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Abstract. Autophagy is a maintenance process for recycling
long-lived proteins and cytoplasmic organelles. The level
of this process is enhanced during ischemia/reperfusion
(I/R) injury. Autophagy can trigger survival signaling in
myocardial ischemia, whereas defective autophagy during
reperfusion is detrimental. Autophagy can be regulated
through multiple signaling pathways in I/R, including
Beclin-1/class III phosphatidylinositol-3 kinase (PI-3K),
adenosine monophosphate activated protein kinase/mammalian
target of rapamycin (mTOR), and PI-3K/protein kinase B/mTOR
pathways, which consequently lead to different functions. Thus,
autophagy has both protective and detrimental functions, which
are determined by different signaling pathways and conditions.
Targeting the activation of autophagy can be a promising new
therapeutic strategy for treating cardiovascular disease.
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1. Introduction

Myocardial ischemia was one of the main causes of sudden
cardiac death in the past decades (1). Acute myocardial infarc-
tion is a leading cause of death worldwide (2). Strategies
for reducing ischemia/reperfusion (I/R)-induced injury in
cardiomyocytes are receiving considerable attention due to the
failure of cardiomyocytes to regenerate (1). Coronary reper-
fusion is the most effective treatment for ischemic diseases.
However, it may initially aggravate cellular damage during the
ischemic period (3).

Cardiac ischemic preconditioning (IPC), which is achieved
through repeated brief I/R periods, is one of the well-known
protective strategies of the myocardium against I/R injury (4).
Recently, autophagy has been linked to ITPC-mediated
cardioprotection (5). In addition, a number of pharmaceutical
therapies targeting I/R injury have been developed to orches-
trate multiple protein complexes and signaling pathways in
autophagy (6,7). In this review, we aim to draw attention to the
role of autophagy in cardioprotection.

2. Autophagy

Autophagy is a self-protective mechanism of living cells under
various stress conditions (8). During autophagy, cellular cyto-
plasm constituents are delivered to lysosomes for degradation
and recycling (9). Autophagy limits the production of reactive
oxygen species and excessive protein aggregation to maintain
intracellular or extracellular homeostasis (10). Autophagy
has emerged as a potential drug target for numerous diseases
including cancer, neurodegenerative diseases, and cardiovas-
cular disease (11,12).

Autophagy plays multifaceted roles in heart and
diseases (13). Under basal conditions, autophagy is a mainte-
nance process for recycling long-lived proteins and cytoplasmic
organelles in the heart (14). Furthermore, autophagy plays
significant roles in starvation, aging, inflammation, and reverse
cardiac remodeling by maintaining cellular homeostasis (15).
Autophagy can be regarded as an end effector in hypoxic and
ischemic conditions to eliminate superfluous, damaged, or
aged cells or organelles (16-18). However, this process will
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cause detrimental autophagic cell death when triggered by
severe ischemia or in cardiovascular diseases (19).

3. Autophagy and cardioprotection

Myocardial I/R injury is a complex process that destroys
proteins, DNA, and plasma membrane, thereby resulting in
cell death and decreased cardiac output (20,21). Many studies
have reported an increase in the number of autophagosomes
in the heart during I/R in animal models (5,22). Autophagy
induced by ischemia was subsequently enhanced by reperfu-
sion in isolated rabbit hearts (23) and in mouse hearts (24).
The activation of autophagy is reflected in the abundance
of autophagy-related protein pathways, such as light chain 3
(LC3), Beclin-1, autophagy-related gene (ATG) 5-12 complex,
and p62 (25-27). Hu et al reported that approximately 20 min
of aortic clamping with hyperkalemic cold blood cardioplegia
to achieve total autophagy, which in accordance with previous
evidence (28). The abundance of autophagic proteins will
actually decrease with the progress of autophagy because
of self-degradation (25,26). In particular, in biopsies from
the right atrial appendage of patients undergoing valve
surgery or coronary artery bypass grafting, the expression of
autophagy-related proteins, including LC3-I, LC3-I1, ATG5-12,
Beclin-1, and p62, is reduced during reperfusion (26).

Until recently, the debate continues whether autophagy
plays a protective or deleterious role in the I/R injury process.
On the one hand, modest levels of autophagy triggered by
mild to moderate hypoxia/ischemia are protective and seem to
prevent the activation of apoptosis (23,29). On the other hand,
high levels of autophagy induced by severe hypoxia or I/R may
cause self-digestion and eventual cell death (30). Therefore,
autophagic flux induced by ischemia during the early stage of
I/R has been speculated to be beneficial; however, it is harmful
during reperfusion at the later stage of I/R (15,19).

Autophagy may play an alternative role in I/R, which
determines cell fate. The extent of autophagy in response to
ischemia is considered based on the severity and duration of
ischemic insults (31). Nutrient and oxygen deprivation in the
heart threatens cellular survival during I/R, and increased
autophagy may provide at least a temporary reprieve for a
threatened myocardium by serving as a source of intracellular
nutrients (32). Oxidative stress, calcium overload, endoplasmic
reticulum (ER) stress, and mitochondrial dysfunction maintain
a high level of autophagy during reperfusion (33). However,
high levels or long-term upregulation of autophagy can lead to
excessive degradation of essential proteins and organelles (34).
If intracellular energy sources become inadequate, then
autophagic processes will be a particular form of cell death,
called type II or autophagic cell death (35). In fact, aware
that necrosis and apoptosis are not the only mechanisms of
cell death is increasing (36). Autophagic cell death has been
identified as a cell death phenotype via electron microscope
observations; it has a morphological term characterized by
abundant autophagic vacuoles in the cytoplasm (37,38).

Moreover, increased autophagy after I/R is not due to
increased autophagosome formation, but instead, to impaired
clearance of autophagosomes (39); this assumption is derived
from the concept of autophagic flux (40). Furthermore, a
rapid decline induced by reperfusion in LAMP2, which is
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a critical protein for autophagosome-lysosome fusion, can
impair autophagosome processing and mitochondrial permea-
bilization, thereby increasing ROS generation and triggering
cardiomyocyte death (41). In addition, when the engulfed
targets or autophagosomes cannot fuse with lysosomes and
digest their contents, a cell may eject the autophagosomes as a
response, which induces an acute and significant inflammatory
response (42).

4. Mechanism of autophagy in cardioprotection

Autophagy is a complex and dynamic multi-step process
that depends on strict regulation and coordination through
multiple signaling pathways (43). To date, several cellular
signaling pathways are considered to trigger autophagy
in I/R. In addition, autophagy has been shown to be
regulated by several signaling pathways (44), including
Beclin-1/class III phosphatidylinositol-3 kinase (PI-3K),
AMPK/mammalian target of rapamycin (mTOR), and
PI-3K/Akt/mTOR pathways.

Beclin-1/class III PI-3K pathway. Beclin-1, which is a phylo-
genetically conserved protein, the mammalian homologue of
the yeast Atg6, and the interacting protein of the anti-apoptotic
protein Bcl-2, is a key molecule involved in mediating
autophagy (45,46). It plays a crucial role in engaging class III
PI-3K to positively modulate autophagy in mammalian
cells (47,48). Autophagy in mammalian cells is reported to
be activated by the class III PI-3K complex, which contains
Vps34 and Beclin-1 (29,49). Moreover, a coiled-coil domain
(aa 140-268) is present in this 450 amino acid-long protein in
Beclin-1; this domain can mediate binding to class III PI-3K
Vps34 by interacting with an evolutionarily conserved domain
(ECD; aa 244-337) (50). RNA interference of Beclin-1, which
inhibits autophagy, will subsequently enhance cardiac cell
survival (51).

Autophagy is involved in delayed cardioprotection induced
by sevoflurane preconditioning (52). Sevoflurane precondi-
tioning reduces the autophagy induced by H/R by decreasing
the Beclin-1 expression (52). Accordingly, IPC protects the
rat heart against MI/R injury by inhibiting Bcl-2 dissociation
from Beclin-1 during the reperfusion phase in vivo, although
IPC-induced autophagy reflects a compensatory pro-survival
response to I/R injury (53). Bcl-2 is the prototype of a protein
family, which contains at least one Bcl-2 homology (BH)
region (54). Bcl-2 binding molecules have been recently shown
to regulate autophagy activation (55). Transgenic mice with a
cardiac-specific overexpression of Bcl-2 are protected from
I/R injury (56,57). Autophagy is disrupted when Bcl-2 binds
to Beclin-1 (58). In addition, when a mutant of Beclin-1 that
lacks the Bcl-2 binding domain is overexpressed in cells,
excessive autophagy and cell death are induced (47). Bcl-2
can also inhibit Beclin-1/Vsp34 PI-3K complex formation
and the activity of Beclin-1-associated class III PI-3K (53).
Furthermore, the class III PI-3K autophagic pathway is inhib-
ited by combining the BH3 hydrophobic groove in Bcl-2 and the
BH3-like amphipathic a-helix in Beclin-1 (59). However, the
interaction with Bcl-2 (and Bcl-xL) in the ER, rather than in the
mitochondria, inhibits the Beclin-1 activity in autophagy (60).
The interaction between Bcl-2 and Beclin-1 maintains
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Figure 1. Beclin-1/class III PI-3K pathway-regulated autophagy and autophagy-mediated function in I/R injury. Under I/R condition, autophagy is activated by
the class III PI-3K complex, which contains class III PI-3K Vps34 and Beclin-1. SWOP induces cardioprotection by reducing Beclin-1 expression, increasing
the survival rate of cells, and reducing their apoptosis percentage. IPC protects rat heart against myocardial I/R injury by inhibiting Bcl-2 dissociation from

Beclin-1. MitoJNK activation, instead of INK mitochondrial localization, i
and aggravates myocardial I/R injury. However, IPC can exert cardioprotect

nduces triggering of Bcl2-regulated autophagy, which further causes cell death
ion via autophagy through the activation of PI-3K. Resveratrol and y-tocotrienol

can enhance autophagy through the induction survival pathway, which depends on class III PI-3K, thereby synergistically providing an increased degree of
cardioprotection. Non-phosphorylated Hsp20S16A increases cell death by suppressing autophagy, and Beclin-1 is a potential target of phosphorylated Hsp20

in regulating autophagy. Ischemic/hypoxic adaptation induces improvement

in cardiac cell survival mediated by BAG-1. BAG-1 can bind to both Bcl-2 and

Hsc70 molecules, and may activate autophagy via Hsc70. PI-3K, phosphatidylinositol-3 kinase; I/R, ischemia/reperfusion; JNK, C-Jun N-terminal kinase; IPC,

ischemic preconditioning; Hsp20, heat shock protein.

autophagy at levels (47). Blocking the interaction between
the BH3 domains of Beclin-1 and Bcl-2 increases autophagic
activity (53). Recent studies indicate that the increase in the
interaction between Beclin-1 and Bcl-2 is caused by IPC (53).
C-Jun N-terminal kinase (JNK), which is a member of an
evolutionarily conserved subfamily of mitogen-activated
protein kinases, is critical for the cellular responses of multiple
environmental and cellular stimuli (61,62). I/R can trigger
Bcl2-regulated autophagy by inducing a dominant increase
in mitoJNK activation, which causes cell death (63). Xu er al
reported that mitoJNK activation, and not JNK mitochondrial
localization, induced autophagy, which further aggravates
I/R injury (63). In addition, the mitoJNK phosphorylate Bcl2,
which antagonizes Bcl2 anti-apoptotic and anti-autophagic
activities, may contribute to the deleterious role of mitoJNK
in I/R injury (64,65).

Heat shock protein (Hsp20) is the only member of the sHsps
family that contains the consensus peptide motif RRAS for
protein kinase A-/protein kinase G-dependent phosphorylation
at Serl6 (66). Qian et al demonstrated that non-phosphorylated
Hsp20S16A is detrimental in I/R injury because it suppresses
autophagy and furtherincreases cell death (36).Ischemic/hypoxic
adaptation improves cardiac cell survival by suppressing the
BAG-1 protein expression (67). BAG-1 can bind with both Bcl-2
and Hsc70 molecules (67). Autophagosomal membrane contains
a significantly higher amount of Hsc70 proteins (68). BAG-1 has
been shown exhibit numerous functions through its interaction
with Hsc70 (69). The treatment of rats with wortmannin, an

inhibitor of class III PI-3K, has been used to suppress autophagy
in many studies (70,71), and attenuates both the LC3-II and
BAG-1 protein expressions (67). Zheng et al (72) reported that
the activated PI3K/Akt pathway contributes to the berbamine
postconditioning-induced cardioprotection through modulating
autophagy. The Beclin-1/class III PI-3K pathway-regulated
autophagy and autophagy-mediated function in I/R injury are
shown in Fig. 1.

AMPK/mTOR pathway. AMPK, which is activated in response
to stress that exhaust cellular ATP supplies, such as ischemia
and hypoxia, plays a crucial role as a master regulator of cellular
energy homeostasis (73). AMPK is ubiquitously expressed
in metabolically active tissues, such as cardiac muscles, and
activated upon the depletion of energy stores by functioning as
an intracellular fuel sensor (74). Ischemia has been proposed
to stimulate autophagy via an AMPK-dependent mecha-
nism (53), which is one of the most significant approaches
in upregulating autophagy (75,76). During I/R injury, intra-
cellular ATP stores are rapidly consumed and cannot be
supplemented with decreasing glucose supply (77). AMPK
signaling can positively regulate autophagy by activating Ulk1
via the phosphorylation of Ser 317 and Ser 777 or indirectly by
inhibiting mTOR signaling (78,79). Moreover, AMPK func-
tions as a master regulator of the autophagy pathway through
inactivating mTOR (80).

High mTOR activity negatively regulates autophagy
by inhibiting the activation of Ulkl, which is one of the
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Figure 2. AMPK/mTOR pathway-regulated autophagy and autophagy-mediated function in I/R injury. Tocotrienol induces autophagy through the mTOR
pathway, which subsequently leads to cell survival and cardioprotection. mTOR activity negatively regulates autophagy by inhibiting Ulk1 activation, which
initiates the nucleation of the autophagic membrane. Bnip3 can inhibit the mTOR pathway and induce autophagy by directly binding to Rheb and protect
cardiac myocytes against I/R injury-related apoptosis. Under the condition of ischemia, hypoxia, or I/R, AMPK is activated by the increased levels of
AMP/ATP. Then, autophagy triggered by AMPK can resist cardiac injury, and AMPK signaling can positively regulate autophagy by activating Ulk1, or indi-
rectly, by inhibiting mTOR signaling. RIC, resveratrol, Ach, and H,S can induce the autophagic AMPK pathway, which is cardioprotective. Ultraviolet B is a
critical mediator of cardioprotection via APC, and ultraviolet B-induced autophagy activates AMPK by inhibiting the phosphorylation of GSK3f. Sevoflurane
provides cardioprotection against I/R injury via ROS-mediated upregulation of autophagy. mTOR, mammalian target of rapamycin; I/R, ischemia/reperfusion;

Rheb, Ras homolog that is enriched in the brain.
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Figure 3. PI-3K/Akt/mTOR pathway-regulated autophagy and autophagy-mediated function in I/R injury. Class I PI-3K (PI-3K) will inhibit the induction of
autophagy via the phosphorylation of Akt and mTOR, and achieve additional benefit against I/R injury. Rapamycin exerts beneficial effects against cardio-
myocyte I/R injury through autophagy that depends on the PI-3K-Akt signaling pathway. GSK-3f is the downstream of PI-3K/Akt, and GSK-3f causes
cardiomyocyte death during reperfusion but mediates the survival of cardiomyocytes during prolonged ischemia through mTOR-dependent autophagy
attenuation. PI-3K, phosphatidylinositol-3 kinase; mTOR, mammalian target of rapamycin.
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Table I. Summary of various autophagy modulators on cardiac ischemia/reperfusion injury.
Effect on cardiac

Author, year Drugs Mechanism of action ischemia/reperfusion injury (Refs.)

Huang et al, 2010 Sulfaphenazole Activate protein Protects against myocardial (39)
kinase C I/R and reduces infarct size

Xie et al, 2015 Sevoflurane Inhibition Beclin 1-mediated Delayed cardioprotection (52)
autophagic cell death

Zheng et al, 2017 Berbamine Activate PI3K/Akt Improved post-ischemic myocardial (72)
pathway function and attenuated cell death

Lekli er al, 2010 Tocotrienol Activate the mTOR Reduces cardiomyocyte apoptosis (84)
pathway

Gurusamy et al, Resveratrol Activate mTOR-Rictor Attenuates myocardial I/R on

2010 survival pathway injury and reduces infarct size

Zhao et al, 2013 Acetylcholine Activate AMPK-mTOR Reduces cardiomyocyte death (92)
pathway

Xie et al, 2015 H,S Activate AMP-activated Protects against myocardial (93)
protein kinase I/R injury

Zhong et al, 2017 Trimetazidine Activate AMPK-mTOR Reduces hypoxia/reoxygenation injury (99)
pathway

Wang et al, 2015 Rapamycin Activate PI3k/Akt pathway Attenuates anoxia/reoxygenation injury (103)

mTOR, mammalian target of rapamycin; I/R, ischemia/reperfusion.

mammalian autophagy-initiating kinases that is important
for membrane nucleation via the phosphorylation of Ulkl
Ser 757 (1,81,82). The association between ATG1 and ATG13 is
negatively regulated by mTOR, which inhibits autophagy (83).
In addition, the activation of Ulkl and its combination with
other molecules, such as ATG13 and FIP200, initiate the
nucleation of the autophagic membrane (1). Lekli e al proposed
that tocotrienol could induce autophagy through the mTOR
pathway, which would consequently lead to cell survival
and cardioprotection (84). The overexpression of Bnip3, a
hypoxia-inducible Bcl-2 homology 3 domain-containing
protein (85) and the pro-apoptotic molecule present in the
mitochondrial membrane; can upregulate autophagy and protect
cardiac myocytes against I/R injury-related apoptosis (86).
The high-mobility group box 1 protein (HMGBI1)-mediated
activation of mTOR inhibits hypoxia and reoxygenation injury
in rat cardiomyocytes (87,88). Moreover, Bnip3 can inhibit the
mTOR pathway and induce autophagy by directly binding to
the Ras homolog that is enriched in the brain (Rheb), which is
a Ras-related small guanosine triphosphatase (85,89).

The cardioprotection effect of resveratrol has been shown
to induce autophagy by facilitating AMPK activation (90,91).
In addition, AMPK expression is elevated with ACh during
H/R (92). ACh activates cytoprotective autophagy through the
AMPK-mTOR-dependent pathway that is activated by a musca-
rinic receptor (92). Xie et al found that the post-reperfusion
AMPK activation induced by a slow-releasing organic H,S
donor that could restore I/R impaired autophagic flux; is
critical to H,S cardioprotection (93). Accordingly, studies have
proven that autophagy activation through the AMPK/mTOR
pathway plays a cardioprotection role (94). Recently, ultra-
violet B-induced autophagy has been found to activate AMPK
by inhibiting the phosphorylation of GSK3p (95), which is a

critical mediator of cardioprotection via anesthetic precondi-
tioning (96). Sevoflurane provides cardioprotection against I/R
injury via the ROS-mediated upregulation of autophagy (97).
Hariharan et alreported that oxidative stress triggers autophagic
flux during MI/R injury (98). In addition, trimetazidine (99)
and thioredoxin-2 (100) protect against hypoxia/reoxygenation
injury by promoting the AMPK-dependent autophagic flux in
HOc2 cardiomyocytes. The AMPK/mTOR pathway-regulated
autophagy and autophagy-mediated function in I/R injury are
illustrated in Fig. 2.

PI-3K/Akt/mTOR pathway. PI-3K/Akt/mTOR signaling may
also provide an additional benefit against I/R injury (101).
In addition, class III PI-3K focuses on the formation of
autophagosomes, whereas class I PI-3K will inhibit the induc-
tion of autophagy through the phosphorylation of Akt and
mTOR (70). Thus, the interaction of Akt with mTOR is multi-
faceted and bidirectional (101). Moreover, the self-regulation
of autophagy has been postulated to be regulated by the
autophagy-induced inhibition of mTOR (102). Furthermore,
rapamycin provided a strong beneficial effect against cardio-
myocyte anoxia/reoxygenation injury, which would mediate
cardioprotection via autophagy that probably depended on
the PI-3K/Akt signaling pathway (103). During prolonged
ischemia and I/R, the differential effects of GSK-3f3, which is
the downstream of PI-3K/Akt, on myocardial injury has been
suggested to be determined by changes in autophagy (104).
GSK-3p inhibition modulates mTOR-dependent attenuation
of autophagy, thereby causing the death of cardiomyocytes
during prolonged ischemia while mediating their survival
during reperfusion (104). In addition, mTOR activation via
GSK-3f has been suggested to provide cardioprotection via
autophagy (104). The PI-3K/Akt/mTOR pathway-regulated
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autophagy and autophagy-mediated function in I/R injury are
illustrated in Fig. 3.

Others. The p53 transcription factor is a major regulator of
cellular response to acute stress (105). Knockdown of p53
can activate autophagy in cardiomyocytes, thereby protecting
the myocardium against ischemic injury (106). Autophagy
is inhibited with STAT1 to modulate stress response to
I/R in STATI™ null hearts (32). In I/R, STATI1 can interact
directly with p53 and regulate its functional activity (107),
thereby suggesting that STAT1 can act with p53 to modulate
autophagy (32). The mitochondrial permeability transition
pore (MPTP) plays an important role in myocardial I/R injury,
and the opening of MPTP has also been shown to trigger
autophagy (108). Making the heart more tolerant to subse-
quent I/R injury is a crucial step in transient MPTP opening
before prolonged ischemia (109,110). Moreover, PKC has
been reported to trigger the phosphorylation of a regula-
tory sub-unit of VPATPase, which subsequently induces
autophagy (111-113).

5. Autophagy as a therapeutic target for I/R injury

Microarray analysis showed that autophagy-associated
genes and the unfolded protein response were upregulated
under the condition of repetitive coronary occlusion achieved
during chronic local ischemic conditioning in mice (114,115).
In another study, inhibiting mTOR decreased infarct size
in mice (116). Rapamycin (116), caloric restriction (117),
exercise (118), nitric oxide (119), and lipopolysaccharide (120)
has been identified as cardioprotective interventions for
triggering autophagy. Gurusamy et al used isolated rat heart
models and demonstrated that the induction of IPC via repeated
I/R cycles immediately enhanced the expression of LC3-II and
Beclin-1 (67). In vivo swine models, infarct size was limited
after chloramphenicol succinate was used before ischemia (121).
Han er al found that cardioprotection induced by remote
limb ischemic postconditioning was associated with elevated
autophagy 3 h post-reperfusion (2). A similar phenomenon was
observed by Hamacher-Brady ef al in HL-1 myocytes; they
found that simulated I/R-mediated cell death was prevented
by strengthening autophagy, whereas its inhibition caused
cell death (40). Other researchers have observed that blocking
autophagy via cell-permeable Tat-AtgSK130R concurrently
increased infarct size in hearts when treated with SUL (39).
Moreover, Tibetan patients with coronary heart disease resist
I/R injury during cardiac surgery better than patients living at
sea level, which is possibly correlated with the upregulation of
basal autophagy resulting from chronic hypoxia (28).
Autophagy has been determined as a significant element
of the endogenous defense mechanisms activated by various
preconditioning types. Induction of autophagy may represent
a novel therapeutic approach to myocardial protection in
humans (39). The identification of agents that can rapidly induce
autophagy can contribute to the discovery of new cardiopro-
tective drugs (122). In addition, induction of autophagy can
preserve heart function during I/R injury (91,121,123). Other
studies have suggested that autophagy is detrimental because it
contributes to cell death (15,124). The beneficial or detrimental
role of autophagy may be a consequence of balance, depending
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on the extent of autophagy (7). Thus, for autophagy to be effec-
tive, searching for a candidate cardioprotective drug that can
induce autophagy in a target population is important, together
with the appropriate timing and response magnitude (16).
Various autophagy modulators on cardiac ischemia/ injury are
summarized in Table I.

6. Conclusions

Recent studies have shown that autophagy plays an impor-
tant role in I/R injury. Moreover, evidence has emerged that
autophagy plays various roles in I/R through multiple mecha-
nisms. Autophagy can trigger a survival signal in the case of
myocardial ischemia, whereas defective autophagy during
reperfusion is detrimental. Although we have obtained substan-
tial knowledge about the function of autophagy in I/R injury,
the autophagy pathway is highly complex and remains far from
being understood completely. Additional studies are neces-
sary to identify the molecular components of the autophagy
pathway, characterize the role of autophagy in I/R injury,
elucidate the diverse processes that regulate autophagy expres-
sion and activity, and determine the contribution of autophagy
to myocardial infarction protection in humans. Such studies
will provide additional insights into the role of autophagy in
I/R injury and potentially discover novel therapeutic strategies
for treating the diseases.
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