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Abstract. Aseptic loosening and menopause‑induced osteo-
porosis are caused by an imbalance between bone formation 
and osteolysis. With an aging population, the probability of 
simultaneous occurrence of such conditions in an elderly 
individual is increasing. Strontium ranelate (SR) is an 
anti‑osteoporosis drug that promotes bone formation and 
inhibits osteolysis. The present study compared the effects 
of SR with those of the traditional anti‑osteoporosis drug 
alendronate (ALN) using an ovariectomized mouse model 
of osteolysis. The degree of firmness of the prosthesis and 
the surrounding tissue was examined, a micro‑CT scan of the 
prosthesis and the surrounding tissue was performed, and the 
levels of inflammatory and osteogenic and osteoclast factors 
were examined. It was observed that treatment with SR and 
ALN improved the bond between the prosthesis and the 
surrounding bone tissue by reducing the degree of osteolysis, 
thus improving the quality of bone around the prosthesis. 
SR increased the secretion of osteocalcin, runt‑related tran-
scription factor 2 and osteoprotegerin (OPG). It additionally 
decreased the expression of the receptor activator of nuclear 
factor‑κB ligand (RANKL) and consequently increased the 

protein ratio OPG/RANKL, whereas ALN exhibited the 
opposite effect. Furthermore, SR and ALN suppressed tumor 
necrosis factor‑α and interleukin‑1β production, with SR 
exerting a more marked effect. The present results demon-
strate that SR and ALN may stimulate bone formation and 
inhibit bone resorption in the ovariectomized mouse model 
of wear particle‑mediated osteolysis, with SR demonstrating 
better effects compared with ALN.

Introduction

Wear particle‑induced aseptic loosening has become one of 
the most important causes of arthroplasty failure, and results 
in high healthcare costs and complex revision procedures (1). 
Wear particles are the debris from joint replacement implants 
that may induce inflammation and bone resorption at the 
interface between the surface of a prosthesis and its adjoining 
bone  (2). These debris particles stimulate the secretion of 
various proinflammatory cytokines, including tumor necrosis 
factor‑α (TNF‑α), interleukin (IL)‑1 and IL‑6  (3). Studies 
have demonstrated that TNF‑α, receptor activator of nuclear 
factor‑κB (NF‑κB) ligand (RANKL) and IL‑8 are present 
in the serum of patients with aseptic loosening (4,5). At the 
bone‑implant interface, activated macrophages, multinucleated 
giant cells, osteoclasts and fibroblasts are detected on the 
interface membranes  (6). Macrophage recruitment and 
activation increase the concentration of local pro‑inflammatory 
factors and ultimately lead to inf lammation‑induced 
osteoclastogenesis (4). Regulation of the release of osteoblast 
cytokines, including osteoprotegerin (OPG) and RANKL, is 
another mechanism of wear particle‑induced osteolysis (7). 
Therefore, the OPG‑RANKL‑RANK axis has an important 
role in the pathophysiological process of aseptic loosening (8). 
RANK is primarily expressed on the plasma membrane of 
osteoclasts. RANKL activates the NF‑κB signaling pathway 
and subsequently induces differentiation of osteoclasts 
and inhibits apoptosis by binding to its specific receptor, 
RANK  (9). OPG, which is secreted by numerous cells, 
including osteoblasts and mesenchymal stem cells, is a soluble 
competitive decoy receptor for RANK and inhibits the NF‑κB 
signaling pathway by decreasing the binding of RANKL to 
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RANK (10). In other words, it inhibits the differentiation and 
activation of osteoclasts, and induces their apoptosis. In the 
regulation of bone metabolism, it is essential for the levels 
of OPG and RANKL to be balanced. Therefore, osteolysis 
is one of the most intricate complications prosthetic joint 
replacements and influences the long‑term functional recovery 
of patients.

The loss of estrogen is one of the physiological characteris-
tics of female menopause and mediates primary osteoporosis, 
which is characterized by a reduction in bone density and 
damage to bone structure (11). In the first few years of meno-
pause, the rapid decline of estrogen levels in women leads 
to an increase in bone remodeling, which is manifested as 
increased bone formation and bone resorption. However, the 
original balance of bone metabolism later alters; bone resorp-
tion surpasses bone formation, resulting in bone loss and 
eventually osteoporosis (12‑14). Estrogen deficiency during 
menopause has a direct effect on the differentiation and activity 
of osteoblasts and osteoclasts, and it additionally increases the 
secretion of inflammatory cytokines, which may increase the 
activity of osteoclasts and reduce their apoptosis (15,16). With 
the advancement of medical technology, numerous chronic 
diseases are effectively treated. Humans have a longer lifespan, 
however, consequently face the complications of osteopo-
rosis and possible total joint replacement due to aging (17). 
A previous study demonstrated that the cortical bone of 
patients with osteoporosis is markedly thinner compared 
with a healthy individual, particularly in the medial, lateral 
and posterior parts of the bone (18). An osteoporotic bone 
(particularly the medial and posterior parts) lacks a complete 
structure and the intramedullary canal is wider compared 
with a normal bone. These factors will slow bone growth 
in the direction of the implant following joint replacement, 
thereby increasing the risk of aseptic loosening (19). In certain 
patients with severe osteoporosis, the surgical treatment must 
be postponed until enough bone mass has been restored (20). 
Diphosphate is a drug that controls osteoporosis and inhibits 
osteoclast‑mediated bone resorption (21). A previous study 
demonstrated that bisphosphonates may increase bone mass 
in patients with osteoporosis and delay the development of 
the disease (22). Another study revealed that bisphosphonates 
reduce bone resorption at the bone‑implant interface and may 
prevent aseptic loosening following an arthroplasty (23).

Strontium ranelate (SR), developed by Servier Laboratories 
(Neuilly‑sur‑Seine, France), has been demonstrated to be 
effective anti‑osteoporosis therapeutic, and has the potential 
to reduce the incidence of spinal and hip fracture in post-
menopausal women (24). SR has been examined in numerous 
studies, which have verified its distinct effects on bone 
metabolism. It has been reported to increase bone mass and 
to suppress the activity of osteoclasts, thus preventing bone 
loss (25). In another previous study, SR has been observed to 
stimulate bone collagen synthesis and to decrease the expres-
sion of functional osteoclast markers, including carbonic 
anhydrase II and vitronectin receptor (26).

In the present study, an ovariectomized mouse model of 
long‑term aseptic loosening was used to compare the effects 
of SR with those of the traditional anti‑osteoporosis drug 
alendronate (ALN) on aseptic loosening under the conditions 
of osteoporosis with estrogen deficiency.

Materials and methods

Wear particle preparation. Unmixed titanium particles 
(Zimmer Biomet, Warsaw, IN, USA; ~5 µm) were used in the 
present study. Prior to injection, the particles were rinsed in 
70% ethanol for 48 h at room temperature, washed twice in 
phosphate‑buffered saline, and subsequently autoclaved at 
180˚C for 6 h to remove any endotoxins. A commercial detec-
tion kit (E‑Toxate™; Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany) was used to test whether the treated wear debris 
contained endotoxins (27).

Animals. In the present study, 40  female C57BL/6j mice 
(18  months‑old; Experimental Animal Center of Ningxia 
Medical University, Yinchuan, China) were used, each 
weighing 26±2 g. All the mice were housed in mechanically 
ventilated cages (4‑5 mice per cage) and maintained at 25˚C 
constant temperature, constant pressure, and on a 12/12 h 
light/dark cycle, with ad libitum access to water and food. 
The experimental protocol was conducted in accordance 
with the National Institutes of Health guidelines for the care 
and use of laboratory animals (28) and was approved by the 
Ethics Committee of the General Hospital of Ningxia Medical 
University (Yinchuan, China).

Experimental groups and treatments. The mice were randomly 
subdivided into four groups (10 mice per group): Sham group; 
control group; SR group; and ALN group. Ovariectomy or 
sham surgery was performed on the mice at 18 months of age. 
At 3 months after the induction of osteoporosis, all the mice 
were subjected to joint prosthesis implantation into the right 
lower extremity under general anesthesia induced by intra-
peritoneal injection of Nembutal (0.6% pentobarbital sodium, 
NeoBioscience Technology Co., Ltd., Shenzhen, China). 
All the experimental methods were conducted as described 
previously (29). In an aseptic environment, the tibial plateau 
was exposed through the medial parapatellar approach, and 
one titanium pin was implanted gently into the proximal tibia 
so that the head of the pin was kept in the same plane as the 
surface of the tibial plateau. The cut was washed with normal 
saline containing 100 U/ml penicillin and 100 µg/ml strepto-
mycin, and each layer was closed separately with absorbable 
string sutures. Prior to insertion of the titanium nails during 
the surgical procedure, the tibia canal was injected with 10 µl 
titanium suspension (4x104 particles of titanium in normal 
saline). This action was followed by further 20 µl injections 
of particles into the joint capsule every 2 weeks following the 
operation, until the end of the experiment. Following 1 week 
of adaptive feeding, the SR group was orally administered 
SR (Protelos®; Servier Laboratories; cat. no. S12911‑2) at 
625 mg/kg/day for 7 days per week. The ALN group received 
ALN (Fosamax Plus; Merck & Co., Inc., Whitehouse Station, 
NJ, USA) orally at 1 mg/kg/day for 7 days per week (30,31). 
The animals were euthanized by carbon dioxide asphyxiation 
at 12 weeks following treatment with the drug.

Titanium prosthesis steadiness examined by a pullout test. 
Following euthanasia, the tibia with the titanium nail was 
removed from the body of each mouse. To expose the head 
of the titanium implant, all muscles and tissues around the 
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bone were carefully removed. Each bone was fixed with 
dental cement onto a special clamp, which was designed to 
align the long axis of the implants with the long axis of the 
HP‑100 Control electronic universal testing machine (Yueqing 
Zhejiang Instrument Scientific Co., Ltd., Zhejiang, China). 
With the mouse limb and the custom fixture properly posi-
tioned, the HP‑100 device pulled the pin out of the tibia at a 
rate of 2 mm/min. The load values were registered automati-
cally by software (Edburg 1.0; Yueqing Zhejiang Scientific 
Instrument Co., Ltd.).

Micro‑computed tomography (CT) scans. The tibias (with 
all soft tissues removed) from four mice in each group were 
fixed in 4% paraformaldehyde at 4˚C for 4 weeks for scanning 
by micro‑CT in a SkyScan 1176 scanner (Bruker microCT, 
Kontich, Belgium) at a resolution of 9 µm. The micro‑CT 
scans were acquired at 900 ms exposure time, 45 kW voltage 
and 550 mA current. Auto data analysis software (NRecon 
ver. 1.1.11; Bruker microCT) was used to reconstruct and 
acquire images from the micro‑CT analyses and to evaluate 
the bone volume fraction (BV/TV), trabecular thickness 
(Tb.Th), trabecular number (Tb.N), bone volume (BV) and 
bone surface/bone volume ratio (BS/BV) of the shinbone 
surrounding the titanium nail. The structure model index 
(SMI) is a method intended for determining the plate‑ or 
rod‑like geometry of trabecular structures. It uses the altera-
tion in surface area (BS, from Isosurface) as volume increases 
infinitesimally to calculate SMI=0 for plates, 3 for rods and 4 
for solid spheres (32).

ELISA. This assay was performed to detect the IL‑1β and 
TNF‑α protein expression levels in mouse serum. The 
quantitative analysis was performed using mouse‑specific 
ELISA kits (TNF‑α; cat. no. EMC102a.96; and IL‑lβ; cat. 
no.  EMC001b.96; NeoBioscience Technology, Co., Ltd., 
Shenzhen, China), and the assay was performed, according to 
the manufacturer's protocol.

Western blot analysis. The tissue surrounding the implant was 
frozen in liquid nitrogen and ground with a chilled mortar and 

pestle. Radioimmunoprecipitation assay buffer with 1 mM 
phenylmethylsulfonyl fluoride (Nanjing KeyGen Biotech Co., 
Ltd., Nanjing, China) was used to lyse the tissue. The protein 
concentration was measured with a bicinchoninic assay kit 
(Nanjing KeyGen Biotech Co., Ltd.). Subsequently, 30 µg protein 
mixed with 5X loading buffer was separated by Tris‑glycine 
SDS‑PAGE on a 12% gel and transferred to polyvinylidene 
difluoride membranes (EMD Millipore, Billerica, MA, USA). 
The membranes were incubated for 1 h at room temperature in 
Tris‑buffered saline with 0.5% Tween‑20 (TBST) containing 
5% nonfat dry milk, and subsequently incubated overnight at 
4˚C with the following primary antibodies: Anti‑osteocalcin 
(OCN; cat. no. ab93876; 1:1,000), anti‑runt‑related transcrip-
tion factor 2 (Runx2; cat. no. ab23981; 1:1,000), anti‑OPG (cat. 
no. ab183910; 1:1,000), anti‑RANKL (cat. no. ab9957; 1:1,000; 
all Abcam, Cambridge, UK), anti‑β‑actin (cat. no.  4970; 
1:1,000, Cell Signaling Technology, Inc., Danvers, MA, 
USA) or anti‑GAPDH (cat. no. 2118; 1:1,000, Cell Signaling 
Technology, Inc.). Membranes were washed three times 
with TBST and incubated for 1 h at room temperature with 
the horseradish peroxidase‑tagged secondary antibody (cat. 
no. PAB160009; 1:5,000; OriGene Technologies, Inc., Beijing, 
China). The Enhanced Chemiluminescent Western Blotting 
Detection Reagent (Nanjing KeyGen Biotech Co., Ltd.) was 
used to test the bands. Quantity One software (Ver. 4.6.7; 
Bio‑Rad Laboratories, Inc., Hercules, CA, USA) served for 
semi quantitative analysis.

Statistical analysis. The data are presented as the mean ± stan-
dard deviation. Each experiment was repeated three times. 
Differences among the groups were evaluated by one‑way 
analysis of variance (ANOVA). The least‑significant difference 
post hoc test was conducted to distinguish the means between 
different groups. SPSS 19.0 (IBM Corp., Armonk, NY, USA) 
served as the analysis software. P<0.05 was considered to 
indicate a significant difference.

Results

Pullout test. The special clamp was powerful enough to hold 
the titanium nail during the entire pullout test. The average 
pulling load was 0.51±0.25  N in the control group and 
1.26±0.29 N in the sham group (Fig. 1). There was a signifi-
cant difference in the pulling force between the SR group 
(5.45±0.59 N) and the ALN group (3.84±0.7 N), the results 
of one‑way ANOVA demonstrated that there was a significant 
difference between the SR group and the ALN group (P<0.05). 
Additionally, the pulling force in the SR group and ALN group 
was significantly increased compared with the control groups 
(Fig. 1; P<0.01).

Micro‑CT imaging analysis. The micro‑CT scans demon-
strated marked distinctions in the bone microstructure among 
the four groups of mice. In Fig. 2, although certain parts of 
the surrounding bone are hidden in the shadow of the titanium 
pin, osteolysis around the pin is still observed, being the most 
severe in the control group.

Data on the Tb.Th, Tb.N, BS/BV ratio, structure model 
index (SMI), trabecular pattern factor (Tb.Pf) and BV/TV 
were obtained from the micro‑CT analysis of a region of 

Figure 1. Pullout test for estimation of the bone‑bonding capacity of the tita-
nium pin implants. n=5 mice/group. **P<0.01 vs. control; P<0.05 vs. SR. SR, 
strontium ranelate; ALN, alendronate.
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interest. The treatment of mice with SR and ALN increased 
the BV/TV in the two drug‑treated groups compared with the 
sham and control groups (Fig. 3A; P<0.05; 15.70±0.67% in the 
sham group, 14.53±0.89% in the control group, 19.50±0.55% 
in the SR group and 17.63±0.84% in the ALN group); the 
results of one‑way ANOVA demonstrated that there was a 
significant difference between the SR group and the ALN 
group (P<0.05). The BS/BV ratio significantly decreased in 
the SR and ALN groups compared with the sham and control 
groups (Fig. 3B; P<0.05; 51.76±1.84 1/mm in the sham group, 
56.69±1.09 1/mm in the control group, 45.33±1.80 1/mm in 
the SR group and 47.58±1.39 1/mm in the ALN group); the 
results of one‑way ANOVA demonstrated that there was no 
significant difference between the SR group and the ALN 
group (P>0.05). Additionally, the SMI significantly decreased 
in the two drug‑treated groups compared with the sham and 
control groups (Fig.  3C; P<0.01; 0.30±0.010 in the sham 
group, 0.37±0.011 in the control group, 0.24±0.008 in the 
SR group, and 0.26±0.007 in the ALN group); the results of 
one‑way ANOVA demonstrated that there was a significant 
difference between the SR group and the ALN group (P<0.01). 
However, the Tb.Th significantly increased in the drug‑treated 
groups compared with the sham and control groups (Fig. 3D; 
P<0.01; 0.05±0.001 mm in the sham group, 0.05±0.001 mm 
in the control group, 0.06±0.001 mm in the SR group and 
0.06±0.001 mm in the ALN group), and the results of one‑way 
ANOVA demonstrated that there was a significant difference 
between the SR group and the ALN group (P<0.01), as did the 
Tb.N (Fig. 3E; P<0.05; 2.57±0.13 1/mm in the sham group, 
2.25±0.24 1/mm in the control group, 3.44±0.17 1/mm in the 
SR group and 2.94±0.17 1/mm in the ALN group); the results 
of one‑way ANOVA demonstrated that there was a signifi-
cant difference between the SR group and the ALN group 
(P<0.05). Tb.Pf significantly decreased in the SR and ALN 
groups compared with the other two groups (Fig. 3F; P<0.01; 
1.34±0.05 1/mm in the sham group, 1.61±0.08 1/mm in the 
control group, 0.72±0.04 1/mm in the SR group and 0.77±0.06 
1/mm in the ALN group); the results of one‑way ANOVA 
demonstrated that there was no significant difference between 
the SR group and the ALN group (P>0.05).

ELISA results. The serum expression levels of TNF‑α in the SR 
and ALN groups were significantly decreased compared with 
the sham and control groups (Fig. 4; P<0.01; 618±7 pg/ml in the 
sham group, 701±11 pg/ml in the control group, 327±9 pg/ml in 
the SR group and 394±6 pg/ml in the ALN group). Similarly, 
the expression level of IL‑1β was significantly decreased in the 
two drug‑treated groups compared with the sham and control 
groups (Fig.  4; P<0.01; 746±18 pg/ml in the sham group, 
830±22 pg/ml in the control group, 421±4 pg/ml in the SR 
group and 482±7 pg/ml in the ALN group).

Western blot analysis. Western blotting was conducted to 
assess the expression levels of the osteoblast markers Runx2 
and OCN, and the osteoblast cytokines OPG and RANKL 
(Fig. 5). The expression levels of Runx2 and OCN in the SR 
and ALN groups were significantly higher compared with the 
sham and control groups (Fig. 5; P<0.01; Runx2, 0.34±0.008 in 
the sham group, 0.05±0.005 in the control group, 0.52±0.007 
in the ALN group, and 1.02±0.019 in the SR group; the results 

of one‑way ANOVA demonstrated that there was a significant 
difference between the SR group and the ALN group, P<0.01; 
OCN, 1.11±0.07 in the sham group, 1.04±0.08 in the control 
group, 1.37±0.06 in the ALN group and 2.04±0.06 in the SR 
group; the results of one‑way ANOVA demonstrated that there 
was a significant difference between the SR group and the ALN 
group, P<0.01). ALN increased the expression levels of RANKL 
and OPG simultaneously and decreased the OPG/RANKL 
ratio; however, SR decreased the RANKL expression level, and 
increased the OPG expression level and thus the OPG/RANKL 
ratio (Fig. 5; OPG, 0.41±0.01 in the sham group, 0.38±0.01 in 
the control group, 0.62±0.01 in the ALN group and 0.88±0.01 
in the SR group; the results of one‑way ANOVA demonstrated 
that there was a significant difference between the SR group 
and the ALN group, P<0.01; RANKL, 0.84±0.02 in the sham 
group, 0.84±0.02 in the control group, 1.05±0.04 in the ALN 
group and 0.50±0.01 in the SR group; the results of one‑way 
ANOVA demonstrated that there was a significant difference 
between the SR group and the ALN group, P<0.01).

Discussion

Aseptic loosening is an important cause of the failure of 
total joint prosthesis replacement. As the average age of the 
population rises, an increasing number of postmenopausal 

Figure 2. Sagittal‑section micro‑computed tomography scans of titanium 
implants. n=5 mice/group. SR, strontium ranelate; ALN, alendronate.
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patients with osteoporosis require an arthroplasty. An 
imbalance between bone resorption and bone formation 
is a common cause of osteoporosis and aseptic loosening. 
Osteoporosis in patients results in bone mass reduction, 
which increases the risk of aseptic loosening. The animal 
experiments in the present study demonstrated that implants 
fixed in the sham‑operated group were more stable compared 
with in ovariectomized mice. Chen et al (33) demonstrated 
that SR and ALN improve the bone mass and bone quality 
of ovariectomized mice and promote bone implant 
osseointegration. Nevertheless, to the best of our knowledge, 

there are no studies confirming that SR or ALN prevent aseptic 
loosening mediated by wear particles in ovariectomized mice. 
The present results indicate that SR may increase osteoblast 
activity, and inhibit the release of inflammatory factors, 
osteoclast activity and differentiation in ovariectomized mice. 
SR suppresses the aseptic loosening induced by wear particles. 
ALN may additionally reduce osteolysis around the prosthesis 
by inhibiting osteoclast activity. Oral administration of SR 
(625 mg/kg/day) was observed to be more effective compared 
with ALN (1  mg/kg/week) at reducing osteolysis in the 
ovariectomized mice.

Figure 3. Micro‑computed tomography analysis of bone microstructure. (A) Percent bone volume, (B) bone surface/bone volume ratio, (C) structure model 
index, (D) trabecular thickness, (E) trabecular number and (F) trabecular pattern factor are presented. n=5 mice/group. **P<0.01 vs. control; #P<0.05, 
##P<0.01 vs. sham; P<0.05, P<0.01 vs. SR. SR, strontium ranelate; ALN, alendronate.
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Figure 4. Serum levels of pro‑inflammatory cytokines determined by ELISA. Serum concentration of (A) TNF‑α and (B)  IL‑1β. n=5 mice/group. 
**P<0.01 vs. control; ##P<0.01 vs. sham. TNF‑α, tumor necrosis factor‑α; IL‑1β, interleukin‑1β; SR, strontium ranelate; ALN, alendronate.

Figure 5. Western blot analysis of proteins in the bone tissue surrounding the implant. (A) Western blot analysis and (B) semi‑quantitative analysis of the indi-
cated proteins. The results are presented as the ratio of a target protein to the internal control (β‑actin). n=5 mice/group. **P<0.01 vs. control; ##P<0.01 vs. sham; 
P<0.01 vs. SR. SR, strontium; ALN, alendronate; OCN, osteocalcin; OPG, osteoprotegerin; Runx2, runt‑related transcription factor 2; RANKL, receptor 
activator of nuclear factor‑κB ligand.
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Compared with the control group, the SR and ALN groups 
exhibited increased BV/TV, Tb.Th and Tb.N, and lower SMI, 
BS/BV and Tb.Pf around the tibial prosthesis. The present 
results are consistent with those of a previous study (33). Previous 
studies involved young female rats, whereas, 18‑month‑old 
mice were the subjects of the present study; this choice may 
be the reason for the discrepancies in results. The pullout test 
revealed that compared with the control group, the drug‑treated 
groups required a greater pull force to extract the prosthesis 
from the tibia, as the prosthesis and surrounding bone tissues 
were more solid. The SR group required greater force in 
this assay compared with the ALN group. A previous study 
demonstrated that the mechanisms of osteoporosis, induced by 
different factors (including aging and estrogen deficiency), are 
different (34). SR and ALN may improve bone mass around a 
prosthesis (35); however, according to the micro‑CT data in the 
present study, the effect of SR is more marked.

Similar to the results of Bonnelye et al (36), the present results 
suggest that SR and ALN increase the expression of OPG in the 
tissue. The difference between SR and ALN is that SR inhibited 
the expression of RANKL and thus increase the OPG/RANKL 
ratio, in agreement with the data of Karakan et al (25) and 
Huang et al (7). However, ALN promotes RANKL expression, 
thus decreasing the OPG/RANKL ratio, as reported by 
Faverani et al (37). However, a specific study observed that 
SR has no effect on OPG and RANKL expression in patients 
with osteoporosis, in contrast to the present results (38). There 
are numerous potential causes of this discrepancy, such as the 
difference in the physiological environments between mice 
and humans. Additionally, different tissues were collected 
in the different studies. The present study measured the 
expression levels of OPG and RANKL in the bone tissue 
around the mouse tibial prosthesis, whereas Stuss et al (38) 
measured these expression levels in human serum. The effect 
of SR on RANKL in their experiments was in agreement 
with the results from the present study. SR and ALN may 
significantly inhibit the release of proinflammatory factors; 
the present results demonstrated that the serum expression 
levels of TNF‑α and IL‑1β were significantly decreased in 
the SR and ALN groups compared with the control group, 
in agreement with previous studies (7,39,40,41). TNF‑α is an 
important factor in the regulation of osteoclast differentiation. 
Raehtz et al (17) suggested that the TNF‑α expression level 
may affect osteoblast activity and bone formation. The present 
data revealed that SR may inhibit osteoclast differentiation and 
reduce bone resorption around the prosthesis by suppressing 
the release of pro‑inflammatory factors in ovariectomized 
mice. From the detection of osteoblast markers, it was identified 
that the expression levels of OCN and Runx2 in the bone 
tissue around the prostheses were increased in the SR group 
compared with the control group, in agreement with the results 
of Bakker et al (42) and Guo et al (43). Treatment with ALN 
decreased the expression of OCN and Runx2 compared with 
treatment with SR, as observed in previous studies conducted 
by Chen et al (33) and Muise et al (44). In the present study, 
it was identified that there was a significant difference in the 
level of runx2 between the control group and the sham group; 
this may be due to suppression of osteogenic growth following 
implantation of the prosthesis. Results of an in vitro study by 
Kang et al (45), examining the effects of ALN on osteoblasts, 

are inconsistent with the present results; this discrepancy may 
be caused by the difference in experimental materials. The 
study conducted by Kang et al was an in vitro experiment, 
whereas the present study observed effects in mice. The 
difference in the experimental results may therefore be due to 
the interaction of various biological factors in the bodies of the 
mice. Shimizu et al (46) demonstrated that ALN may inhibit 
osteoblast activity indirectly by increasing the interaction 
between osteoclasts and osteoblasts.

Notably, previous studies have reported serious adverse 
effects of SR, including Stevens‑Johnson syndrome and toxic 
epidermal necrolysis (47,48), although these were not observed 
in the present study. Topical application of SR is a potential 
way to minimize these effects (49). Prostheses coated with SR 
may be able to inhibit aseptic loosening (50,51).

In conclusion, SR and ALN have inhibitory effects on 
aseptic loosening in ovariectomized mice, and SR may affect 
osteogenesis and osteoclasts to inhibit aseptic loosening, in 
agreement with the results of Wornham et al (52). SR has a 
better inhibitory effect on aseptic loosening compared with 
ALN and may potentially serve as a treatment of aseptic 
loosening in patients with osteoporosis. However, certain 
studies (53,54) reported that SR has serious adverse effects in 
practical applications, thus raising safety concerns regarding 
its medicinal use. However, in view of its excellent practical 
value, it is necessary to examine possible solutions to its disad-
vantages. Certain studies indicate that topical application of 
SR is a potential treatment method (43) and another study has 
demonstrated that a prosthesis with strontium coating has the 
same inhibitory effect on aseptic loosening (55).
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