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Abstract. The present study aimed to investigate potential 
prognostic long noncoding RNAs (lncRNAs) associated with 
colorectal cancer (CRC). An mRNA-seq dataset obtained 
from The Cancer Genome Atlas was employed to identify 
the differentially expressed lncRNAs (DELs) between CRC 
patients with good and poor prognoses. Subsequently, univar-
iate and multivariate Cox regression analyses were conducted 
to analyze the prognosis-associated lncRNAs among all 
DELs. In addition, a risk scoring system was developed 
according to the expression levels of the prognostic lncRNAs, 
which was then applied to a training set and an independent 
testing set. Furthermore, the co-expressed genes of prognostic 
lncRNAs were screened using a Multi-Experiment Matrix 
online tool for construction of lncRNA-gene networks. 
Finally, Kyoto Encyclopedia of Genes and Genomes pathway 
and Gene Ontology (GO) function enrichment analyses were 
performed on genes in the lncRNA-gene networks using 
KOBAS, GOATOOLS and ClusterProfiler. The present 
study identified 82 DELs, of which long intergenic nonpro-
tein coding RNA 2159, RP11-452L6.6, RP11-894P9.1 and 
RP11‑69M1.6, and whey acidic protein four‑disulfide core 
domain 21 (WFDC21P) were reported to be independently 
associated with the prognosis of patients with CRC. A 
5-lncRNA signature-based risk scoring system was devel-
oped, which may be used to classify patients into low- and 
high‑risk groups with significantly different recurrence‑free 
survival times in the training and testing sets (P<0.05). 
Co-expressed genes of WFDC21P or RP11-69M1.6 were 

utilized to construct the lncRNA-gene networks. Genes in the 
networks were significantly enriched in ‘tight junction’, ‘focal 
adhesion’ and ‘regulation of actin cytoskeleton’ pathways, and 
numerous GO terms associated with ‘reactive oxygen species 
metabolism’ and ‘nitric oxide metabolism’. The present study 
proposed a 5-lncRNA signature-based risk scoring system for 
predicting the prognosis of patients with CRC, and revealed 
the associated signaling pathways and biological processes. 
The results of the present study may help improve prognostic 
evaluation in clinical practice.

Introduction

Colorectal cancer (CRC) is the third leading cause of cancer 
worldwide, with ~1.3 million new cases diagnosed every 
year (1). Surgery is a curative option for the majority of 
patients with early-stage CRC, whereas interventions are often 
aimed at improving quality of life and relieving symptoms of 
CRC at later stages. The 5-year survival rate of CRC varies 
from >90% in stage I cases to ~10% in stage IV cases (2). 
Recurrence and metastasis are two major reasons accounting 
for the poor outcome (3); therefore, promising molecular 
biomarker candidates to improve prognostic prediction and 
therapeutic outcome in CRC are required.

Long noncoding RNAs (lncRNAs), once considered tran-
scriptional noise, have recently become an important field in 
research. LncRNAs are mRNA-like transcripts >200 nucleo-
tides long, which do not encode proteins (4). Previous studies 
demonstrated that lncRNAs are involved in the tumorigenesis 
of numerous cancer phenotypes via interactions with DNA, 
RNA, protein and other cellular molecules (5,6). Expression 
of lncRNA metastasis-associated lung adenocarcinoma tran-
script 1 and prostate cancer-associated ncRNA transcripts 1 
have been reported to be markedly elevated in CRC tissues 
compared with in paired normal tissues, and of prognostic 
significance in CRC (7,8). In addition, Qi et al (9) revealed that 
lncRNA LOC285194 expression is significantly reduced in 
CRC tissues, and is associated with poor disease-free survival. 
Recently, Ozawa et al (10) indicated that colon cancer-asso-
ciated transcript 1 and 2 may be of strong prognostic value 
in CRC. These findings suggested the necessity to identify 
potential prognostic lncRNAs in CRC; however, there are few 
studies focusing on the identification of reliable prognostic 
lncRNAs in CRC.
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In the present study, a systematic analysis of the lncRNA 
expression profiles in patients with CRC derived from The 
Cancer Genome Atlas (TCGA; https://gdc-portal.nci.nih.
gov/) portal was initially conducted; differentially expressed 
lncRNAs (DELs) were screened between CRC patients with 
good and poor prognoses, from which, prognostic lncRNA 
signatures were identified using univariate and multivariate 
Cox regression analyses. Based on the expression of these 
signature lncRNAs, a risk scoring system was successfully 
developed and was employed to classify patients in a training 
set or an independent testing set into high-risk and low-risk 
groups. Furthermore, interactions between the co-expressed 
genes of these signature lncRNAs were analyzed in 
protein-protein interaction (PPI) networks, followed by func-
tional analyses to determine their possible functional roles in 
CRC. The present study aimed to provide novel insight into 
the lncRNAs with promising prognostic value in CRC and to 
improve the survival of patients with CRC.

Materials and methods

Datasets. The present study was performed using an mRNA-seq 
dataset of colon adenocarcinoma samples retrieved from TCGA 
data portal, a publicly available repository. Samples with 
follow-ups of <2 years and without recurrence, or without recur-
rence-free survival (RFS) time information were excluded from 
the analysis; consequently, 233 remaining samples were defined 
as a training set. Additionally, the present study employed a 
TCGA rectal adenocarcinoma (READ) mRNA-seq dataset. 
Similarly, following the removal of samples with follow-ups of 
<2 years and without recurrence, or without RFS time record, 
94 remaining samples in the READ set were included in the 
present study as a testing set. Clinical features of the training 
and the testing sets are presented in Table I.

GENCODE gene annotation (www.gencodegenes.
org/) (11) is the largest publicly available catalogue of human 
lncRNAs. Genes in the training and testing sets were anno-
tated by GENCODE (11). The resulting lncRNAs were used 
for further analysis.

Screening for prognosis‑associated DELs. According to RFS 
time and cancer recurrence status, the 233 samples in the 
training set were classified into a good prognosis group (n=106), 
in which patients exhibited RFS time ≥2 years without cancer 
recurrence, and a poor prognosis group (n=127), in which 
patients experienced cancer recurrence. With an adjusted 
P-value (P<0.05) as a strict cutoff value, DELs between the 
two groups were screened using edgeR package (12-14) or 
DESeq2 package (15) (Bioconductor; www.bioconductor.org/) 
in R3.3.3 language.

Prognosis-associated DELs were identified from the 
overlapped DELs between the two packages using univariate 
Cox regression analysis (16) in survival package 2.41-3 
(cran.r‑project.org/web/packages/survival/index.html) in 
R 3.4.3, followed by log-rank test (cut-off value, P<0.01). 
Subsequently, these identified prognosis-associated DELs 
were subjected to multivariate Cox regression analysis.

Development of risk scoring system. Based on the expression 
of significant prognostic lncRNAs derived from multivariate 

Cox regression analysis, the risk score was calculated as the 
linear combination of expression levels of these lncRNAs, 
which were weighted by regression coefficients (16,17), and a 
risk scoring system was developed as follows:

Risk score = β1 x expr1 + β2 x expr2 + ··· + βn x exprn

Where βn stands for estimated regression coefficient of 
lncRNAn, and exprn stands for expression levels of lncRNAn. 

The risk scoring system was used to divide patients in 
each set into high-risk and low-risk groups, with the median 
risk score of the set being the cut-off point. Kaplan-Meier 
survival analyses were employed to compare the RFS time 
of the high-risk and low-risk groups, followed by log-rank 
test. Furthermore, univariate and multivariate Cox regression 
analyses, and data stratification analysis (χ2) were conducted 
to evaluate whether the risk score was independent of clinical 
features. For these tests, P<0.05 was considered to indicate a 
statistically significant difference. In addition, the expression 
levels of these selected lncRNAs were compared between the 
high-risk group and the low-risk group using Student's t-test in 
the R stats package 3.4.3 (www.rdocumentation.org/packages/
stats/versions/3.4.3) with a threshold of P<0.05.

Construction of lncRNA‑gene networks and PPI networks. 
Co‑expressed genes of these significant lncRNAs identified 
by multivariate Cox regression analysis were analyzed using 
the Multi-Experiment Matrix (MEM) web-based online 
tool (18,19) (http://biit.cs.ut.ee/mem/index.cgi) in Human 
Genome U133 Plus 2.0. These co-expressed genes were ranked 
according to a score of significance by the MEM tool. The 
top 100 genes of each lncRNA were selected for the construc-
tion of a lncRNA-gene network using Cytoscape 3.0 (20) 
(www.cytoscape.org/). In order to study the interactions 
between genes in each lncRNA-gene network, corresponding 
PPI networks were built using the Search Tool for the Retrieval 
of Interacting Genes (string-db.org/) (21) and visualized using 
Cytoscape 3.0 (20), with the threshold value set at median 
confidence=0.4.

Gene Ontology (GO) function and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses. 
GOATOOLS 0.8.2 (github.com/tanghaibao/goatools) is an 
easily accessible Python package used for annotation of 
genes to biological processes (BP), molecular function (MF) 
and cellular component (CC) in the GO database. KOBAS 
3.0 (kobas.cbi.pku.edu.cn/) is a web server used to anno-
tate input genes and identify putative pathways involved, 
allowing for ID mapping and cross-species sequence simi-
larity mapping (22). GO terms and KEGG pathways that 
may involve these genes in the lncRNA-gene networks were 
investigated with GOATOOLS and KOBAS, respectively. 
ClusterProfiler (Bioconductor; https://bioconductor.org/pack-
ages/release/bioc/html/clusterProfiler.html) is a R package 
used for the classification of biological terms and enrichment 
analysis of gene clusters, and is characterized by biological 
theme comparison among gene clusters (23). ClusterProfiler 
software 3.6.0 was applied to perform GO function and KEGG 
pathway enrichment analyses on the genes in the lncRNA-gene 
networks.
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Results

Analysis of prognostic lncRNAs. Following removal of lncRNAs 
with 0 expression in at least 50 samples, there were a total of 
4,162 lncRNAs in the training set. As a result, 82 DELs between 
good prognosis and poor prognosis samples were identified 

using the edgeR and DESeq2 packages. Among these resulting 
DELs, 44 were identified as prognosis‑associated lncRNAs 
in univariate Cox regression analysis (P<0.01). Furthermore, 
as presented in Table II, 5 of the 44 prognosis-associated 
lncRNAs were detected to be independently associated with 
prognosis in multivariate Cox regression analysis, including 

Table II. Multivariate analysis of the five lncRNA signatures.

LncRNA coef exp(coef) se(coef) z-value Pr (>|z|)

ENSG00000280132 0.3844 1.4688 0.1606 2.394 0.017
ENSG00000253417 -0.2810 0.7550 0.1002 -2.805 0.005
ENSG00000279865 -0.4740 0.6225 0.2294 -2.066 0.039
ENSG00000261040 -0.2715 0.7623 0.1200 -2.262 0.024
ENSG00000246451 -0.6862 0.5035 0.3136 -2.188 0.029

LncRNA, long noncoding RNA; se, standard error.

Table I. Clinical characteristics of the training set of COAD and the testing set of READ.

Characteristics COAD (n=233) READ (n=94) P‑value

Age (years) 68.15±12.38 65.58±10.29 0.0282a

Gender (male/female) 126/107 54/40 0.6241
pathologic_stage (I+II/III+IV) 122/102 47/42 0.8027
pathologic_M (M0/M1) 165/39 19/16 0.0017a

pathologic_N (N0/N1/N2) 133/53/47 49/21/22 0.5379
pathologic_T (T0/T1/T2/T3/T4) 0/7/31/164/31 0/6/14/64/9 0.2664
lymphatic_invasion (yes/no) 94/116 33/52 0.3665
venous_invasion (yes/no) 61/136 22/61 0.4778
residual_tumor (R0/R1/R2) 155/3/10 62/2/8 0.1543
primary_therapy_outcome_success (SD/PD/CR/PR) 0/6/9/2 0/2/7/0 0.6673

COAD, colon adenocarcinoma; CR, complete remission/response; PD, progressive disease; PR, partial remission/response; READ, rectal 
adenocarcinoma; SD, stable disease. aP<0.05.

Figure 1. Kaplan‑Meier survival analysis of RFS time for patients classified using the 5‑long noncoding RNA signature‑based risk scoring system in the 
(A) training set and the (B) testing set. Patients in the training set and the testing set are classified into L and H groups. H, high‑risk; L, low‑risk; RFS, 
recurrence-free survival.
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Figure 2. Comparison of the expression of 5 lncRNAs between high- and low-risk groups in the (A) training set and the (B) testing set. Patients in the training 
set and the testing set were classified into low‑risk and high‑risk groups. Red boxplots represent expression of lncRNAs in the high‑risk group; blue boxplots 
represent expression of lncRNAs in the low-risk group. ***P<0.001 and **P<0.01. FPKM, Fragments Per Kilobase of transcript per Million mapped read; 
LINC02159, long intergenic nonprotein coding RNA 2159; lncRNA, long noncoding RNA; WFDC21P, whey acidic protein four‑disulfide core domain 21.

Figure 3. Distribution of risk score, RFS time and long noncoding RNA expression in the (A) training set and the (B) testing set. The black dotted line 
represents the median risk score cutoff classifying patients into high- and low-risk groups. LINC02159, long intergenic nonprotein coding RNA 2159; RFS, 
recurrence‑free survival; WFDC21P, whey acidic protein four‑disulfide core domain 21.
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ENSG00000253417 [long intergenic nonprotein coding RNA 
2159, (LINC02159)], ENSG00000280132 (RP11-452L6.6), 
ENSG00000261040 [whey acidic protein four‑disulfide core 
domain 21 (WFDC21P)], ENSG00000246451 (RP11-894P9.1) 
and ENSG00000279865 (RP11-69M1.6). 

Development of a risk score system based on the 5‑lncRNA 
signature. Based on the expression of the 5 lncRNAs derived 
from multivariate Cox regression analysis, a risk scoring 
system was developed as follows: Risk score = ‑0.219 x expr 
(LINC02159) + 0.354 x expr (RP11-452L6.6) -0.211 x expr 
(WFDC21P) + 0.143 x expr (RP11-894P9.1) -0.374 x expr 
(RP11-69M1.6)

The 5-lncRNA-based risk scoring system was applied to 
the training set to assort patients into high-risk and low-risk 
groups, with the median risk score as the threshold. In the 
training set, the low-risk group had a markedly longer RFS 
time compared with the high-risk group (38.547±29.693 
months vs. 26.721±25.532 months, P=1x10-7; Fig. 1A). To 
validate the prognostic power of the risk scoring system in the 
testing set, all patients in the testing set were also classified 
into high-risk and low-risk groups by the risk scoring system. 
Similar results were yielded in the testing set (34.090±18.477 
months vs. 29.305±26.450 months, P=0.0207; Fig. 1B). 

Expression levels of the 5 prognostic lncRNAs in the training 
set and the testing set. Boxplots demonstrated that in the 
training set, the expression levels of LINC02159, WFDC21P 
and RP11‑69M1.6 were significantly decreased, whereas the 
expression levels of RP11-452L6.6 and RP11-894P9.1 were 

significantly elevated in the high-risk samples compared 
with in the low-risk samples (P<0.001; Fig. 2A), which was 
validated in the testing set, except for WFDC21P (Fig. 2B). 
WFDC21P expression appeared to be reduced in the high-risk 
samples compared with in low-risk samples, but the difference 
was not significant. The distribution of risk score, RFS time 
and long noncoding RNA expression in the training set and the 
testing set were similar, indicating the robustness of the risk 
scoring system based on the 5 lncRNAs (Fig. 3). 

Analysis on whether prognostic power of the 5‑lncRNA signa‑
ture‑based risk score model is independent of clinical features. 
According to the results of a univariate Cox regression analysis, 
risk score, pathologic_stage, pathologic_M, pathologic_N, 
lymphatic_invasion and venous_invasion were demonstrated 
to be significantly associated with prognosis (Table III). 

Table IV. Results of multivariate Cox regression analysis for risk score and clinical features.

Clinical features coef. Standard error z-value P-value HR Lower. 95 Upper. 95

pathologic_stage 1.7686 0.4753 3.721 0.0002a 5.8624 2.3095 14.8814
pathologic_n -1.1287 0.468 -2.412 0.0159a 0.3235 0.1293 0.8094
venous_invasion 0.5074 0.2212 2.294 0.0218a 1.6609 1.0767 2.5622
Risk score 0.6828 0.2226 3.068 0.0022a 1.9794 1.2796 3.0620

HR, hazard ratio. aP<0.05.

Table III. Results of univariate Cox regression analysis for risk score and clinical features.

Clinical features coef. Standard error z-value P-value HR Lower. 95 Upper. 95

Risk score 0.9622 0.1882 5.1116 3.20x10-7 2.6174 1.8098 3.7852
Age 0.0914 0.1786 0.5115 0.6090 1.0957 0.7720 1.5550
Gender 0.1667 0.1798 0.9272 0.3538 1.1814 0.8306 1.6803
pathologic_stage 0.9726 0.1860 5.2279 1.71x10-7 2.6448 1.8367 3.8085
pathologic_m 1.4008 0.2137 6.5539 5.61x10-11 4.0583 2.6694 6.1698
pathologic_n 0.8809 0.1806 4.8763 1.08x10-6 2.4130 1.6935 3.4381
lymphatic_invasion 0.6131 0.1923 3.1876 0.0014 1.8461 1.2663 2.6913
venous_invasion 0.8316 0.2047 4.0620 4.87x10-5 2.2970 1.5378 3.4310

HR, hazard ratio.

Table V. Results of data stratification analysis.

Variables  χ2 P-value

pathologic_stage (I+II) 16.8702 4x10-5

pathologic_ stage (III+IV) 2.2082 0.13728
pathologic_n (N0) 17.0432 4x10-5

pathologic_n (N1+N2) 2.9055 0.08828
venous_invasion (No) 10.8120 0.00101
venous_invasion (Yes) 5.6180 0.01778
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Among these significant factors, risk score, pathologic_stage, 
pathologic_n and venous_invasion were identified to be inde-
pendent predictors of prognosis according to the results of a 
multivariate Cox regression analysis (P<0.05; Table IV). 

Subsequently, data stratification analysis was conducted 
for pathologic_stage, pathologic_n and venous_invasion 
(Fig. 4). All samples in the training set were stratified by 

pathologic_stage, pathologic_n and venous_invasion, respec-
tively, into two groups. In each group, the 5-lncRNA based 
risk scoring model further split patients into a high-risk 
subgroup and a low‑risk subgroup (Table V). Significantly 
different RFS time between high-risk and low-risk subgroups 
was observed in the pathologic_stage (I+II) group (P=4x10-5; 
Fig. 4A and C), the pathologic_n (N0) group (P=4x10 -5; 

Figure 4. Kaplan‑Meier survival analysis for the training set of patients first stratified by clinical features and then by the risk scoring system. (A‑C) All patients 
in the training set were categorized into pathologic stage I+II group and pathologic stage III+IV group. In either the pathologic stage (A) I+II group or (B) III+IV 
group, patients were further classified into H and L subgroups using the 5‑lncRNA signature‑based risk scoring system. (C) Combined image of A and B. (D) N0 
and (E) N1+N2 patients were further classified into H and L subgroups by the 5‑lncRNA signature‑based risk scoring system. (F) Combined image of D and 
E. Patients (G) without or (H) with venous invasion were further segregated into H and L subgroups by the 5-lncRNA signature-based risk scoring system. 
(I) Combined image of G and H. H, high-risk; L, low-risk; RFS, recurrence free survival; VI0, patients without venous invasion; VI1, patients with venous invasion. 
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Fig. 4D and F), and patients with or without venous_invasion 
(P=0.0178 and P=0.001; Fig. 4G‑I). However, the difference 
in RFS time between the high-risk and low-risk subgroups 
was not significant in the pathologic_stage (III+IV) group 
(P=0.1373; Fig. 4B) and the pathologic_n (N1+N2) group 
(P=0.0883; Fig. 4E). The results of multivariate Cox regres-
sion analysis and stratification analysis suggested that the 
risk classification power of the 5‑lncRNA signature‑based 

risk scoring system signature is independent of other clinical 
variables in CRC.

The present study also reported that the prognostic value 
of pathologic_stage, pathologic_n and venous_invasion 
were independent of risk score. For this, all patients in the 
training set were first classified into high‑ and low‑risk groups 
by the risk scoring system. Each group was then stratified 
into two subgroups by pathologic_stage, pathologic_n or 

Figure 5. Kaplan‑Meier survival analysis for the training set of patients first stratified by the risk scoring system and then by clinical features. All patients in the 
training set were first classified into H and L groups. (A) L and (B) H patients were further divided into stage I+II and stage III+IV subgroups. (C) Combined 
image of A and B. (D) L and (E) H patients were further divided into N0 and N1+N2 subgroups. (F) Combined image of D and E. (G) L and (H) H patients 
were further classified into VI0 and VI1 subgroups. (I) Combined image of G and H. H, high‑risk; L, low‑risk; RFS, recurrence free survival; VI0, no venous 
invasion; VI1, venous invasion 
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venous_invasion, respectively (Table VI). In both low-risk 
and high‑risk groups, RFS time was significantly different 
between the patients at stage I+II and the patients at stage 
III+IV (low‑risk: P=1x10-5; high‑risk: P=0.0303, respectively; 
Fig. 5A-C). Similar results were observed between the patients 
with pathologic N0 and the patients with pathologic N1+N2 
(low‑risk: P=0.00026; high‑risk: P=0.04216, respectively; 
Fig. 5D-F). As presented in Fig. 5G-I, the difference in RFS 
time between the patients with and without venous invasion 
was markedly significant in the high‑risk group (P=0.0068), 
but was not significant in the low‑risk group (P‑value=0.1244). 
These observations confirmed that risk score, pathologic_stage, 

pathologic_n and venous_invasion are independent prognostic 
factors in CRC.

Analysis of co‑expressed genes of prognostic lncRNAs. Since 
lncRNAs may serve their biological roles by regulating their 
co-expressed genes, co-expressed genes of the 5 lncRNAs 
were searched using the MEM tool. Only co-expressed genes 
of WFDC21P and RP11-69M1.6 were obtained. The top 100 
co-expressed genes of WFDC21P or RP11-69M1.6 were used 
to construct lncRNA-gene networks. PPI networks were also 
generated to analyze the interactions between the genes in 
each lncRNA-gene network (Fig. 6).

Figure 6. LncRNA-gene and PPI networks. (A) LncRNA-gene network for WFDC21P. (B) PPI network for WFDC21P. (C) LncRNA-gene network for 
RP11-69M1.6. (D) PPI network for RP11-69M1.6. In these networks, round red nodes represent genes; triangle green nodes represent lncRNAs; the association 
between two triangle nodes represents the interaction between two genes. LncRNA, long noncoding RNA; PPI, protein-protein interaction; WFDC21P, whey 
acidic protein four‑disulfide core domain 2.
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Figure 7. Results of Gene Ontolgy enrichment analysis by GOATOOLS. (A) Cellular component, (B) biological processes and (C) molecular function.

Table VI. Results of data stratification analysis.

Risk Clinical features χ2 P-value

Low risk pathologic_stage (I+II vs. III+IV) 19.1067 0.00001
High risk pathologic_stage (I+II vs. III+IV) 4.6771 0.03033
Low risk pathologic_n (N0 vs. N1+N2) 13.3250 0.00026
High risk pathologic_n (N0 vs. N1+N2) 4.1289 0.04216
Low risk venous_invasion (No vs. Yes) 2.3605 0.12444
High risk venous_invasion (No vs. Yes) 7.3158 0.00684
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Function analysis. GO function and KEGG pathway enrich-
ment analyses were performed on genes in the two lncRNA-gene 
networks. GO enrichment analysis using GOATOOLS 
suggested that these genes were possibly associated with 
‘cell membrane’, ‘organelle’ and other cellular components 
(Fig. 7). Pathway enrichment analysis conducted by KOBAS 
or ClusterProfiler revealed that these genes were significantly 
associated with numerous pathways, including ‘tight junction’, 
‘focal adhesion’, ‘regulation of actin cytoskeleton’ and ‘leuko-
cyte transendothelial migration’ (Figs. 8 and 9A). According 
to the results of GO enrichment analysis by ClusterProfiler, 
these genes were significantly associated with numerous GO 
BP terms, including ‘wound healing’, ‘reactive oxygen species 
(ROS) metabolism’ and ‘nitric oxide metabolism’ (Fig. 9B).

Discussion

CRC remains a major cause of mortality worldwide. 
Numerous lncRNAs have been reported to be involved in CRC 
tumorigenesis; however, there is a lack of efficient prognostic 
lncRNAs to refine the prediction of survival for patients with 
CRC (24). In order to define a prognostic lncRNA signature, 
the present study identified 82 DELs between CRC patients 
with good and poor prognoses in the training set. Among these 
DELs, WFDC21P, LINC02159, RP11-452L6.6, RP11-894P9.1 
and RP11‑69M1.6 were demonstrated to be significantly asso-
ciated with prognosis via multivariate Cox regression analysis. 
Based on the expression of these 5 lncRNAs, a risk scoring 
system was generated. The results of the present study revealed 
that the 5-lncRNA signature-based risk scoring system may 
categorize patients into high‑ and low‑risk groups with signifi-
cantly varying RFS times in the training set and the testing set.

WFDC21P, namely lnc-dendritic cell (lnc-DC) has been 
observed to be exclusively expressed in human DCs and 
mediates the differentiation of monocytes to DCs via the 
activation of signal transducer and activator of transcription 
3, which is a transcription factor that regulates numerous 
immune-associated genes (25,26). Wu et al (27) suggested that 
lnc-DC in plasma may be a possible biomarker for systemic 
lupus erythematosus. In addition, Zhang et al (28) reported 
that lnc-DC expression is increased in decidua, resulting in 
over-maturation of decidual DCs and increased T helper 1 

cells in patients with preeclampsia. RP11-894P9.1 has been 
observed to be abnormally expressed in the right ventricle 
of the heart during heart failure (29); however, to the best of 
our knowledge, aberrant expression levels of WFDC21P and 
RP11-894P9.1 have previously not been reported in CRC. The 
functions of LINC02159, RP11-452L6.6, and RP11-69M1.6 
remain unknown, and further investigations into lncRNA 
expression in cancer are required. The present study suggested 
that the 5-lncRNA signature may be a promising prognostic 
biomarker for CRC.

Previous studies have revealed the predictive value 
of T stage, venous invasion and lymph node metastasis 
in patients with CRC (30,31). Furthermore, in the present 
study, multivariate Cox regression analysis demonstrated 
that pathologic_stage, pathologic_n and venous_invasion 
were independently associated with prognosis. In addition, 
the results of data stratification analysis indicated that the 
prognostic value of the 5-lncRNA signature-based risk score 
may be independent of other clinical variables in CRC in the 
present study; therefore, the 5-lncRNA signature may aid in 
improving current prognostic approaches.

In order to uncover associated biological processes and 
signaling pathways of the 5-lncRNA signature, the present study 
attempted to identify the co-expressed genes of the 5 lncRNAs 
by MEM analysis. Only co-expressed genes of WFDC21P 
and RP11-69M1.6 were reported and lncRNA-gene networks 
were subsequently generated, followed by the construction 
of PPI networks to visualize the interactions between these 
genes. Furthermore, according to KEGG pathway enrichment 
analysis, these genes were significantly associated with ‘tight 
junction’, ‘focal adhesion’ and ‘regulation of actin cytoskeleton’ 
pathways. ‘Tight junction’ and ‘focal adhesion’ pathways are 
key determinants in tumor progression and metastasis (32,33). 
The ‘regulation of actin cytoskeleton’ pathway has been asso-
ciated with cancer cell motility (34). Furthermore, the present 
study demonstrated that the genes in these lncRNA-gene 
networks were significantly associated with numerous GO BP 
terms that were associated with ‘ROS metabolism’ or ‘nitric 
oxide metabolism’. It has been established that abnormal ROS 
accumulation is a critical contributor to tumorigenesis (35). In 
addition, Colin et al (36) suggested that ROS may be involved 
in the development of resistance against resveratrol in colon 
cancer cells. Studies have also demonstrated that nitric oxide 
is an important regulator of tumor metabolism (37,38). These 
findings suggested that the 5‑lncRNA signature may possibly 
be involved in ‘tight junction’, ‘focal adhesion’ and ‘regula-
tion of actin cytoskeleton’ pathways, and ‘ROS metabolism’ 
and ‘nitric oxide metabolism’ in CRC by regulating the 
co-expressed genes.

Some limitations of the present study should be mentioned. 
Experiments were not conducted, and the size of the patient 
cohort may be further expanded. Therefore, future studies 
with larger patient cohorts are warranted to verify the prog-
nostic significance of the 5‑lncRNA signature prior to its use 
in clinical practice.

In conclusion, the present study identified a 5-lncRNA 
signature that may have great potential as a prognostic 
biomarker for CRC, and developed a 5-lncRNA signa-
ture‑based risk scoring system as a prognostic classification 
system. Furthermore, the underlying signaling pathways and 

Figure 8. Results of KEGG pathway enrichment analysis using KOBAS. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; NS, not significant.
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biological processes associated with the 5-lncRNA signature 
in CRC were investigated. These findings may aid in refining 
the stratification approach for the clinical assessment of 

prognosis, and provide guidance on tailored therapeutic strate-
gies and patient management; however, further investigation is 
required to validate the findings of the present study.

Figure 9. KEGG pathway and GO enrichment analyses using ClusterProfiler. (A) Results of KEGG pathway enrichment analysis. (B) Results of GO enrich-
ment analysis (biological processes). Abscissa axis represents the count of genes significantly enriched in each pathway or GO term. Size of round node is in 
proportion to gene ratio of the enriched gene number. GO, Gene Ontology; Kyoto Encyclopedia of Genes and Genomes.
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