or drug resistance‑related 
genes, such as phosphatidylinositol 3‑kinase/Akt signaling (56) 

Table I. Top 8 enriched pathways regulated by microRNAs that target collagen type IV α1 mRNA and their associations with 
drug resistance in gastric cancer.

    Regulation of drug 
Author, year miRNAs (hsa‑miR‑) KEGG pathway P‑value resistance in cancers (Refs.)

Wu et al, 2017 29b‑3p, 124‑3p, 148a‑3p,  ECM‑receptor interaction 1.14x10-15 Yes  (37)
 29a‑3p, 152‑3p, 148b‑3p,     
 506‑3p, 628‑5p, 29c‑3p,     
 767‑5p, 637, 33a‑5p,     
 33b‑5p, 203a, 374a‑5p,     
 300, 106a‑5p, 98‑5p,     
 381‑3p, let‑7b‑5p,     
 7c‑5p, 7b‑3p, 7a‑5p    
Sun et al, 2017  TGF‑β signaling pathway 6.58x10-11 Yes  (38)

‑  Viral carcinogenesis 9.72x10-11 None ‑
Lanzi et al, 2017  Proteoglycans in cancer 3.94x10-10 Yes  (39)
Gujral et al, 2017  Hippo signaling pathway 6.66x10-10 Yes  (44)
Lee et al, 2015  Cell cycle 1.01x10-9 Yes  (40)
Wallerand et al, 2010  Adherens junction 2.99x10-8 Yes  (41)

‑  Pathways in cancer 3.46x10-8 Cancer pathway ‑

The miRNAs predicted by at least 7 of the 9 prediction tools were submitted to DIANA‑miRPath version 3.0 to perform KEGG analysis. 
miRNA/miR, microRNA; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; TGF, transforming growth factor.
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and insulin like growth factor 1 receptor (57), has been also 
identified as the important mechanisms causing trastuzumab 
resistance. However, a comprehensive study of specific 
molecular mutation underlying trastuzumab resistance is 
still needed. Drug resistance‑related genes identified from 
induced drug‑resistant cancer cells may simply be a result of 
transcriptional changes that may be irrelevant to resistance 
mechanisms (58). Thus, targeting these genes usually fail to 
translate into clinical practice (21). It has been recently shown 
that the ability to acquire drug resistance can arise even before 
the malignant transformation stage. For instance, overexpres-
sion of telomerase or inactivation of p53 can contribute to 
the drug‑resistant phenotype in pre‑tumorigenic models (22). 
Insulin‑like growth factor signaling has also been deemed a 
factor that promotes both the development of various tumors 
and their resistance to chemotherapy (59,60). This evidence 
thus reminds us that the genes playing a key role in both tumor 
development and subsequent drug resistance likely produce 
the essential molecule for drug resistance. Herein, through 
retrieving microarray datasets and employing subsequent bioin-
formatics analysis, COL4A1 was validated as an important gene 
that drives trastuzumab resistance in gastric cancer.

The heterotrimers formed by COL4A1 and COL4A2 
presents in almost all the basement membranes, which are a 
specialized form of the extracellular matrix. Besides that the 
basement membranes can mediate tissue compartmentaliza-
tion and transfer environmental signals to epithelial cells (61), 
it is also an important structural and functional component 
of blood vessels. Accordingly, mutations in COL4A1 are 
pleiotropic and contribute to many diseases, such as myopathy, 
hemorrhagic stroke, and tumor progression (62). Upregulated 
COL4A1 produced by bladder cancer cells plays pivotal roles 
in tumor invasion via induction of tumor budding, while 
overexpression of COL4A1 also contributes to breast cancer 
cells proliferation, which indicates targeting COL4A1 can be 
an attractive approach for cancer treatment (63,64). Besides, 
COL4A1 has also been identified as one of biomarkers for 
prognosis of intrahepatic cholangiocarcinoma (65). Given that 
an interaction between PDGFB and HIF‑1α and an interplay 
between SPARC, BCL‑2, and caspase‑8 have been recognized 
to augment chemotherapy‑induced apoptosis, and thereby 
inducing resistance (32,66). Herein, our results suggest COL4A1 
can drive trastuzumab resistance in gastric cancer via multiple 
mechanisms, such as cell proliferation and miRNAs‑mediated 
post‑transcriptional modification. Consistent with our results, 
a previous study also reported the sustained EMT phenotype 
induced by prolonged trastuzumab treatment may lead to 
trastuzumab resistance in gastric cancer cells (67). Small 
molecules that targeting drug resistance‑related genes have 
shown promising clinical efficacy in cancer treatment. For 
instance, erbB3 overexpression drives paclitaxel resistance 
in breast cancer, MM‑121/SAR256212, an erbB3‑targeted 
antibody, was thus designed and shows augmented effect on 
paclitaxel resistance (68). Activation of the PI3K pathway 
frequently occurs in cancers and leads to drug resistance, but 
clinical benefits of PI3K inhibitors have been modest to date. 
Fortunately, LEE011, a specific CDK 4/6 inhibitor currently 
under clinical development, has shown promising effects 
against PI3K inhibition resistance (69). HER2‑positive patients 
receiving trastuzumab may inevitably develop resistance due 
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to excessive activation of the PI3K/AKT pathway. A phase 1 
clinical trial has been performed to evaluate the efficacy of 
the combination of an allosteric AKT inhibitor (MK‑2206) 
and trastuzumab in patients with HER2‑positive solid tumors; 
interestingly, MK‑2206 is safe, and reversed the trastuzumab 
resistance in HER2‑overexpressing patients (70). Collectively, 
this evidence suggests that identification of drug‑resistant 
genes through bioinformatics methods and subsequent design 
of small molecule drugs may have great potential.

In conclusion, our results show that COL4A1 may confer 
trastuzumab resistance in gastric cancer via multiple mecha-
nisms based on bioinformatics analysis. However, further 
investigations elucidating the drug resistance function of 
COL4A1 in trastuzumab‑resistant gastric cancer models are 
necessary.
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