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Abstract. Gastric cancer (GC) has a high incidence and 
mortality rate. If discovered late, GC tends to have a poor 
prognosis. Improvements in the prognostic accuracy of GC 
through combined analysis of multiple relevant genes and 
clinical factors may solve this problem. In the present study, 
GSE62254 (including 300 GC tissues), obtained from the 
Gene Expression Omnibus database, was used as a training 
set, and the mRNA‑sequencing data of GC (including 384 GC 
tissues) downloaded from the Cancer Genome Atlas database 
served as a validation set. Based on the t‑test and Wilcoxon 
test, the significantly differentially expressed genes (DEGs) 
were obtained by screening the intersecting DEGs. The 
prognosis‑associated genes and clinical factors were identified 
using Cox regression analysis in the R survival package. 
The optimal prognosis‑associated pathways were examined 
using the Cox‑proportional hazards (Cox‑PH) model in the 
R penalized package. Finally, risk prediction models were 
constructed and validated using the Cox‑PH model and the 
Kaplan‑Meier method, respectively. There were a total of 
382 significant DEGs, including 268 upregulated genes and 
114 downregulated genes. A total of 50 prognosis‑associated 
genes were identified, 16  optimal prognosis‑associated 
pathways (including mitochondrial pathway and the 
tyrosine‑protein kinase JAK‑signal transducer and activator 
of transcription signaling pathway, which involve caspase 7, 
phosphoinositide‑3‑kinase regulatory subunit 3, peroxisome 
proliferator‑activated receptor γ and collagen triple helix 
repeat containing 1) and four prognosis‑associated clinical 
factors [including Pathologic_N, Pathologic_stage, mutL 

homolog 1 (MLH1) mutation and recurrence]. The pathway‑ 
and  clinical‑factor‑based risk prediction model exhibited 
marked prognostic accuracy. The clinical‑factor‑based risk 
prediction model with improved P‑values for prognosis 
prediction may be superior to the pathway‑based risk prediction 
model in predicting the prognosis of GC patients.

Introduction

Gastric cancer (GC, additionally termed stomach cancer) is 
derived from gastric mucosa (1), 60% of which is induced by 
infection with the bacterium Helicobacter pylori (2‑4). GC 
is characterized by several early signs (including heartburn, 
lack of appetite, nausea and upper abdominal pain) and certain 
later symptoms (including weight loss, dysphagia, vomiting 
and yellowing of the whites of the eyes and skin) (5). If left 
untreated, GC may undergo diffusion transfer to other parts 
of the body, including the lungs, liver, lymph nodes and 
bones  (6). The 5‑year survival rate of patients with GC is 
<10% worldwide, and late discovery of illness may the worsen 
prognosis (7). Globally, there were 950,000 new cases of GC 
and 723,000 mortalities in 2012 (3). Therefore, early diagnosis, 
reasonable prognostic assessment, and timely and appropriate 
intervention are very important to improving the outcomes of 
GC.

The study of large numbers of prognostic markers may 
guide the clinical monitoring of patients at a high risk of 
relapse, and further treatment may be administered to improve 
the survival rate of patients with GC. Previous studies have 
demonstrated that astrocyte elevated gene 1 overexpression 
serves as a promising prognostic factor for GC, and targeted 
inhibition thereof may be a novel therapeutic strategy for the 
disease  (8,9). The expression of human epidermal growth 
factor receptor 2 can be used to predict sensitivity to trastu-
zumab‑based chemotherapy and the overall survival of patients 
with advanced GC  (10). Adenine‑thymine‑rich interactive 
domain 1A is reported to be a potential prognostic marker 
and therapeutic target for GC (11,12). The accuracies of these 
different biomarkers were not the same, thus more relevant 
prognostic factors are required. Okugawa et al (13) reported 
that the brain‑derived neutrophic factor (BDNF)/neurotrophic 
receptor tyrosine kinase 2 (TrkB) axis has an association 
with the prognosis of patients with GC, and the BDNF/TrkB 
pathway may serve an important role in the progression of 
GC. At present, the prognosis of GC primarily depends on 
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such factors as serum markers and the clinical condition of a 
patient (14,15). Combining multiple relevant genes and clinical 
factors may improve prognostic accuracy in GC.

Huang et al (16) developed a novel computational model 
for breast cancer prognosis by combining the pathway 
deregulation score (PDS)‑based pathifier algorithm, Cox 
proportional hazards regression and the L1‑lasso penalization 
method to select promising targets for therapeutic intervention. 
Huang et al (17) developed a novel computational method that 
uses personalized PDS with pathway‑based metabolomics data 
analysis for breast cancer diagnosis. However, few studies have 
reported the value of pathway and clinical factor‑based risk 
models for GC prognosis. The present study adopted similar 
methods, and aimed to investigate the prognostic ability 
of different risk prediction models based on the identified 
pathways and clinical factors associated with the prognosis of 
GC (Fig. 1).

Materials and methods

Data source. Gene expression profiles of the GSE62254 
dataset  (18) [platform: GPL570 (HG‑U133_Plus_2) 
Affymetrix (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) Human Genome U133 Plus 2.0 Array] were obtained 
from the Gene Expression Omnibus (GEO; www.ncbi.nlm.
nih.gov/geo) database. GSE62254 consisted of 300 GC tissue 
samples and served as a training set in the present study. These 
GC tissue samples were obtained from patients during gastrec-
tomy procedures at Samsung Medical Centre, Seoul, Korea 
(2004‑2007). Another mRNA‑sequencing dataset for GC [plat-
form: Illumina, Inc. (San Diego, CA, USA) HiSeq 2000 RNA 
Sequencing] was downloaded from The Cancer Genome Atlas 
(TCGA; cancergenome.nih.gov). This mRNA‑sequencing 
dataset, containing 384 GC tissue samples, was taken as a 
validation set. The demographic and clinical characteristics of 
all samples in the training and validation set are presented in 
Table I. In order to eliminate the technology bias in systematic 
measurement between the distinct datasets and platforms, 
these two datasets were independently standardized (19).

Data preprocessing and differentially expressed gene (DEG) 
screening. The background correction and data normalization 
of GSE62254 were performed using the oligo package (www 
.bioconductor.org/packages/release/bioc/html/oligo.html) (20) 
in R (21). Based on the prognostic information, samples were 
divided into two groups: A poor prognosis group (samples from 
patients who survived for <12 months and were deceased), and 
a good prognosis group (samples from patients who survived 
for >60  months and were alive). Subsequently, the t‑test 
(127.0.0.1:26738/library/stats/html/t.test.html)  (22) and the 
Wilcoxon test (127.0.0.1:26738/library/stats/html/wilcox.test 
.html) (23) in R were used for screening the genes that were 
significantly differentially expressed between the poor prog-
nosis group and the good prognosis group. A false discovery 
rate <0.05 and |log fold change| >0.263 were considered to be 
the thresholds. Overlapping DEGs predicted by the t‑test and 
Wilcoxon test were selected for further analysis.

Identification of prognosis‑associated genes and clinical 
factors. Prognosis‑associated genes and clinical factors were 

selected using univariate and multivariate Cox regression 
analysis in the R survival package (bioconductor.org/pack-
ages/survivalr) (24). A P‑value <0.05 was set as the cut‑off 
criterion. The expression values of the prognosis‑associated 
genes were extracted to perform bidirectional hierarchical 
clustering (25) using the R heatmap package (cran.r‑project 
.org/web/packages/pheatmap/index.html) (26). The purpose of 
the hierarchical clustering analysis was to intuitively observe 
the differences in prognosis‑associated gene expression 
between samples.

Selection of prognosis‑associated pathways. The Gene Set 
Enrichment Analysis (GSEA) database (www.broadinstitute 
.org/gsea) (27) is a microarray data analysis tool containing 
multiple functions and pathways. All the pathway annotation 
files of 217 Biocarta pathways and 186 Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways in the GSEA 
database  (27) were downloaded and taken as reference 
pathways. Subsequently, the expression matrix of the prognosis‑ 
associated genes was converted into a pathway deregulation 
score (PDS) matrix of the relevant pathways using the prin-
cipal components analysis algorithm in the R pathifier package 
(bioconductor.org/packages/pathifier)  (28). The optimal 
prognosis‑associated pathways were screened subsequent to 
importing the PDS matrix using the Cox proportional hazards 
(Cox‑PH) model in the R penalized package (bioconductor 
.org/packages/penalized) (29). The parameter ‘lambda’ was 
obtained upon performing 1,000 rounds of cross‑validation 
likelihood (cvl) (30) circular calculation.

Construction and validation of risk prediction models. 
Based on the Cox‑PH prognosis coefficients of the optimal 
prognosis‑associated pathways, the pathway‑based risk predic-
tion model was constructed and the prognosis index (PI) score 
of each sample was calculated. According to the median of 
the PI scores, the samples in the training set were divided 
into high‑ and low‑risk groups. The correlations between the 
risk prediction model and prognosis were estimated using the 
Kaplan‑Meier (KM) method in the R survival package (24). 
In addition, the risk prediction model was validated using the 
validation set.

Using the Cox‑PH model in the R penalized package (29), 
the optimal prognosis‑associated genes were identified 
following importing of the gene expression matrix of the 
prognosis‑associated genes. The gene‑based risk predic-
tion model was built and the PI score of each sample was 
calculated based on the Cox‑PH prognosis coefficients of the 
optimal prognosis‑associated genes. The median of the PI 
scores was considered the demarcation point, and the samples 
in the training set were additionally divided into high‑ and 
low‑risk groups. Using KM survival curves, the correlations 
between the gene‑based risk prediction model and prognosis 
were evaluated in the training set and the validation set. The 
predictive effects of the gene‑based risk prediction model were 
compared to those of the pathway‑based risk prediction model.

Using the Cox‑PH model, the prognosis coefficients of 
the prognosis‑associated clinical factors were determined, 
and a clinical factor‑based risk prediction model was 
constructed. The PI scores of the samples were calculated. 
Subsequently, the samples in the training set were divided 
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into high‑ and low‑risk groups, with their median PI as the 
demarcation point. Using KM survival curves, the correlations 
between the clinical‑factor‑based risk prediction model and 
prognosis were assessed in the training set and the valida-
tion set. Furthermore, the predictive effects of the clinical 

factor‑based risk prediction model were compared with those 
of the pathway‑based risk prediction model.

When the Cox‑PH prognosis coefficients of the optimal 
prognosis‑associated pathways had been integrated with those 
of the prognosis‑associated clinical factors, a risk prediction 

Figure 1. Workflow diagram indicating the process included in the analysis. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; PDS, 
pathway deregulation score; Cox‑PH, Cox‑proportional hazards.

Table I. Clinical characteristics of patients in the training set (GSE62254) and the validation set (TCGA dataset).

Clinical characteristics	 GSE62254 (n=300)	 TCGA (n=384)

Age, years (mean ± standard deviation)	 61.94±11.36	 65.15±10.61
Sex, male/female	 199/101	 243/133/8
Pathologic_M, M0/M1/‑	 273/27	 341/19/24
Pathologic_N, N0/N1/N2/N3	 38/131/80/51	 118/100/77/16
Pathologic_T, T1/T2/T3/T4/‑	 2/186/91/21	 20/74/172/107/11
Pathologic_stage, I/II/III/IV/‑	 30/96/95/77/2	 51/116/174/31/12
Pathology type, diffuse/intestinal/mixed/‑	 134/146/17/3	‑
MLH1 mutation, yes/no/‑	 234/64/2	 18/366
EBV infection, yes/no/‑	 18/257/25	‑
Recurrence, yes/no/‑	 125/157/18	 78/260/46
Venous invasion, yes/no/‑	 44/129/127	‑
Lymphatic lymphovascular invasion, yes/no/‑	 205/73/22	‑
Subtypes, MSS‑TP53‑/MSS‑TP53+/MSI‑EMT/‑	 107/79/68/46	‑
Mortality, deceased/alive/‑	 135/148//17	 122/238/24
Disease‑free survival, months (mean ± standard deviation)	 33.72±29.82	 15.84±17.05
Overall survival time, months (mean ± standard deviation)	 50.59±31.42	 16.17±16.96

TCGA, The Cancer Genome Atlas; MLH1, mutL homolog 1; EBV, Epstein‑Barr virus; MSS‑TP53‑, Microsatellite stable‑tumor protein 
53‑inactive; MSS‑TP53+, microsatellite stable‑tumor protein 53‑active; MSI‑EMT, microsatellite instable‑epithelial to mesenchymal transition.
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model was constructed based on clinical factors and pathways. 
The PI score of each sample was calculated, and their PI median 
was taken as the demarcation point to divide the samples in 
the training set into high‑ and low‑risk groups. Additionally, 
the correlations between the risk prediction model and prog-
nosis were estimated in the training set and the validation 
set. Finally, the predictive effects of the risk prediction model 
based on clinical factors and pathways were compared with 
those of the pathway‑based risk prediction model.

Results

DEG screening. According to the prognostic information, 
48 samples were classified into a poor prognosis group and 
58 samples into a good prognosis group. A total of 617 DEGs 
and 671 DEGs were identified by the t‑test and Wilcoxon test, 
respectively. The 382 overlapping DEGs (268 upregulated 
genes and 114 downregulated genes) were used for further 
analysis.

Identification of the prognosis‑associated genes and clinical 
factors. A total of 50 prognosis‑associated genes (Table II) 
and four prognosis‑associated clinical factors [including 
Pathologic_N, Pathologic_stage, mutL homolog 1 (MLH1) 
mutation, and recurrence] (Table III) were screened based 
on the Cox regression analysis. Samples were divided into 
group 1 (including 173 GC samples) and group 2 (including 
127 GC samples) according to the clustering analysis of 
prognosis‑associated genes  (Fig. 2). Moreover, significant 
differences were observed in the recurrence (P=1.29x10‑7), 
Pathologic_N (P=1.77x10‑2), Pathologic_stage (P=1.52x10‑3), 
and MLH1 mutation (P=4.61x10‑2) between the two groups. 
Group 1 had less recurrence, less lymphatic metastasis, lower 
tumor stage and more MLH1 mutations compared with 
group 2.

Selection of prognosis‑associated pathways. The expression 
matrix of the 50 prognosis‑associated genes was converted 
into a PDS matrix, and 118 GC‑associated pathways (including 
26 Biocarta pathways and 92 KEGG pathways) were selected. 
Based on cvl circular calculation, the maximum value of cvl was 
‑965.3297 (parameter ‘lambda’=0.9361) (Fig. 3). Furthermore, 
16 optimal prognosis‑associated pathways including four 
Biocarta pathways (including the mitochondrial pathway) and 
12 KEGG pathways [including the tyrosine‑protein kinase 
JAK (JAK)‑signal transducer and activator of transcription 
(STAT) signaling pathway] were obtained using the Cox‑PH 
model with this parameter value  (Table  III). Meanwhile, 
10 prognosis‑associated genes [caspase 7 (CASP7), myosin 
heavy chain 14 (MYH14), nicotinamide nucleotide adeny-
lyltransferase  1 (NMNAT1), phosphoinositide‑3‑kinase 
regulatory subunit  3 (PIK3R3), peroxisome proliferator 
activated receptor  γ (PPARG), tight junction protein  3 
(TJP3), cation channel sperm associated auxiliary subunit β 
(CATSPERB), CDC43 effector protein  5 (CDC42EP5); 
collagen triple helix repeat containing  1 (CTHRC1), and 
dehydrogenase/reductase 11 (DHRS11)] were involved in these 
16 optimal prognosis‑associated pathways.

The samples in GSE62254 were divided into group  I 
(including 166  GC samples) and group  II (including 

Table II. Prognosis‑associated genes (n=50) identified by the 
Cox regression analysis.

	 Univariate cox	 Multivariate cox 
Gene	 P‑value	 P‑value

TTC38	 4.70x10‑02	 3.62x10‑06

DNAJC16	 1.30x10‑04	 1.87x10‑05

RAB11FIP4	 3.40x10‑06	 1.09x10‑04

CDC42EP5	 1.00x10‑08	 5.42x10‑04

MYH14	 3.20x10‑06	 6.85x10‑04

LRRC31	 3.00x10‑02	 7.77x10‑04

SIAE	 2.90x10‑06	 1.53x10‑03

SP6	 1.50x10‑03	 1.76x10‑03

PKD2	 1.90x10‑06	 2.03x10‑03

UBE2E2	 1.70x10‑04	 2.13x10‑03

TNFRSF11A	 2.20x10‑09	 2.41x10‑03

RBPMS2	 4.90x10‑14	 2.42x10‑03

SLC45A3	 3.30x10‑02	 3.76x10‑03

ANKRD6	 4.50x10‑06	 3.83x10‑03

EGR2	 3.60x10‑02	 3.89x10‑03

TMPRSS4	 4.80x10‑03	 4.44x10‑03

TTC7B	 1.40x10‑04	 4.57x10‑03

INHBB	 1.10x10‑06	 4.80x10‑03

LYPD1	 7.70x10‑05	 5.76x10‑03

C1orf216	 1.00x10‑03	 5.87x10‑03

CTHRC1	 3.20x10‑02	 6.03x10‑03

DHRS11	 1.10x10‑02	 6.35x10‑03

PBX3	 4.40x10‑07	 6.61x10‑03

PIK3R3	 2.00x10‑03	 7.17x10‑03

PCSK7	 4.50x10‑06	 8.36x10‑03

DFNA5	 5.50x10‑06	 9.16x10‑03

CATSPERB	 5.30x10‑03	 9.93x10‑03

PPARG	 6.20x10‑05	 1.06x10‑02

SLC44A3	 4.60x10‑03	 1.38x10‑02

STAMBPL1	 2.20x10‑04	 1.74x10‑02

ALPK1	 6.80x10‑07	 1.76x10‑02

SERAC1	 5.70x10‑05	 1.78x10v
BCAR3	 1.60x10‑02	 2.02x10‑02

TJP3	 1.90x10‑03	 2.20x10‑02

TMEM144	 3.70x10‑06	 2.22x10‑02

STARD5	 8.40x10‑04	 2.33x10‑02

BPNT1	 8.20x10‑05	 2.36x10‑02

CCDC92	 9.00x10‑07	 2.52x10‑02

RNF170	 2.60x10‑03	 2.58x10‑02

FBXL6	 1.20x10‑03	 2.83x10‑02

CASP7	 6.70x10‑11	 3.01x10‑02

RILPL1	 1.30x10‑07	 3.17x10‑02

KLHDC8B	 1.80x10‑07	 3.34x10‑02

HOXC4	 3.40x10‑04	 3.62x10‑02

FAM83E	 1.10x10‑02	 3.71x10‑02

MFSD9	 2.20x10‑04	 3.98x10‑02

ZNRF2	 5.10x10‑07	 4.01x10‑02

NMNAT1	 2.50x10‑08	 4.18x10‑02

BTNL3	 5.40x10‑03	 4.65x10‑02

F12	 5.30x10‑05	 4.96x10‑02
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Table III. Prognosis‑associated clinical factors and the optimal prognosis‑associated pathways in the Cox‑PH model.

				    P‑value
			   Hazard	 (univariate
Feature	 Description	 Coefficient	 ratio	 Cox‑PH)

Pathway	 BIOCARTA_DEATH_PATHWAY	 0.115	 1.966	 8.73x10‑06

	 BIOCARTA_DNAFRAGMENT_PATHWAY	 0.188	 1.716	 1.51x10‑05

	 BIOCARTA_MITOCHONDRIA_PATHWAY	 0.614	 3.156	 4.62x10‑06

	 BIOCARTA_PARKIN_PATHWAY	 0.285	 1.737	 2.06x10‑05

	 KEGG_CHRONIC_MYELOID_LEUKEMIA	‑ 0.029	 0.398	 1.36x10‑04

	 KEGG_ENDOMETRIAL_CANCER	‑ 0.299	 0.260	 1.02x10‑02

	 KEGG_ERBB_SIGNALING_PATHWAY	‑ 0.180	 0.849	 4.94x10‑03

	 KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY	‑ 0.096	 0.619	 6.39x10‑03

	 KEGG_FOCAL_ADHESION	‑ 0.562	 0.178	 1.54x10‑02

	 KEGG_JAK_STAT_SIGNALING_PATHWAY	‑ 0.256	 0.374	 4.50x10‑06

	 KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	 0.344	 1.031	 2.22x10‑05

	 KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	 0.024	 1.062	 1.33x10‑06

	 KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM	 0.359	 1.569	 8.86x10‑05

	 KEGG_PATHWAYS_IN_CANCER	‑ 0.143	 0.332	 1.52x10‑06

	 KEGG_PPAR_SIGNALING_PATHWAY	‑ 0.135	 0.835	 2.07x10‑04

	 KEGG_TIGHT_JUNCTION	 0.959	 1.353	 2.50x10‑13

Clinical factor	 Recurrence	 2.074	 2.574	 2.00x10‑16

	 Pathologic_N	 0.165	 1.956	 3.97x10‑13

	 Pathologic_stage	 0.233	 2.215	 6.66x10‑16

	 MLH1 mutation	 0.024	 2.027	 2.69x10‑03

Cox‑PH, Cox‑proportional hazards; KEGG, Kyoto Encyclopedia of Genes and Genomes; MLH1, mutL homolog 1.

Figure 2. Clustering heatmap based on 50 prognosis‑associated genes. The first line below the sample tree represents group 1 (black) and group 2 (white); the 
second line indicates samples negative for MLH1 mutation (blue) and samples positive for MLH1 mutation (red); the third line represents pathological stages I 
(light orange), II (orange), III (orange‑red) and IV (maroon); the fourth line represents Pathological N0 (light pink), N1 (dark red), N2 (light blue) and N3 
(dark blue) samples; the fifth line represents recurrent samples (bright blue) and non‑recurrent samples (purple) (white indicates samples without recurrence 
information). MLH1, mutL homolog 1.



YANG et al:  PROGNOSTIC RISK MODEL OF GC6350

134 GC samples), according to the clustering analysis of the 
PDS matrix of the 16  optimal prognosis‑associated path-
ways (Fig. 4). Similarly, there were significant differences 
in recurrence (P=3.72x10‑5), Pathologic_stage (P=9.77x10‑3), 
and MLH1 mutation P=2.21x10‑2) between these two groups. 
However, no notable difference was observed in Pathologic_N 
(P=2.49x10‑1). Thus, group I had less recurrence, lower tumor 
stage and more MLH1 mutations compared with group II.

Construction and validation of risk prediction models. The 
pathway‑based risk prediction model was constructed and 
the PI score of each sample was obtained. Subsequently, the 
samples in the training set were divided into high‑ and low‑risk 
groups  (Fig.  5). Compared with the high‑risk group, the 
low‑risk group had a longer overall survival (OS) time (59.85 
29.87 months vs. 41.36±29.65 months) and recurrence‑free 

survival (RFS) time (44.65±28.99 months vs. 30.00±28.35 m
onths) (Fig. 5A and B). The risk groups exhibited significant 
correlations with OS time (P=4.90x10‑7; Fig. 5A) and RFS 
time (P=2.44x10‑7; Fig. 5B). Furthermore, the area under the 
receiver operating characteristic (AUROC) values of OS and 
RFS were 0.8554 and 0.809, respectively  (Fig. 5E). In the 
validation set, the low‑risk group additionally had a longer 
OS time (23.41±22.06 vs. 13.56±7.46  months) and RFS 
time (2.33±22.14 vs. 13.06±7.52 months) compared with the 
high‑risk group (Fig. 5C and D). The risk groups had signifi-
cant correlations with OS time (P=1.15x10‑4; Fig. 5C) and RFS 
time (P=2.62x10‑6; Fig. 5D). Furthermore, the AUROC values 
of OS and RFS were 0.733 and 0.7559, respectively (Fig. 5E). 
These results indicated that the pathway‑based risk prediction 
model was able to predict the consistent sample risk in the 
training set and the validation set.

Figure 4. Bidirectional hierarchical clustering heatmap based on the 16 optimal prognosis‑associated pathways. The first line below the sample tree represents 
groups I (black) and II (white); the second line indicates MLH1 mutation negative samples (blue) and MLH1 mutation positive samples (red); the third line 
represents pathological stages I (light orange), II (orange), III (orange‑red) and IV (maroon); the fourth line represents pathologic N0 (light pink), N1 (dark red), 
N2 (light blue) and N3 (dark blue) samples; the fifth line represents recurrent samples (bright blue) and non‑recurrent samples (purple) (white indicates samples 
without recurrence information). MLH1, mutL homolog 1; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 3. Selection of prognosis associated pathways. (A) Curve showing the parameter ‘lambda’ screened by cvl and (B) the coefficient distribution diagram 
of the optimal prognosis‑associated pathways (B). cvl, cross‑validation likelihood.
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Using the Cox‑PH model, 10 optimal prognosis‑associated 
genes were identified  (Table  IV). The gene‑based risk 
prediction model was built, and the samples in training 
set were divided into high‑ and low‑risk groups  (Fig.  6). 
In the training set, the low‑risk group had a longer OS 
time (58.20±31.09 vs. 42.99±29.96 months) and RFS time 
(38.31±30.70 vs. 29.13±28.35  months) compared with the 
high‑risk group (Fig. 6A and B). The risk groups had signifi-
cant correlations with OS time (P=3.06x10‑4; Fig. 6A) and 
RFS time (P=3.62x10‑4; Fig.  6B). The AUROC values of 
OS and RFS were 0.7966 and 0.7129, respectively (Fig. 6E). 

In the validation set, the low‑risk group had a longer OS 
time (23.85±23.02 vs. 18.18±21.58 months) and RFS time 
(18.95±17.73 vs. 18.78±19.48  months) compared with the 
high‑risk group (Fig. 6C and D). The risk groups had a signifi-
cant correlation with OS time (P=4.88x10‑2; Fig. 6C), although 
not with RFS time (P=8.50x10‑1; Fig. 6D). The AUROC values 
of OS and RFS were 0.6969 and 0.6453, respectively (Fig. 6E). 
These findings suggested that the gene‑based risk prediction 
model was not able to be completely verified in the valida-
tion set. In this way, the pathway‑based risk prediction model 
outperformed the gene‑based risk prediction model.

Figure 5. KM survival curves and ROC curves based on the pathway‑based risk prediction model. (A) The KM survival curve illustrating the OS time in 
the training set; (B) the KM survival curve illustrating the RFS time in the training set; (C) the KM survival curve illustrating the OS time in the validation 
set; (D) the KM survival curve illustrating the RFS time in the validation set; (E) the ROC curves illustrating the OS and RFS separately in the training and 
validation sets. KM, Kaplan‑Meier; ROC, receiver operating characteristic; AUC, area under the curve; OS, overall survival; RFS, recurrence‑free survival.
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A clinical factor‑based risk prediction model was 
constructed based on the four prognosis‑associated clinical 
factors. In the training set, the low‑risk group had a longer 
OS time (63.55±26.36 vs. 6.41±30.24  months) and RFS 
time (48.21±28.19 vs. 22.55±25.59 months) compared with 
the high‑risk group  (Fig. 7A and B). The risk groups had 
significant correlations with OS time (P=7.11x10‑15; Fig. 7A) 
and RFS time  (P=1.11x10‑16; Fig.  7B). In the validation 
set, the low‑risk group had a longer OS time (20.06±16.33 
vs. 18.66±17.75  months) and RFS time (22.52±24.23 
vs. 16.93±10.74  months) compared with the high‑risk 
group (Fig. 7C and D). The risk group had significant corre-
lations with OS time (P=1.51x10‑2; Fig; 7C) and RFS time 
(P=1.56x10‑12; Fig. 7D).

Finally, the comprehensive risk prediction model based 
on the optimal prognosis‑associated pathways and the 
prognosis‑associated clinical factors was constructed. In 
the training set, the low‑risk group had longer OS time 
(64.34±25.33 vs. 36.76±30.09  months) and RFS time 
(50.33±26.98 vs. 24.05±25.81 months) compared with the 
high‑risk group (Fig. 8A and B). The risk groups had signifi-
cant correlations with OS time (P=1.18x10‑14; Fig. 8A) and RFS 
time (P=2.00x10‑16; Fig. 8B). In the validation set, the low risk 
group had a longer OS time (21.37±16.41 vs. 18.35±17.68 months) 
and RFS time (22.01±20.32 vs. 19.35±17.73 months) compared 

Figure 6. KM survival curves and ROC curves based on the pathway‑based risk prediction model and the gene‑based risk prediction model. (A) The KM survival 
curves illustrating the OS time in the training set; (B) the KM survival curves illustrating the RFS time in the training set; (C) the KM survival curves illustrating 
the OS time in the validation set; (D) the KM survival curves illustrating the RFS time in the validation set; (E) the ROC curves illustrating the OS and RFS 
separately in the training and validation sets. KM, Kaplan‑Meier; ROC, receiver operating characteristic; OS, overall survival; RFS, recurrence‑free survival.

Table IV. Optimal prognosis‑associated genes (n=10) identified 
by the Cox‑PH model.

			   P‑value
		  Hazard	 (univariate
Gene	 Coefficient	 ratio	 Cox‑PH)

CATSPERB	‑ 0.935	 0.970	 1.09x10‑04

CDC42EP5	 0.176	 0.551	 5.42x10‑04

CTHRC1	‑ 0.457	 0.761	 2.13x10‑03

DHRS11	‑ 0.160	 1.232	 2.42x10‑03

EGR2	‑ 0.196	 0.283	 3.89x10‑03

INHBB	 0.127	 2.043	 4.80x10‑03

RAB11FIP4	‑ 0.224	 1.058	 6.03x10‑03

RBPMS2	 0.322	 3.517	 6.35x10‑03

STAMBPL1	‑ 0.244	 0.274	 9.93x10‑03

UBE2E2	 0.303	 4.114	 1.74x10‑02

Cox‑PH, Cox‑proportional hazards; CATSPERB, cation channel 
sperm associated auxiliary subunit β; CDC42EP5, CDC42 effector 
protein 5; CTHRC1, collagen triple helix repeat containing 1; 
DHRS11, dehydrogenase/reductase 11; EGR2, early growth 
response 2; INHBB, inhibin β B subunit; RAB11FIP4, RAB11 
family interacting protein 4; RBPMS2, RNA binding protein mRNA 
processing factor 2; STAMBPL1, STAM binding protein-like  1; 
UBE2E2, ubiquitin conjugating enzyme E2 E2.
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Figure 7. KM survival curves based on the clinical factor‑based risk prediction model. (A) The KM survival curve illustrating the OS time in the training set; 
(B) the KM survival curve illustrating the RFS time in the training set; (C) the KM survival curve illustrating the OS time in the validation set; (D) the KM 
survival curve illustrating the RFS time in the validation set. Blue and green represent low‑ and high‑risk groups, respectively. KM, Kaplan‑Meier; OS, overall 
survival; RFS, recurrence‑free survival.

Figure 8. KM survival curves based on the pathway and clinical factor‑based risk prediction model. (A) KM survival curve illustrating the OS time in the 
training set; (B) the KM survival curve illustrating the RFS time in the training set; (C) the KM survival curve illustrating the OS time in the validation set; 
(D) the KM survival curve illustrating the RFS time in the validation set. Blue and green represent low‑ and high‑risk groups, respectively. KM, Kaplan‑Meier; 
OS, overall survival; RFS, recurrence‑free survival.
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with the high‑risk group (Fig. 8C and D). The risk groups had 
significant correlations with OS time (P=2.28x10‑3; Fig. 8C) 
and RFS time  (P=7.75x10‑11; Fig.  8D). The pathway‑ and 
clinical‑factor‑based risk prediction model may have better 
prognostic accuracy, since it had better robustness and more 
significant P‑values.

Discussion

In the present study, the gene expression profiles of the 
GSE62254 downloaded from GEO served as the training set 
and another mRNA‑sequencing dataset obtained from TCGA 
served as the validation set. Although huge and heterogeneous 
collections frequently dilute specific results and favor secondary 
effects, these two datasets were independently standardized to 
partially eliminate the technology bias in systematic measure-
ment. The 382 overlapping DEGs were screened for further 
analysis, including 268 upregulated genes and 114 down-
regulated genes. In the present study, 50 prognosis‑associated 
genes and four prognosis‑associated clinical factors (including 
Pathologic_N, Pathologic_stage, MLH1 mutation and recur-
rence) were identified. Based on the prognosis‑associated 
genes, the samples in GSE62254 were divided into group 1 
and group 2. The present results demonstrated that group 1 
had less recurrence, less lymphatic metastasis, lower tumor 
stage and more MLH1 mutations compared with group 2. 
Using the Cox‑PH model, 16 optimal prognosis‑associated 
pathways (including the mitochondrial pathway and the 
JAK‑STAT signaling pathway, involving CASP7, MYH14, 
NMNAT1, PIK3R3, PPARG, TJP3, CATSPERB, CDC42EP5, 
CTHRC1 and DHRS11) were selected. Similarly, the samples 
were divided into group  I and II based on the 16 optimal 
prognosis‑associated pathways. Group I was observed to have 
less recurrence, lower tumor stage and more MLH1 mutations 
compared with group II.

The expression levels of CASP2, CASP6 and CASP7 are 
decreased in GC cells, which may be associated with the patho-
genesis of GC (31). CASP7 in the apoptosis pathway functions 
as a critical mediator and executor, and its potential functional 
variants may increase the risk of GC (32). Upregulated PIK3R3 
was demonstrated to contribute to cell cycle progression and 
cell proliferation, indicating that PIK3R3 may be a promising 
target for the treatment of GC (33). The phosphatidylinositol 
3‑kinase/RAC‑α serine/threonine‑protein kinase�������������/serine/thre-
onine‑protein kinase mTOR signaling pathway is considered 
to have been implicated in the mechanisms of GC and contrib-
utes to the identification of potential therapeutic targets for the 
disease (34,35). Optimal prognosis‑associated pathways may 
serve important roles in the pathogenesis of GC via CASP7 
and PIK3R3.

PPARG, plasma gastrin and proinflammatory cytokines 
have been reported to be correlated with GC development, 
and PPARG agonists have the potential to be used for cancer 
therapy (36,37). PPARG may suppress the proliferation and 
migration of GC cells by inhibiting enabled homolog and 
telomerase reverse transcriptase expression, thus PPARG may 
serve as a therapeutic target for GC (38). CTHRC1 expres-
sion may be regulated by transforming growth factor‑β1 and 
promoter demethylation, and high levels of CTHRC1 expres-
sion promote the invasion and metastasis of tumor cells during 

gastric carcinogenesis (39,40). The upregulated expression of 
CTHRC1 may independently predict the disease‑free survival 
and overall survival of patients with GC, demonstrating that the 
high levels of expression of CTHRC1 are associated with the 
progression and prognosis of GC (41). These suggested that 
the optimal prognosis‑associated pathways may be associated 
with the development and progression of GC via PPARG and 
CTHRC1.

Via a mitochondrial pathway, juglone has been reported 
to be able to induce the apoptosis of GC SGC‑7901 cells (42). 
H. pylori infection leads to activation of CASP3 and CASP9, 
and to apoptosis in GC cells, and the mitochondrial pathway 
may be important to H. pylori‑induced apoptosis  (43). 
CyclinB1 expression may be downregulated by fucoxanthin in 
human GC MGC‑803 cells, in which the JAK‑STAT signaling 
pathway serves an important role  (44). The mitochondrial 
pathway and JAK‑STAT signaling pathway may be involved 
in the mechanisms of GC. A previous study demonstrated that 
MLH1 methylation status and CpG island methylator pheno-
type may be suitable prognostic biomarkers for patients with 
GC (45). Checkpoint with forkhead and ring finger domains 
methylation may be considered to be a docetaxel‑sensitive 
marker, and MLH1 methylation is correlated with oxaliplatin 
resistance in patients with GC (46). These findings indicated 
that MLH1 mutation might serve as a prognostic biomarker 
for GC. Taken together, the prognosis‑associated genes 
involved in the optimal‑prognosis‑associated pathways in the 
present prognosis model are promising targets for therapeutic 
intervention.

In the present study, the pathway‑based risk prediction 
model and clinical‑factor‑based risk prediction model outper-
formed the gene‑based risk prediction model. Although the 
gene‑based risk prediction model had acceptable results in the 
training set (OS: P=3.06x10‑4, AUC = 0.7966; RFS: P=3.62x10‑4, 
AUC=0.7129), this model was not able to be completely veri-
fied in the validation set (OS: P=4.88x10‑2, AUC =0.6969; 
RFS: P>0.05). The results of the pathway‑based risk predic-
tion model in the training set (OS: P=4.90x10‑7, AUC = 0.8554; 
RFS: P=2.44x10‑7, AUC = 0.809) and in the validation set (OS: 
P=1.15x10‑4, AUC = 0.733; RFS: P=2.62x10‑6, AUC = 0.7559) 
indicated that this model had good performance. Furthermore, 
the clinical factor‑based risk prediction model (training 
set, OS: P=7.11x10‑15, RFS: P=1.11x10‑16; validation set, 
OS: P=1.51x10‑2, RFS: P=1.56x10‑12) improved the P‑values 
of prognosis prediction, rendering them higher compared 
with those of the pathway‑based risk prediction model. The 
comprehensive risk prediction model, based on the optimal 
prognosis‑associated pathways and the prognosis‑associated 
clinical factors, yielded good predictive results (training set, 
OS: P=1.18x10‑14, RFS: P=2.00x10‑16; validation set, OS: 
P=2.28x10‑3, RFS: P=7.75x10‑11). In this way, the pathway and 
clinical factor‑based risk prediction model may be suitable for 
predicting the prognosis of patients with GC.

In conclusion, 50 prognosis‑associated genes, 16 optimal 
prognosis‑associated pathways and four prognosis‑associated 
clinical factors were identified. The pathway and clinical 
factor‑based risk prediction model might be suitable for predicting 
the prognosis of GC patients. The prognosis‑associated genes 
involved in the optimal prognosis‑associated pathways in the 
present prognostic model (including CASP7, PIK3R3, PPARG, 
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CTHRC1 and MLH1) are promising targets for therapeutic 
intervention. However, further study is required to validate 
the prognostic prediction model, based on the optimal prog-
nosis‑associated pathways and the prognosis‑associated clinical 
factors, in an independent patient cohort with gastric cancer.
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