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Abstract. Allicin is an oxygenated carotenoid derivative that 
exhibits strong antioxidant activity, which effectively removes 
reactive oxygen species from the body and has important 
roles in disease prevention and treatment. Therefore, the 
present study aimed to investigate whether allicin attenuates 
lipopolysaccharide (LPS)‑induced acute lung injury (ALI) in 
neonatal rats and the potential underlying mechanisms. An 
LPS‑induced ALI neonatal rat model was utilized to assess 
the therapeutic value and mechanisms of allicin. Following 
allicin treatment, increases in lung wet/dry ratio and the 
lung protein concentration were significantly suppressed in 
LPS‑induced ALI neonatal rats. Furthermore, ELISA results 
demonstrated that allicin significantly reduced the levels of 
malondialdehyde, tumor necrosis factor‑α and interleukin‑6, 
and increased superoxide dismutase activity, in the bron-
choalveolar lavage fluid of LPS‑treated rats. Additionally, 
allicin administration increased the protein expression of 
Bcl‑2 and reduced the activity of caspase‑3/-9, as determined 
by western blotting or ELISA, respectively, and increased 
phosphatidylinositol 3‑kinase (PI3K) and phosphorylated‑Akt 
protein levels, in LPS‑treated ALI neonatal rats. The 
results of the present study indicate that allicin attenuate 
LPS‑induced ALI in neonatal rats by ameliorating oxidative 
stress, inflammation and apoptosis via the PI3K/Akt pathway. 
Allicin may be used for development of a novel drug for 
treatment of ALI.

Introduction

Comprehensive studies on acute respiratory distress syndrome 
(ARDS) have revealed that ARDS is the most severe stage 
of the continuous pathological process of acute lung injury 

(ALI); ALI is observed in all cases of ARDS, however ALI 
does necessarily develop into ARDS. It is also established that 
ALI is implicated in system inflammatory response syndrome 
(SIRS) (1,2). The lung is vulnerable to damage and a role in 
SIRS (3). ALI commonly leads to severe hypoxemia, thereby 
leading to the dysfunction of other organs and potentially 
multiple organ failure (4). Therefore, ALI is the initial stage in 
the whole pathological process of SIRS, which results in organ 
dysfunction and subsequent multiple organ failure.

Newborns, particularly premature children, are prone to 
ALI, which may develop into ARDS. In severe cases, bron-
chopulmonary dysplasia impairs lung development, which is 
closely associated with the development of lung maturity (5). 
ALI may initially develop in utero and continue following birth. 
Pulmonary inflammation can cause lung damage and lead to 
ALI (5). The lung of a newborn is in cyst and alveolar period, 
which is immature  (6). Pulmonary surfactant is observed 
after 28 weeks gestation, meaning that premature children are 
vulnerable to ALI and the further development and matura-
tion are affected. A lower gestational age is associated with an 
increased risk of lung damage (7,8).

Allicin is a type of volatile, oily matter that is extracted 
from spherical garlic bulbs and is the major component of 
garlic biological activity. Allicin is reported to exhibit various 
biological functions and physiological effects, including 
anti‑inf lammation, anti‑cancer, cholesterol‑lowering, 
anti‑platelet aggregation and liver‑protection effects, and 
also functions in preventing heart and vascular diseases and 
lowering blood pressure (9‑14). The aim of the current study 
was to investigate whether allicin attenuates lipopolysaccha-
ride (LPS)‑induced ALI in neonatal rats and whether these 
beneficial actions may be mediated by ameliorating oxidative 
stress, inflammation and apoptosis.

Materials and methods

Animals and ALI model. Male Sprague‑Dawley neonatal 
rats (weight, 5‑30  g, 1  week old) were provided by the 
Experimental Animal Center of Xuzhou Medical University 
(Xuzhou, China) and kept at a temperature of 23±1˚C, 
55‑60% humidity, 0.038% CO2, on a 12 h light/dark cycle 
with food and water available ad libitum. The present study 
was approved by the Institutional Animal Care and Use 
Committee of The Second Affiliated Hospital of Xuzhou 
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Medical University. A total of 60 Sprague‑Dawley rats were 
randomly divided into three groups as follows: Sham group 
(n=20), model group (n=20) and model + allicin group (n=20). 
All rat was anesthetizated using 5 mg/kg pentobarbital tail 
intravenous injection. In the sham groups, rats only received 
normal saline.

ALI model rats received 5 mg/kg LPS (Sigma‑Aldrich; 
Merck KGaA, Darmstadt, Germany). In the model + allicin 
t reatment group, rats received 80  mg/kg a l l icin 
(Sigma‑Aldrich; Merck KGaA) via tail intravenous injec-
tion for 8 days (15) after the ALI model was established. 
Following induction of the ALI model and confirmation 
using histological examination, the number of rats in each 
group was recorded as NO of LPS at 6, 12, 18, 24, 30, 36, 
42 and 48 h. Mortality rate was calculated as follows: [(total 
number ‑   NO of LPS)/total number]  x  100, where total 
number refers to the number of rats in each group at the start 
of the experiment (n=20). The chemical structure of allicin is 
presented in Fig. 1.

Lung wet/dry (W/D) ratio of LPS‑treated rats and the lung 
concentration of proteins. The rats were euthanized using 
intravenous injection of 35 mg/kg pentobarbital and sacrificed 
using decollation. The thorax was opened and the whole lungs 
were immediately removed. The superior lobe of the right 
lung was harvested, weighed and dried at 80˚C for 48 h, and 
subsequently reweighed to calculate the W/D weight ratio of 
the lung tissue. Bronchoalveolar lavage fluid (BALF) was 
collected to determine the lung concentration of proteins via 
the BCA method (Wuhan Boster Biological Technology, Co., 
Ltd., Wuhan, China.)

Histological examination. Histological examination was 
used to determine whether the induction of the model was 
successful. The rats were euthanized using intravenous injec-
tion of 35 mg/kg pentobarbital and decapitation. Right lung 
tissue was immersed in 10% neutral phosphate‑buffered form-
aldehyde fixative for 24 h at room temperature and embedded 
in paraffin. Tissue was cut into 4 µm sections and stained with 
hematoxylin and eosin (HE) for 15 min at room temperature. 
Tissue sections were subsequently observed using a Nikon 
SMZ  1500 light microscope (magnification, x40; Nikon 
Corporation, Tokyo, Japan).

Oxidative stress and inflammation. The left lung of each rat 
was harvested and washed with ice‑cold PBS. The volume of 
BALF was similar in each group and centrifuged at 1,200 x g 
for 10 min at 4˚C. The supernatant was collected to determine 
the levels of interferon (IFN)‑γ, caspase‑3 activity, caspase‑9 
activity, glutathione (GSH), glutathione peroxidase (GSH‑PX), 
malondialdehyde (MDA), tumor necrosis factor (TNF)‑α and 
interleukin (IL)‑6, ‑1β and ‑10 levels, and superoxide dismutase 
(SOD) activity, using rat IFN‑γ (cat. no. H025), caspase‑3 
activity (cat. no. G015), caspase‑9 activity (cat. no. G018), 
GSH (cat.  no.  A006‑2), GSH‑PX (cat.  no.  A005), MDA 
(cat. no. A003‑1), TNF‑α (cat. no. H052), IL‑1β (cat. no. H002), 
IL‑10 (cat.  no.  H009), IL‑6 (cat.  no.  H007) and SOD 
(cat.  no.  A001‑1‑1) ELISA kits (Wuhan Boster Biological 
Technology, Co., Ltd.). The concentration of proteins was 
measured using the BCA method.

Western blotting. BALF was collected following centrif-
ugation at 10,000 x g for 10 min at 4˚C to determine the 
concentration of proteins via the BCA method. An equal 
amount of protein (50  µg) was separated by 10‑12% 
SDS‑PAGE, and transferred to and immobilized on a nitrocel-
lulose membrane (Bio‑Rad Laboratories, Inc., Hercules, CA, 
USA). The nitrocellulose membrane was blocked by incuba-
tion with PBS containing 5% non-fat dried milk for 2 h at 
room temperature and subsequently incubated with primary 
antibodies against COX‑2 (cat.  no.  12282; 1:2,000; Cell 
Signaling Technology, Inc), NF‑κB (cat. no. 8242; 1:2,000; 
Cell Signaling Technology, Inc), PI3K (cat. no. 4249; 1:2,000; 
Cell Signaling Technology, Inc), Akt (cat. no. 4691; 1:2,000; 
Cell Signaling Technology, Inc), p‑Akt (cat. no. 4060; 1:2,000; 
Cell Signaling Technology, Inc), GAPDH (cat. no. D110016; 
1:5,000; Sangon Biotech Co., Ltd., Shanghai, China) overnight 
at 4˚C. The nitrocellulose membrane was washed three times 
with TBS containing 0.1% Tween‑20 and incubated with 
horseradish peroxidase‑conjugated anti‑rabbit or anti‑mouse 
secondary antibody (cat. nos. sc‑2004 and sc‑2005 respec-
tively, both 1:5,000; Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) for 2 h at room temperature. Subsequently, the 
membrane was incubated with chemiluminescence reagent 
(ECL Plus Western Blotting Detection System; GE Healthcare, 
Chicago, IL, USA). Proteins were quantitatively analyzed 
using Image‑Pro Plus 6.0 software (Media Cybernetics, Inc., 
Rockville, MD, USA).

Statistical analysis. Data are presented as the mean ± standard 
deviation and were analyzed using SPSS 19 (IBM Corp., 
Armonk, NY, USA). All data were analyzed by one‑way 
analysis of variance followed by Dunnett's post  hoc 
test. P<0.05 was considered to indicate a statistically significant 
difference.

Results

Effect of allicin on the mortality rate of LPS‑treated neonatal 
rats. The survival of rats in the ALI model group began to 

Figure 1. The chemical structure of allicin.

Figure 2. Effect of allicin on the survival rate of acute lung injury model 
neonatal rats. Data are presented as the mean ± standard deviation (n=3). 
**P<0.01 vs. sham group, ##P<0.01 vs. model group. LPS, lipopolysaccharide.
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decrease at 24 h after treatment with allicin, compared with 
the sham group (Fig. 2). Allicin inhibited the mortality rate 
of LPS‑treated rats at various time‑points, compared with the 
ALI model group (Fig. 2).

Effect of allicin on histological examination of LPS‑treated 
neonatal rats. As demonstrated in Fig. 3, alveolar edema, 
hemorrhage, wall thickening and hyperinf lation, and 
inflammatory cell infiltration into the alveolar and inter-
stitial spaces, of the model group were higher compared 

with the sham group. However, treatment with allicin 
reduced the LPS‑induced alveolar edema, hemorrhage, 
wall thickening and hyperinflation, and inflammatory cell 
infiltration into the alveolar and interstitial spaces, in ALI 
rats (Fig. 3).

Effect of allicin on lung W/D ratio and protein concentration 
in LPS‑induced ALI neonatal rats. As demonstrated in 
Fig.  4, the lung W/D ratio and lung protein concentra-
tion in the ALI model group were higher compared with 

Figure 3. Effect of allicin on the histological examination of acute lung injury model neonatal rats (magnification, x40).

Figure 4. Effect of allicin on lung W/D ratio and protein concentration in ALI neonatal rats. Allicin significantly reduced (A) lung W/D ratio and (B) lung 
protein concentration in ALI model neonatal rats. Data are presented as the mean ± standard deviation (n=3). **P<0.01 vs. sham group, ##P<0.01 vs. model 
group. W/D, wet/dry; ALI, acute lung injury.

Figure 5. Effect of allicin on the levels of MDA and the activity of SOD, GSH and GSH‑PX in the BALF of ALI model neonatal rats. (A) Effect of allicin on 
the levels of MDA in the BALF of ALI model neonatal rats. Effect of allicin on the activity of (B) SOD, (C) GSH and (D) GSH‑PX in the BALF of ALI model 
neonatal rats. Data are presented as the mean ± standard deviation (n=3). **P<0.01 vs. sham group, ##P<0.01 vs. model group. MDA, malondialdehyde; SOD, 
superoxide dismutase; GSH, glutathione; GSH‑PX, glutathione peroxidase; BALF, bronchoalveolar lavage fluid; ALI, acute lung injury. 
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the sham group  (Fig.  4). However, allicin administration 
significantly decreased the elevations in lung W/D ratio and 
lung protein concentration, compared with the ALI model 
group (Fig. 4).

Effect of allicin on the levels of MDA, and activity of SOD, 
glutathione (GSH) and GSH peroxidase (GSH‑PX), in the 
BALF of LPS‑treated neonatal rats. Compared with the sham 
group, the levels of MDA were significantly increased, and 
SOD, GSH and GSH‑PX activity was significantly inhibited, 
in the ALI model group (Fig. 5). However, allicin treatment 
significantly reversed the effects of LPS on MDA levels, and 
SOD, GSH and GSH‑PX activity, compared with the ALI 
model group (Fig. 5).

Effect of allicin on inflammation in the BALF of LPS‑treated 
neonatal rats. As demonstrated in Fig.  6A‑C, the levels 
of TNF‑α, IL‑1β and IL‑6 in the BALF of ALI model rats 
were significantly increased, compared with the sham group. 
However, TNF‑α, IL‑1β and IL‑6 levels were significantly 
suppressed by treatment with allicin, compared with the ALI 
model group (Fig. 6A‑C). In addition, the levels of IL‑10 in 
the BALF of ALI model rats were lower compared with the 
sham group (Fig. 6D). Treatment with allicin significantly 
increased IL‑10 levels in ALI rats, compared with the ALI 
model group (Fig. 6D).

Effect of allicin on inflammatory pathways. The levels of inter-
feron (IFN)‑γ, and the protein expression of cyclooxygenase 

Figure 6. Effect of allicin on inflammation in the BALF of ALI model neonatal rats. Effect of allicin on (A) TNF‑α, (B) IL‑1β, (C) IL‑6 and (D) IL‑10 in the 
BALF of ALI model neonatal rats. Data are presented as the mean ± standard deviation (n=3). **P<0.01 vs. sham group, ##P<0.01 vs. model group. BALF, 
bronchoalveolar lavage fluid; ALI, acute lung injury; TNF, tumor necrosis factor; IL, interleukin.

Figure 7. Effect of allicin on inflammation pathway components in the BALF of ALI model neonatal rats. (A) Effect of allicin on IFN‑γ levels in the BALF 
of ALI model neonatal rats. The protein expression of (B) COX‑2 and (C) NF‑κB in the BALF of ALI model neonatal rats was quantified by western blotting 
and densitometric analysis. (D) Representative western blot bands for COX‑2 and NF‑κB protein expression in the BALF of ALI model neonatal rats. Data 
are presented as the mean ± standard deviation (n=3). **P<0.01 vs. sham group, ##P<0.01 vs. model group. BALF, bronchoalveolar lavage fluid; ALI, acute lung 
injury; IFN, interferon; COX, cyclooxygenase; NF‑κB, nuclear factor‑κB.
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(COX)‑2 and nuclear factor‑κB (NF‑κB), in the BALF 
were significantly promoted in ALI model rats, compared 
with the sham group  (Fig.  7). However, allicin treatment 
significantly reduced IFN‑γ levels, and COX‑2 and NF‑κB 
protein expression, in ALI rats, compared with the ALI model 
group (Fig. 7).

Effect of allicin on anti‑apoptotic protein of Bcl‑2 and 
caspase‑3/-9 pathway. The results of ELISA and western 
blotting also demonstrated that upregulation of caspase‑3/-9 
activity and the inhibition of Bcl‑2 protein expression, respec-
tively, in the ALI model group compared with the sham 

group (Fig. 8). However, upregulation of caspase‑3/-9 activity 
and the inhibition of Bcl‑2 protein expression were induced 
by allicin administration, compared with the ALI model 
group (Fig. 8).

Effect of allicin on the phosphatidylinositol 3‑kinase (PI3K) 
and phosphorylated (p)‑Akt pathway. The protein expression 
of PI3K and p‑Akt was significantly reduced in the ALI model 
group, compared with the sham group  (Fig.  9). However, 
PI3K and p‑Akt protein expression levels were significantly 
increased by treatment with allicin, compared with the ALI 
model group (Fig. 9).

Figure 8. Effect of allicin on the activity of caspase‑3/-9 and protein expression of Bcl‑2 in the BALF of ALI model neonatal rats. Effect of allicin on 
(A) caspase‑3 and (B) caspase‑9 activity in the BALF of ALI model neonatal rats, as determined by ELISA. (C) Bcl‑2 protein expression in the BALF of ALI 
model neonatal rats was quantified by western blotting and densitometric analysis. (D) Representative western blot bands for Bcl‑2 protein expression in the 
BALF of ALI model neonatal rats. Data are presented as the mean ± standard deviation (n=3). **P<0.01 vs. sham group, ##P<0.01 vs. model group. BALF, 
bronchoalveolar lavage fluid; ALI, acute lung injury.

Figure 9. Effect of allicin on the protein expression of PI3K and p‑Akt in the BALF of ALI model neonatal rats. The effect of allicin on (A) PI3K and (B) p‑Akt 
protein expression in the BALF of ALI model neonatal rats was quantified by western blotting and densitometric analysis. (C) Representative western blot 
bands for the protein expression of PI3K and p‑Akt in the BALF of ALI model neonatal rats. Data are presented as the mean ± standard deviation (n=3). 
**P<0.01 vs. sham group; ##P<0.01 vs. model group.
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Discussion

Oxidative stress is an important mechanism in the pathogenesis 
of ALI (16). A large number of oxygen free radicals (OFR) are 
produced during the ALI process by various cell types within 
the vessel wall, including endothelial cells, vascular smooth 
muscle cells and cells of the outer membrane (17). The present 
study demonstrated that allicin reduced increases in the lung 
W/D ratio that were observed in the ALI model group, and 
identified that it may have potential as a drug for the treatment 
of ALI.

Oxidative stress leads to increases in cell permeability, 
cell edema and potentially lytic necrosis (18). The targets of 
OFR include nucleic acids, proteins and membrane lipids, and 
lipid peroxidation is one of the primary mechanisms of free 
radical damage (19). MDA is employed as a marker for lipid 
peroxidation to reflect the degree of oxidative stress injury 
following ALI. To combat oxidative stress injury, various 
endogenous cytoprotective substances are generated in the 
lung tissue, such as SOD, which may be used as an indicator 
of antioxidative activity (20). A dynamic equilibrium exists 
between oxidation and antioxidant systems in  vivo; when 
these systems become imbalanced, tissue damage results and 
the lung is one of the most vulnerable target organs (21). A 
previous study demonstrated that MDA content was increased 
significantly in ALI rat lung homogenates, while SOD level 
was decreased significantly, which indicates that an imbal-
ance between the oxidation and antioxidant system may 
be involved in the pathogenesis of ALI (22). Furthermore, 
the results of the current study demonstrated that allicin 
treatment significantly reversed the effects of ALI model 
induction on MDA, SOD, GSH and GSH‑PX levels in ALI 
neonatal rats.

The development of ALI may be initiated by alveolar 
inflammation under the perinatal asphyxia or infection, as well 
as additional internal and external factors (23). The number 
and activation of neutrophils is increased, which increases the 
release of various inflammatory mediators, and epithelial and 
endothelial cells functions are subsequently damaged, which 
is a major mechanism in the pathogenesis of ALI (23). It is 
reported that IL‑6 combines with heparin sulfate glycoprotein 
on the vascular endothelial cell surface, which has a potent 
chemotactic effect and causes endothelial cells to adhere to 
and activate neutrophils (24). Therefore, the release of IL‑6 
is considered to be an important factor in the pathogen-
esis of ALI (25). In addition, TNF‑α also has an important 
role in the inflammatory lesion of tissue and promotes the 
release of other inflammatory mediators  (26). The results 
of the present study demonstrated that allicin significantly 
suppressed TNF‑α, IL‑1β, IL‑6 and IFN‑γ levels, and COX‑2 
and NF‑κB protein expression, and increased IL‑10 levels, in 
ALI neonatal rats.

Apoptosis is a type of programmed cell death that is 
important in the development and injury of multicellular 
organisms in various tissues and organs  (27). Caspases 
and the Bcl‑2 protein family are closely associated with 
apoptosis  (28). Apoptosis‑associated genes are divided 
into apoptosis‑promoting genes and apoptosis‑inhibiting 
genes  (29). Caspase‑3 activation leads to the induction of 
cell apoptosis, and has an important role in the initiation 

and implementation of early apoptosis. Caspase‑3 activation 
is a biochemical indicator of early apoptosis. Bcl‑xl is an 
anti‑apoptotic gene that exerts anti‑apoptosis effects by inhib-
iting the activation of caspase proteases (30). Proapoptotic 
genes are dominant during early apoptosis, during which 
Bcl‑xl expression is decreased, and as apoptosis develops, 
the internal anti‑apoptotic mechanism is activated (31). The 
present study demonstrated that allicin significantly increased 
the expression of the Bcl‑2 anti‑apoptotic protein and inhib-
ited caspase‑3/-9 activity in ALI model neonatal rats, which 
may occur via the PI3K/Akt pathway. Ding et al reported 
that allicin inhibited oxidative stress‑induced mitochon-
drial dysfunction and apoptosis of osteoblast cells through 
PI3K/Akt signaling  (32). The present study only analyzed 
the effects of allicin on PI3K/Akt signaling in ALI, which 
is a limitation of the study as allicin may also regulate addi-
tional signaling pathways to exert effects on inflammation, 
oxidative stress and apoptosis, which should be investigated 
in future studies.

In conclusion, the present study demonstrated that allicin 
treatment suppressed lung W/D ratio and the lung concentra-
tion of proteins in ALI neonatal rats. These beneficial effects 
may be due to its ability to inhibit oxidative stress and inflam-
mation, and to inhibit apoptosis, including Bcl‑2 expression, 
caspase‑3/-9 activityin ALI neonatal rats, which may occur 
via the PI3K/Akt pathway. Therefore, allicin may have 
potential as a novel drug for the treatment of neonatal ALI.
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