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Abstract. Autophagy is a maintenance process for recycling 
long-lived proteins and cytoplasmic organelles. The level 
of this process is enhanced during ischemia/reperfusion 
(I/R) injury. Autophagy can trigger survival signaling in 
myocardial ischemia, whereas defective autophagy during 
reperfusion is detrimental. Autophagy can be regulated 
through multiple signaling pathways in I/R, including 
Beclin-1/class III phosphatidylinositol-3 kinase (PI-3K), 
adenosine monophosphate activated protein kinase/mammalian 
target of rapamycin (mTOR), and PI-3K/protein kinase B/mTOR 
pathways, which consequently lead to different functions. Thus, 
autophagy has both protective and detrimental functions, which 
are determined by different signaling pathways and conditions. 
Targeting the activation of autophagy can be a promising new 
therapeutic strategy for treating cardiovascular disease.
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1. Introduction

Myocardial ischemia was one of the main causes of sudden 
cardiac death in the past decades (1). Acute myocardial infarc-
tion is a leading cause of death worldwide (2). Strategies 
for reducing ischemia/reperfusion (I/R)-induced injury in 
cardiomyocytes are receiving considerable attention due to the 
failure of cardiomyocytes to regenerate (1). Coronary reper-
fusion is the most effective treatment for ischemic diseases. 
However, it may initially aggravate cellular damage during the 
ischemic period (3).

Cardiac ischemic preconditioning (IPC), which is achieved 
through repeated brief I/R periods, is one of the well-known 
protective strategies of the myocardium against I/R injury (4). 
Recently, autophagy has been linked to IPC-mediated 
cardioprotection (5). In addition, a number of pharmaceutical 
therapies targeting I/R injury have been developed to orches-
trate multiple protein complexes and signaling pathways in 
autophagy (6,7). In this review, we aim to draw attention to the 
role of autophagy in cardioprotection.

2. Autophagy

Autophagy is a self-protective mechanism of living cells under 
various stress conditions (8). During autophagy, cellular cyto-
plasm constituents are delivered to lysosomes for degradation 
and recycling (9). Autophagy limits the production of reactive 
oxygen species and excessive protein aggregation to maintain 
intracellular or extracellular homeostasis (10). Autophagy 
has emerged as a potential drug target for numerous diseases 
including cancer, neurodegenerative diseases, and cardiovas-
cular disease (11,12).

Autophagy plays multifaceted roles in heart and 
diseases (13). Under basal conditions, autophagy is a mainte-
nance process for recycling long-lived proteins and cytoplasmic 
organelles in the heart (14). Furthermore, autophagy plays 
significant roles in starvation, aging, inflammation, and reverse 
cardiac remodeling by maintaining cellular homeostasis (15). 
Autophagy can be regarded as an end effector in hypoxic and 
ischemic conditions to eliminate superfluous, damaged, or 
aged cells or organelles (16-18). However, this process will 
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cause detrimental autophagic cell death when triggered by 
severe ischemia or in cardiovascular diseases (19).

3. Autophagy and cardioprotection

Myocardial I/R injury is a complex process that destroys 
proteins, DNA, and plasma membrane, thereby resulting in 
cell death and decreased cardiac output (20,21). Many studies 
have reported an increase in the number of autophagosomes 
in the heart during I/R in animal models (5,22). Autophagy 
induced by ischemia was subsequently enhanced by reperfu-
sion in isolated rabbit hearts (23) and in mouse hearts (24). 
The activation of autophagy is reflected in the abundance 
of autophagy-related protein pathways, such as light chain 3 
(LC3), Beclin-1, autophagy-related gene (ATG) 5-12 complex, 
and p62 (25-27). Hu et al reported that approximately 20 min 
of aortic clamping with hyperkalemic cold blood cardioplegia 
to achieve total autophagy, which in accordance with previous 
evidence (28). The abundance of autophagic proteins will 
actually decrease with the progress of autophagy because 
of self-degradation (25,26). In particular, in biopsies from 
the right atrial appendage of patients undergoing valve 
surgery or coronary artery bypass grafting, the expression of 
autophagy-related proteins, including LC3-I, LC3-II, ATG5-12, 
Beclin-1, and p62, is reduced during reperfusion (26).

Until recently, the debate continues whether autophagy 
plays a protective or deleterious role in the I/R injury process. 
On the one hand, modest levels of autophagy triggered by 
mild to moderate hypoxia/ischemia are protective and seem to 
prevent the activation of apoptosis (23,29). On the other hand, 
high levels of autophagy induced by severe hypoxia or I/R may 
cause self-digestion and eventual cell death (30). Therefore, 
autophagic flux induced by ischemia during the early stage of 
I/R has been speculated to be beneficial; however, it is harmful 
during reperfusion at the later stage of I/R (15,19).

Autophagy may play an alternative role in I/R, which 
determines cell fate. The extent of autophagy in response to 
ischemia is considered based on the severity and duration of 
ischemic insults (31). Nutrient and oxygen deprivation in the 
heart threatens cellular survival during I/R, and increased 
autophagy may provide at least a temporary reprieve for a 
threatened myocardium by serving as a source of intracellular 
nutrients (32). Oxidative stress, calcium overload, endoplasmic 
reticulum (ER) stress, and mitochondrial dysfunction maintain 
a high level of autophagy during reperfusion (33). However, 
high levels or long-term upregulation of autophagy can lead to 
excessive degradation of essential proteins and organelles (34). 
If intracellular energy sources become inadequate, then 
autophagic processes will be a particular form of cell death, 
called type II or autophagic cell death (35). In fact, aware 
that necrosis and apoptosis are not the only mechanisms of 
cell death is increasing (36). Autophagic cell death has been 
identified as a cell death phenotype via electron microscope 
observations; it has a morphological term characterized by 
abundant autophagic vacuoles in the cytoplasm (37,38).

Moreover, increased autophagy after I/R is not due to 
increased autophagosome formation, but instead, to impaired 
clearance of autophagosomes (39); this assumption is derived 
from the concept of autophagic flux (40). Furthermore, a 
rapid decline induced by reperfusion in LAMP2, which is 

a critical protein for autophagosome-lysosome fusion, can 
impair autophagosome processing and mitochondrial permea-
bilization, thereby increasing ROS generation and triggering 
cardiomyocyte death (41). In addition, when the engulfed 
targets or autophagosomes cannot fuse with lysosomes and 
digest their contents, a cell may eject the autophagosomes as a 
response, which induces an acute and significant inflammatory 
response (42).

4. Mechanism of autophagy in cardioprotection

Autophagy is a complex and dynamic multi-step process 
that depends on strict regulation and coordination through 
multiple signaling pathways (43). To date, several cellular 
signaling pathways are considered to trigger autophagy 
in I/R. In addition, autophagy has been shown to be 
regulated by several signaling pathways (44), including 
Beclin-1/class III phosphatidylinositol-3 kinase (PI-3K), 
AMPK/mammalian target of rapamycin (mTOR), and 
PI-3K/Akt/mTOR pathways.

Beclin‑1/class III PI‑3K pathway. Beclin-1, which is a phylo-
genetically conserved protein, the mammalian homologue of 
the yeast Atg6, and the interacting protein of the anti-apoptotic 
protein Bcl-2, is a key molecule involved in mediating 
autophagy (45,46). It plays a crucial role in engaging class III 
PI-3K to positively modulate autophagy in mammalian 
cells (47,48). Autophagy in mammalian cells is reported to 
be activated by the class III PI-3K complex, which contains 
Vps34 and Beclin-1 (29,49). Moreover, a coiled-coil domain 
(aa 140-268) is present in this 450 amino acid-long protein in 
Beclin-1; this domain can mediate binding to class III PI-3K 
Vps34 by interacting with an evolutionarily conserved domain 
(ECD; aa 244-337) (50). RNA interference of Beclin-1, which 
inhibits autophagy, will subsequently enhance cardiac cell 
survival (51).

Autoph agy is involved in delayed cardioprotection induced 
by sevoflurane preconditioning (52). Sevoflurane precondi-
tioning reduces the autophagy induced by H/R by decreasing 
the Beclin-1 expression (52). Accordingly, IPC protects the 
rat heart against MI/R injury by inhibiting Bcl-2 dissociation 
from Beclin-1 during the reperfusion phase in vivo, although 
IPC‑induced autophagy reflects a compensatory pro‑survival 
response to I/R injury (53). Bcl-2 is the prototype of a protein 
family, which contains at least one Bcl-2 homology (BH) 
region (54). Bcl-2 binding molecules have been recently shown 
to regulate autophagy activation (55). Transgenic mice with a 
cardiac‑specific overexpression of Bcl‑2 are protected from 
I/R injury (56,57). Autophagy is disrupted when Bcl-2 binds 
to Beclin-1 (58). In addition, when a mutant of Beclin-1 that 
lacks the Bcl-2 binding domain is overexpressed in cells, 
excessive autophagy and cell death are induced (47). Bcl-2 
can also inhibit Beclin-1/Vsp34 PI-3K complex formation 
and the activity of Beclin-1-associated class III PI-3K (53). 
Furthermore, the class III PI-3K autophagic pathway is inhib-
ited by combining the BH3 hydrophobic groove in Bcl-2 and the 
BH3-like amphipathic α-helix in Beclin-1 (59). However, the 
interaction with Bcl-2 (and Bcl-xL) in the ER, rather than in the 
mitochondria, inhibits the Beclin-1 activity in autophagy (60). 
The interaction between Bcl-2 and Beclin-1 maintains 
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autophagy at levels (47). Blocking the interaction between 
the BH3 domains of Beclin-1 and Bcl-2 increases autophagic 
activity (53). Recent studies indicate that the increase in the 
interaction between Beclin-1 and Bcl-2 is caused by IPC (53). 
C-Jun N-terminal kinase (JNK), which is a member of an 
evolutionarily conserved subfamily of mitogen-activated 
protein kinases, is critical for the cellular responses of multiple 
environmental and cellular stimuli (61,62). I/R can trigger 
Bcl2-regulated autophagy by inducing a dominant increase 
in mitoJNK activation, which causes cell death (63). Xu et al 
reported that mitoJNK activation, and not JNK mitochondrial 
localization, induced autophagy, which further aggravates 
I/R injury (63). In addition, the mitoJNK phosphorylate Bcl2, 
which antagonizes Bcl2 anti-apoptotic and anti-autophagic 
activities, may contribute to the deleterious role of mitoJNK 
in I/R injury (64,65).

Heat shock protein (Hsp20) is the only member of the sHsps 
family that contains the consensus peptide motif RRAS for 
protein kinase A-/protein kinase G-dependent phosphorylation 
at Ser16 (66). Qian et al demonstrated that non-phosphorylated 
Hsp20S16A is detrimental in I/R injury because it suppresses 
autophagy and further increases cell death (36). Ischemic/hypoxic 
adaptation improves cardiac cell survival by suppressing the 
BAG-1 protein expression (67). BAG-1 can bind with both Bcl-2 
and Hsc70 molecules (67). Autophagosomal membrane contains 
a significantly higher amount of Hsc70 proteins (68). BAG-1 has 
been shown exhibit numerous functions through its interaction 
with Hsc70 (69). The treatment of rats with wortmannin, an 

inhibitor of class III PI-3K, has been used to suppress autophagy 
in many studies (70,71), and attenuates both the LC3-II and 
BAG-1 protein expressions (67). Zheng et al (72) reported that 
the activated PI3K/Akt pathway contributes to the berbamine 
postconditioning-induced cardioprotection through modulating 
autophagy. The Beclin-1/class III PI-3K pathway-regulated 
autophagy and autophagy-mediated function in I/R injury are 
shown in Fig. 1.

AMPK/mTOR pathway. AMPK, which is activated in response 
to stress that exhaust cellular ATP supplies, such as ischemia 
and hypoxia, plays a crucial role as a master regulator of cellular 
energy homeostasis (73). AMPK is ubiquitously expressed 
in metabolically active tissues, such as cardiac muscles, and 
activated upon the depletion of energy stores by functioning as 
an intracellular fuel sensor (74). Ischemia has been proposed 
to stimulate autophagy via an AMPK-dependent mecha-
nism (53), which is one of the most significant approaches 
in upregulating autophagy (75,76). During I/R injury, intra-
cellular ATP stores are rapidly consumed and cannot be 
supplemented with decreasing glucose supply (77). AMPK 
signaling can positively regulate autophagy by activating Ulk1 
via the phosphorylation of Ser 317 and Ser 777 or indirectly by 
inhibiting mTOR signaling (78,79). Moreover, AMPK func-
tions as a master regulator of the autophagy pathway through 
inactivating mTOR (80).

High mTOR activity negatively regulates autophagy 
by inhibiting the activation of Ulk1, which is one of the 

Figure 1. Beclin-1/class III PI-3K pathway-regulated autophagy and autophagy-mediated function in I/R injury. Under I/R condition, autophagy is activated by 
the class III PI‑3K complex, which contains class Ш PI‑3K Vps34 and Beclin‑1. SWOP induces cardioprotection by reducing Beclin‑1 expression, increasing 
the survival rate of cells, and reducing their apoptosis percentage. IPC protects rat heart against myocardial I/R injury by inhibiting Bcl-2 dissociation from 
Beclin-1. MitoJNK activation, instead of JNK mitochondrial localization, induces triggering of Bcl2-regulated autophagy, which further causes cell death 
and aggravates myocardial I/R injury. However, IPC can exert cardioprotection via autophagy through the activation of PI-3K. Resveratrol and γ-tocotrienol 
can enhance autophagy through the induction survival pathway, which depends on class III PI-3K, thereby synergistically providing an increased degree of 
cardioprotection. Non-phosphorylated Hsp20S16A increases cell death by suppressing autophagy, and Beclin-1 is a potential target of phosphorylated Hsp20 
in regulating autophagy. Ischemic/hypoxic adaptation induces improvement in cardiac cell survival mediated by BAG-1. BAG-1 can bind to both Bcl-2 and 
Hsc70 molecules, and may activate autophagy via Hsc70. PI-3K, phosphatidylinositol-3 kinase; I/R, ischemia/reperfusion; JNK, C-Jun N-terminal kinase; IPC, 
ischemic preconditioning; Hsp20, heat shock protein.
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Figure 3. PI-3K/Akt/mTOR pathway-regulated autophagy and autophagy-mediated function in I/R injury. Class I PI-3K (PI-3K) will inhibit the induction of 
autophagy via the phosphorylation of Akt and mTOR, and achieve additional benefit against I/R injury. Rapamycin exerts beneficial effects against cardio-
myocyte I/R injury through autophagy that depends on the PI-3K-Akt signaling pathway. GSK-3β is the downstream of PI-3K/Akt, and GSK-3β causes 
cardiomyocyte death during reperfusion but mediates the survival of cardiomyocytes during prolonged ischemia through mTOR-dependent autophagy 
attenuation. PI-3K, phosphatidylinositol-3 kinase; mTOR, mammalian target of rapamycin.

Figure 2. AMPK/mTOR pathway-regulated autophagy and autophagy-mediated function in I/R injury. Tocotrienol induces autophagy through the mTOR 
pathway, which subsequently leads to cell survival and cardioprotection. mTOR activity negatively regulates autophagy by inhibiting Ulk1 activation, which 
initiates the nucleation of the autophagic membrane. Bnip3 can inhibit the mTOR pathway and induce autophagy by directly binding to Rheb and protect 
cardiac myocytes against I/R injury-related apoptosis. Under the condition of ischemia, hypoxia, or I/R, AMPK is activated by the increased levels of 
AMP/ATP. Then, autophagy triggered by AMPK can resist cardiac injury, and AMPK signaling can positively regulate autophagy by activating Ulk1, or indi-
rectly, by inhibiting mTOR signaling. RIC, resveratrol, Ach, and H2S can induce the autophagic AMPK pathway, which is cardioprotective. Ultraviolet B is a 
critical mediator of cardioprotection via APC, and ultraviolet B-induced autophagy activates AMPK by inhibiting the phosphorylation of GSK3β. Sevoflurane 
provides cardioprotection against I/R injury via ROS-mediated upregulation of autophagy. mTOR, mammalian target of rapamycin; I/R, ischemia/reperfusion; 
Rheb, Ras homolog that is enriched in the brain.
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mammalian autophagy-initiating kinases that is important 
for membrane nucleation via the phosphorylation of Ulk1 
Ser 757 (1,81,82). The association between ATG1 and ATG13 is 
negatively regulated by mTOR, which inhibits autophagy (83). 
In addition, the activation of Ulk1 and its combination with 
other molecules, such as ATG13 and FIP200, initiate the 
nucleation of the autophagic membrane (1). Lekli et al proposed 
that tocotrienol could induce autophagy through the mTOR 
pathway, which would consequently lead to cell survival 
and cardioprotection (84). The overexpression of Bnip3, a 
hypoxia-inducible Bcl-2 homology 3 domain-containing 
protein (85) and the pro-apoptotic molecule present in the 
mitochondrial membrane; can upregulate autophagy and protect 
cardiac myocytes against I/R injury-related apoptosis (86). 
The high-mobility group box 1 protein (HMGB1)-mediated 
activation of mTOR inhibits hypoxia and reoxygenation injury 
in rat cardiomyocytes (87,88). Moreover, Bnip3 can inhibit the 
mTOR pathway and induce autophagy by directly binding to 
the Ras homolog that is enriched in the brain (Rheb), which is 
a Ras-related small guanosine triphosphatase (85,89).

The cardioprotection effect of resveratrol has been shown 
to induce autophagy by facilitating AMPK activation (90,91). 
In addition, AMPK expression is elevated with ACh during 
H/R (92). ACh activates cytoprotective autophagy through the 
AMPK-mTOR-dependent pathway that is activated by a musca-
rinic receptor (92). Xie et al found that the post-reperfusion 
AMPK activation induced by a slow-releasing organic H2S 
donor that could restore I/R impaired autophagic flux; is 
critical to H2S cardioprotection (93). Accordingly, studies have 
proven that autophagy activation through the AMPK/mTOR 
pathway plays a cardioprotection role (94). Recently, ultra-
violet B-induced autophagy has been found to activate AMPK 
by inhibiting the phosphorylation of GSK3β (95), which is a 

critical mediator of cardioprotection via anesthetic precondi-
tioning (96). Sevoflurane provides cardioprotection against I/R 
injury via the ROS-mediated upregulation of autophagy (97). 
Hariharan et al reported that oxidative stress triggers autophagic 
flux during MI/R injury (98). In addition, trimetazidine (99) 
and thioredoxin-2 (100) protect against hypoxia/reoxygenation 
injury by promoting the AMPK‑dependent autophagic flux in 
H9c2 cardiomyocytes. The AMPK/mTOR pathway-regulated 
autophagy and autophagy-mediated function in I/R injury are 
illustrated in Fig. 2.

PI‑3K/Akt/mTOR pathway. PI-3K/Akt/mTOR signaling may 
also provide an additional benefit against I/R injury (101). 
In addition, class III PI-3K focuses on the formation of 
autophagosomes, whereas class I PI-3K will inhibit the induc-
tion of autophagy through the phosphorylation of Akt and 
mTOR (70). Thus, the interaction of Akt with mTOR is multi-
faceted and bidirectional (101). Moreover, the self-regulation 
of autophagy has been postulated to be regulated by the 
autophagy-induced inhibition of mTOR (102). Furthermore, 
rapamycin provided a strong beneficial effect against cardio-
myocyte anoxia/reoxygenation injury, which would mediate 
cardioprotection via autophagy that probably depended on 
the PI-3K/Akt signaling pathway (103). During prolonged 
ischemia and I/R, the differential effects of GSK-3β, which is 
the downstream of PI-3K/Akt, on myocardial injury has been 
suggested to be determined by changes in autophagy (104). 
GSK-3β inhibition modulates mTOR-dependent attenuation 
of autophagy, thereby causing the death of cardiomyocytes 
during prolonged ischemia while mediating their survival 
during reperfusion (104). In addition, mTOR activation via 
GSK-3β has been suggested to provide cardioprotection via 
autophagy (104). The PI-3K/Akt/mTOR pathway-regulated 

Table I. Summary of various autophagy modulators on cardiac ischemia/reperfusion injury.

   Effect on cardiac
Author, year Drugs Mechanism of action ischemia/reperfusion injury (Refs.)

Huang et al, 2010 Sulfaphenazole Activate protein Protects against myocardial (39)
  kinase C I/R and reduces infarct size
Xie et al, 2015 Sevoflurane Inhibition Beclin 1‑mediated Delayed cardioprotection (52)
  autophagic cell death
Zheng et al, 2017 Berbamine Activate PI3K/Akt Improved post-ischemic myocardial (72)
  pathway function and attenuated cell death
Lekli et al, 2010 Tocotrienol Activate the mTOR Reduces cardiomyocyte apoptosis (84)
  pathway
Gurusamy et al,  Resveratrol Activate mTOR-Rictor Attenuates myocardial I/R (91)
2010  survival pathway injury and reduces infarct size
Zhao et al, 2013 Acetylcholine Activate AMPK-mTOR Reduces cardiomyocyte death (92)
  pathway
Xie et al, 2015 H2S Activate AMP-activated Protects against myocardial (93)
  protein kinase I/R injury
Zhong et al, 2017 Trimetazidine Activate AMPK-mTOR Reduces hypoxia/reoxygenation injury (99)
  pathway
Wang et al, 2015 Rapamycin Activate PI3k/Akt pathway Attenuates anoxia/reoxygenation injury (103)

mTOR, mammalian target of rapamycin; I/R, ischemia/reperfusion.
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autophagy and autophagy-mediated function in I/R injury are 
illustrated in Fig. 3.

Others. The p53 transcription factor is a major regulator of 
cellular response to acute stress (105). Knockdown of p53 
can activate autophagy in cardiomyocytes, thereby protecting 
the myocardium against ischemic injury (106). Autophagy 
is inhibited with STAT1 to modulate stress response to 
I/R in STAT1-/- null hearts (32). In I/R, STAT1 can interact 
directly with p53 and regulate its functional activity (107), 
thereby suggesting that STAT1 can act with p53 to modulate 
autophagy (32). The mitochondrial permeability transition 
pore (MPTP) plays an important role in myocardial I/R injury, 
and the opening of MPTP has also been shown to trigger 
autophagy (108). Making the heart more tolerant to subse-
quent I/R injury is a crucial step in transient MPTP opening 
before prolonged ischemia (109,110). Moreover, PKC has 
been reported to trigger the phosphorylation of a regula-
tory sub-unit of VPATPase, which subsequently induces 
autophagy (111-113).

5. Autophagy as a therapeutic target for I/R injury

Microarray analysis showed that autophagy-associated 
genes and the unfolded protein response were upregulated 
under the condition of repetitive coronary occlusion achieved 
during chronic local ischemic conditioning in mice (114,115). 
In another study, inhibiting mTOR decreased infarct size 
in mice (116). Rapamycin (116), caloric restriction (117), 
exercise (118), nitric oxide (119), and lipopolysaccharide (120) 
has been identified as cardioprotective interventions for 
triggering autophagy. Gurusamy et al used isolated rat heart 
models and demonstrated that the induction of IPC via repeated 
I/R cycles immediately enhanced the expression of LC3-II and 
Beclin-1 (67). In vivo swine models, infarct size was limited 
after chloramphenicol succinate was used before ischemia (121). 
Han et al found that cardioprotection induced by remote 
limb ischemic postconditioning was associated with elevated 
autophagy 3 h post-reperfusion (2). A similar phenomenon was 
observed by Hamacher-Brady et al in HL-1 myocytes; they 
found that simulated I/R-mediated cell death was prevented 
by strengthening autophagy, whereas its inhibition caused 
cell death (40). Other researchers have observed that blocking 
autophagy via cell-permeable Tat-Atg5K130R concurrently 
increased infarct size in hearts when treated with SUL (39). 
Moreover, Tibetan patients with coronary heart disease resist 
I/R injury during cardiac surgery better than patients living at 
sea level, which is possibly correlated with the upregulation of 
basal autophagy resulting from chronic hypoxia (28).

Autophagy has been determined as a significant element 
of the endogenous defense mechanisms activated by various 
preconditioning types. Induction of autophagy may represent 
a novel therapeutic approach to myocardial protection in 
humans (39). The identification of agents that can rapidly induce 
autophagy can contribute to the discovery of new cardiopro-
tective drugs (122). In addition, induction of autophagy can 
preserve heart function during I/R injury (91,121,123). Other 
studies have suggested that autophagy is detrimental because it 
contributes to cell death (15,124). The beneficial or detrimental 
role of autophagy may be a consequence of balance, depending 

on the extent of autophagy (7). Thus, for autophagy to be effec-
tive, searching for a candidate cardioprotective drug that can 
induce autophagy in a target population is important, together 
with the appropriate timing and response magnitude (16). 
Various autophagy modulators on cardiac ischemia/ injury are 
summarized in Table I.

6. Conclusions

Recent studies have shown that autophagy plays an impor-
tant role in I/R injury. Moreover, evidence has emerged that 
autophagy plays various roles in I/R through multiple mecha-
nisms. Autophagy can trigger a survival signal in the case of 
myocardial ischemia, whereas defective autophagy during 
reperfusion is detrimental. Although we have obtained substan-
tial knowledge about the function of autophagy in I/R injury, 
the autophagy pathway is highly complex and remains far from 
being understood completely. Additional studies are neces-
sary to identify the molecular components of the autophagy 
pathway, characterize the role of autophagy in I/R injury, 
elucidate the diverse processes that regulate autophagy expres-
sion and activity, and determine the contribution of autophagy 
to myocardial infarction protection in humans. Such studies 
will provide additional insights into the role of autophagy in 
I/R injury and potentially discover novel therapeutic strategies 
for treating the diseases.
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