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Abstract. Chronic kidney disease (CKD) is a highly heteroge-
neous nephrosis that occurs when the structure and function 
of the kidney is damaged. Gene expression studies have been 
widely used to elucidate various biological processes; however, 
the gene expression profile of CKD is currently unclear. 
The present study aimed to identify diagnostic biomarkers 
and therapeutic targets using renal biopsy sample data from 
patients with CKD. Gene expression data from 30 patients 
with CKD and 21 living donors were analyzed by weighted 
gene co‑expression network analysis (WGCNA), in order to 
identify gene networks and profiles for CKD, as well as its 
specific characteristics, and to potentially uncover diagnostic 
biomarkers and therapeutic targets for patients with CKD. In 
addition, functional enrichment analysis was performed on 

co‑expressed genes to determine modules of interest. Four 
co‑expression modules were constructed from the WGCNA. 
The number of genes in the constructed modules ranged from 
269 genes in the Turquoise module to 60 genes in the Yellow 
module. All four co‑expression modules were correlated with 
CKD clinical traits (P<0.05). For example, the Turquoise 
module, which mostly contained genes that were upregulated 
in CKD, was positively correlated with CKD clinical traits, 
whereas the Blue, Brown and Yellow modules were negatively 
correlated with clinical traits. Functional enrichment analysis 
revealed that the Turquoise module was mainly enriched in 
genes associated with the ‘defense response’, ‘mitotic cell 
cycle’ and ‘collagen catabolic process’ Gene Ontology (GO) 
terms, implying that genes involved in cell cycle arrest and 
fibrogenesis were upregulated in CKD. Conversely, the Yellow 
module was mainly enriched in genes associated with ‘glom-
erulus development’ and ‘kidney development’ GO terms, 
indicating that genes associated with renal development and 
damage repair were downregulated in CKD. The hub genes in 
the modules were acetyl‑CoA carboxylase α, cyclin‑dependent 
kinase 1, Wilm's tumour 1, NPHS2 stomatin family member, 
podocin, JunB proto‑oncogene, AP‑1 transcription factor 
subunit, activating transcription factor 3, forkhead box O1 and 
v‑abl Abelson murine leukemia viral oncogene homolog 1, 
which were confirmed to be significantly differentially 
expressed in CKD biopsies. Combining the eight hub genes 
enabled a high capacity for discrimination between patients 
with CKD and healthy subjects, with an area under the 
receiver operating characteristic curve of 1.00. In conclusion, 
this study provided a framework for co‑expression modules 
of renal biopsy samples from patients with CKD and living 
donors, and identified several potential diagnostic biomarkers 
and therapeutic targets for CKD.

Introduction

Chronic kidney disease (CKD) is one of the most common 
types of nephrosis worldwide, and the number of patients 
with CKD has increased rapidly in recent years (1,2). CKD 
is a highly heterogeneous disease in which the structure and 
function of the kidney is damaged (3‑5). Traditionally, kidney 
failure is considered the eventual outcome of CKD, and 
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generally the symptoms are caused by a reduction in kidney 
function (6,7). When symptoms become severe, the consequent 
end‑stage kidney failure can only be treated by transplanta-
tion and dialysis. Over the past three decades, clinical and 
experimental studies have extended our understanding of the 
causes of CKD (8‑11). Most forms of CKD eventually progress 
to end‑stage kidney disease; however, the mechanisms under-
lying the progression of CKD remain poorly understood. Gene 
expression studies have been successfully applied to elucidate 
various biological processes, including cancer (12‑14), angio-
cardiopathy (15,16), asthma (17,18), and chronic obstructive 
pulmonary disease (COPD) (19,20); these studies are useful 
for the identification of early detection biomarkers and thera-
peutic targets.

Weighted gene co‑expression network analysis (WGCNA) 
is a novel methodology used to study relationships between 
clinical traits and gene expression profiles (21,22). WGCNA 
converts gene expression data into co‑expression networks 
(modules), groups co‑expressed genes with common biolog-
ical functions or associations, and provides co‑expression 
networks that may be responsible for clinical traits of interest. 
This technique has been successfully used to identify potential 
biomarkers and therapeutic targets for numerous biological 
processes, including cancer, COPD and asthma (18,19,23).

The present study aimed to identify the genetic mecha-
nisms underlying CKD using renal biopsy sample data from 
patients with CKD and living donors. Genome‑wide expres-
sion data were obtained from 30 patients with CKD (13 with 
minimal change disease and 17 with membranous glomeru-
lonephropathy) and 21 living donors. WGCNA was applied 
to associate co‑expression networks with extensive clinical 
traits, including disease status and disease type. The biological 
functions were further analyzed using gene co‑expression 
networks, and co‑expression networks that were significantly 
related to disease status and disease type were highlighted. 
Functional enrichment analysis was used to study the modules 
of interest, and hub genes in each module were identified and 
displayed using Search Tool for the Retrieval of Interacting 
Genes (STRING), which provided useful information for 
determining the dominant genes in these modules. The present 
study provided co‑expression modules for renal biopsy samples 
from patients with CKD and may be beneficial for obtaining 
a better understanding of the mechanisms underlying CKD.

Materials and methods

Expression analysis of microarray data from renal biopsy 
samples from patients with CKD and living donors. RNA 
sequencing data from renal biopsy samples from patients 
with CKD and the clinical traits of these patients were down-
loaded from National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) DataSets (www.
ncbi.nlm.nih.gov/gds) under accession no. GSE104954 (24). 
The combined cohort contained a total of 51 tubulointerstitial 
samples from patients with CKD (n=30; 13 with minimal 
change disease and 17 with membranous glomerulone-
phropathy) and healthy living donors (n=21). The sequence 
data and clinical traits were supplied by the European Renal 
Biopsy cDNA Bank. Prior to performing the WGCNA calcu-
lation, microarray probes were annotated by mapping to gene 

symbols using R (version 3.3.4; www.r‑project.org). Probes 
matching more than one gene symbol were eliminated from 
the cohort, and average expression levels were calculated for 
genes with multiple probes.

Identification of differentially expressed genes (DEGs). The 
raw data files used in this study contained CEL files. The 
analysis was conducted using R language (version  3.3.4; 
www.r‑project.org) and Bioconductor (www.bioconductor.
org). The microarray signal intensity was normalized using 
robust multi‑array average, and DEGs were identified using the 
R software extension package ‘DESeq’ (www.bioconductor.
org/packages/release/bioc/html/DESeq.html) (25).

Construction of co‑expression networks (modules) in patients 
with CKD and living donors. In this study, to reduce the 
amount of unnecessary calculations, only genes that exhibited 
a ≥1.2‑fold change were chosen to construct the co‑expression 
modules. First, hierarchical clustering of samples was 
analyzed using the flashClust function (21,26). Then, the soft 
thresholding power β‑value was screened during module 
construction by the pickSoftThreshold function of the WGCNA 
algorithm (21). A set of candidate powers (ranging between 1 
and 30) was applied to test the average connectivity degrees 
of different modules and their independence. A suitable power 
value was selected if the degree of independence was >0.9. 
Once the power value was selected, the WGCNA algorithm, 
which is an R software extension package (cran.r‑project.
org/web/packages/WGCNA/index.html), was performed to 
construct co‑expression networks (modules); the minimum 
module size was set to 30. Co‑expression networks or modules 
were defined as branches of a hierarchical clustering tree, and 
each module was assigned a unique color label. The correlations 
between each module were analyzed and visualized 
using the heatmap tool package (https://cran.r‑project.
org/web/packages/pheatmap/index.html).

Relating co‑expression modules to external clinical traits. 
Firstly, the module eigengene was defined as the first principal 
component of the expression matrix for a given module. The 
module eigengene can be considered an average gene expres-
sion level for all genes in each module. Subsequently, clinical 
information, including disease status and disease type, was 
converted into numerical values, after which, a regression 
analysis was performed between the module eigengene values 
and the clinical information. Module membership (MM) was 
defined as the association between a gene and a given module, 
and gene significance (GS) was defined as the correlation of 
genes with clinical traits. Genes with high GS for a clinical 
trait and MM were considered to be candidates for subsequent 
analysis. All analyses were conducted using the WGCNA 
package.

Functional enrichment analysis of co‑expression modules. 
The established modules were sorted according to the number 
of genes they contained; subsequently, functional enrichment 
analysis was performed for each individual module. Gene 
Ontology (GO) (27,28) analysis was performed using the exten-
sion R package ‘ClusterProfiler’ (https://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) with a 
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correction; P≤0.05 was set as the threshold (29). Subsequently, 
the modules of interested were visualized using STRING 
(string‑db.org/cgi/input.pl), and only experimentally confirmed 
interactions with an interaction score >0.4 were selected 
as significant. For each module, genes with the maximum 
intra‑modular connectivity were considered intra‑modular hub 
genes.

Statistical analysis. Statistical analysis was performed using 
SPSS 22.0 (SPSS, Inc.) and R software 3.3.4. Graphs were 
generated using GraphPad Prism 6.0 (GraphPad Software, 
Inc.). Student's t‑test and Mann‑Whitney U test were used 
to evaluate significant differences between the patients with 
CKD and healthy subjects. Receiver operating characteristic 
(ROC) curves were generated to evaluate the diagnostic accu-
racy of each hub gene, and the area under the curve (AUC) was 
used to evaluate sensitivity and specificity. All P‑values were 
two sided, and P<0.05 was considered to indicate a statistically 
significant difference.

Results

Identification of DEGs in tubulointerstitial samples from 
patients with CKD. A total of 51 tubulointerstitial samples, 
including 30 samples from patients with CKD and 21 healthy 
individuals, were analyzed. All relevant gene expression data 
and clinical information were analyzed using the R software 
and its extension packages. Using a log2‑fold change ≥2 and 
P<0.05 as cutoff values, a total of 54 DEGs were identified 
in patients with CKD, of which 16 genes were upregulated 
and 38 genes were downregulated. When using the criteria 
of P<0.05 and 1.2‑fold change, 489 genes were upregulated 
and 399 genes were downregulated. A volcano plot of the 
log2fold change vs. the P‑value (‑log10 P‑value) for all probe 
sets is shown in Fig. 1, and hierarchical clustering of the 50 
most significant DEGs, including the 25 top upregulated and 
downregulated genes, was visualized using a heatmap (Fig. 2). 
Red represents increased expression, whereas blue represents 
decreased expression. The most upregulated genes included 
lactotransferrin, hemoglobin subunit β, regenerating family 
member 1α, C‑C motif chemokine ligand 20 and apolipo-
protein C1, whereas Fos proto‑oncogene, AP‑1 transcription 
factor subunit, pyruvate dehydrogenase kinase 4, MAF bZIP 
transcription factor F, dual specificity phosphatase 1 (DUSP1) 
and FosB proto‑oncogene, AP‑1 transcription factor subunit 
were the most downregulated genes in the CKD samples.

Construction of co‑expression modules using tubulointersti‑
tial samples from patients with CKD. The expression values of 
887 genes with a fold change of 1.2 (P<0.05) in 51 renal biopsy 
samples from patients with CKD and living donors were used 
to construct co‑expression networks (modules) with WGCNA. 
Hierarchical clustering of the samples was analyzed using the 
flashClust function; the clustering results are shown in Fig. 3. 
All 51 samples clustered well and were mainly divided into 
two clusters; the first cluster was comprised of GSM2811026, 
GSM2811027, GSM2811028, GSM2811043, GSM2811045, 
GSM2811046, GSM2811047, GSM2811048, GSM2811049, 
GSM2811050, GSM2811051, GSM2811052, GSM2811053, 
GSM2811054, GSM2811055, GSM2811056, GSM2811057, 

GSM2811058, GSM2811059 and GSM2811060, and contained 
most of the samples from the living donors, whereas the 
remaining samples yielded the second cluster. Subsequently, 
the power value, which mainly determined the independence 
and the average connectivity degrees of the co‑expression 
networks, was screened using a set of candidate numbers 
(ranging between 1 and 30). The power value 12, which was 
the lowest power value for the scale with an independence 
degree of up to 0.9, was selected to construct a hierarchical 
clustering tree for the 887 genes (Fig. 4). Four co‑expression 
modules were identified, with a range in size from 269 genes 
in the Turquoise module to 60 genes in the Yellow module. 
Furthermore, an extra module (Grey), which contained genes 
that did not belong to any of the other four modules, was also 
defined (Fig. 5 and Table I). Interactions between the four 
co‑expression modules were also analyzed and are shown 
in Fig. 6.

Relationships between co‑expression modules and clinical 
traits. The corresponding clinical trait information was 
downloaded from NCBI GEO DataSets, and unwanted 
information was removed prior to analysis. The correla-
tions between the co‑expression modules and the measured 
clinical traits were quantified based on the correlations 
between the module eigengenes and the clinical traits (Fig. 7 
and Table I). Furthermore, the eigengene dendrogram and 
heatmap were used to demonstrate groups of correlated 
eigengenes (Fig. 8). The results demonstrated that the four 
co‑expression modules were highly related to CKD clinical 
traits. Of the four modules, one module (Turquoise) was 

Figure 1. Volcano plot indicating the upregulated and downregulated genes 
in tubulointerstitial samples from patients with CKD. The horizontal axis 
represents the fold change between healthy living donors and patients with 
CKD. The vertical axis represents the P‑values of the differences between 
healthy donors and patients with CKD, as determined using Student's t‑test. 
The genes most relevant for CKD are highlighted in red (2‑fold change) or 
blue (1.2‑fold change). CKD, chronic kidney disease.
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positively correlated with the CKD disease_status (correla-
tion, 0.62; P=1x10‑6) and CKD disease_type (correlation, 
0.63, P=9x10‑7) (Table I ); this module mostly contained 
genes that were overexpressed in samples from patients with 
CKD. Conversely, the Yellow (correlation, ‑0.72, P=3x10‑9 
and correlation, ‑0.66, P=1x10‑7), Blue (correlation, ‑0.87, 
P=6x10‑17 and correlation, ‑0.8, P=1x10‑12) and Brown 
(correlation, ‑0.79, P=7x10‑12 and correlation, ‑0.7, P=1x10‑8) 
modules were negatively correlated with CKD clinical 
traits (Fig. 7 and Table I), and the genes in these modules 
were predominantly downregulated in patients with CKD. 
Subsequently, the WGCNA algorithm was used to calculate 
GS vs. MM. The results demonstrated that the Turquoise, 

Yellow, Blue and Brown genes that were most significantly 
associated with the CKD clinical traits (GS) were also the 
most important elements of MM, as demonstrated by the 
genes included in the upper right region of the graphs shown 
in Fig. 9. Notably, genes [including acetyl‑CoA carboxylase α 
(ACACA), collagen type IV α2 (COL4A2), TNF‑α‑induced 
protein 8, β‑1,4‑galactosyltransferase 5, serpin family E 
member 2 (SERPINE2), NPHS1 adhesion molecule, nephrin 
(NPHS1), cyclin‑dependent kinase inhibitor 1C (CDKN1C), 
phospholipase C ε1 (PLCE1), DUSP1, ZFP36 ring finger 
protein, neural precursor cell expressed, developmentally 
down‑regulated 9, and TSC22 domain family member 3] 
that were presented in the upper right region were highly 

Figure 2. Heatmap of differentially expressed genes in tubulointerstitial samples from patients with CKD. The heatmap shows differentially expressed genes 
(P<0.05) between the healthy donors and patients with CKD from the GSE104954 dataset. The grey, pink and red bars above the heatmap indicate the groups of 
tubulointerstitial samples. Genes with higher expression in the CKD tubulointerstitial samples are shown in the upper part of the heatmap, and genes with lower 
expression in the CKD tubulointerstitial samples are shown in the lower part. Blue represents decreased relative expression, whereas red represents increased 
relative expression. CKD, chronic kidney disease.

Figure 3. Sample clustering to detect outliers. All samples were well clustered.
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correlated to the trait of interest (CKD) and key components 
in the underlying biological function.

Functional enrichment analysis of the modules of interest. 
GO enrichment analysis was performed for the genes in the 
four significant co‑expression modules (Fig. 10 and Table II). 
Genes in the Turquoise module were mainly enriched in 
‘GO:0006952 defense response’, ‘GO:0030574 collagen 
catabolic process’ and ‘GO:0000278 mitotic cell cycle’, 
whereas genes in the Yellow module were mainly enriched 
in ‘GO:0032835 glomerulus development’ and ‘GO:0007275 

multicellular organismal development’, genes in the Brown 
module were enriched in ‘GO:0009605 response to external 
stimulus’, and genes in the Blue module were enriched 
in ‘GO:0009719 response to endogenous stimulus’ and 
‘GO:0010941 regulation of cell death’.

Module visualization and hub genes. The four significant 
modules were further visualized using the STRING data-
base. Only genes with a minimum interaction score of >0.4 
were considered significant. The intramodular connectivity 
was quantified for each gene. Genes with high intramodular 

Figure 4. Analysis of network topology for a set of soft thresholding powers. The left graph displays the scale of the free fit index (y‑axis) as a function of the 
soft thresholding power (x‑axis). The right graph shows the mean connectivity (degree, y‑axis) as a function of the soft thresholding power (x‑axis).

Figure 5. Clustering dendrograms of genes with dissimilarity based on topological overlap, together with the assigned module colors. As a result, four 
co‑expression modules were constructed and shown with distinctive colors.
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connectivity were considered intramodular hub genes. The 
hub genes ACACA, cyclin‑dependent kinase 1 (CDK1), Wilm's 
tumor 1 (WT1), NPHS2 stomatin family member, podocin 
(NPHS2), JunB proto‑oncogene, AP‑1 transcription factor 
subunit (JUNB), activating transcription factor 3 (ATF3), fork-
head box O1 (FOXO1), and v‑abl Abelson murine leukemia 
viral oncogene homolog 1 (ABL1) in the four modules are 
shown in Fig. 11.

Verification of hub gene expression and ROC curve analysis. 
Analysis of hub gene expression was performed using renal 
biopsy sample data from patients with CKD and living donors. 
ACACA, CDK1 and ABL1 were expressed at significantly higher 
levels in patients with CKD, whereas the other five hub genes 
(NPHS2, JUNB, ATF3, WT and FOXO1) were significantly 

downregulated (Fig. 12). Subsequently, ROC curve analysis 
was used to evaluate the diagnostic prediction values of the hub 
genes for CKD. This analysis revealed that the AUC for ACACA 
was 0.86 (P<0.0001). At the optimal cut‑off value of 0.55, the 
sensitivity and specificity were 80 and 71%, respectively. Similar 
results were obtained for CDK1, NPHS2, JUNB, ATF3, WT1, 
FOXO1 and ABL1 (Fig. 13 and Table III). When combined, 
these hub genes possessed a high ability to discriminate between 
patients with CKD and living donors, with an AUC of 1.00.

Discussion

The main objective of the study was to utilize a global 
approach for construction of a gene co‑expression network 
that predicted clusters of candidate genes involved in CKD 
pathogenesis. In the present study, four co‑expression modules 
were constructed using the WGCNA algorithm, which was 
used to study the relationship between CKD gene expres-
sion and clinical traits. One module (Turquoise) contained 
mostly upregulated genes and was significantly positively 

Table I. Correlation of module eigengene with CKD clinic trait.

	D isease status	D isease type
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑
Module color	 Genes	C orrelation (r)	 P‑value	C orrelation (r)	 P‑value

Turquoise	 269	 0.62	 1x10‑6	 0.63	 9x10‑7

Yellow	 60	‑ 0.72	 3x10‑9	 ‑0.66	 1x10‑7

Blue	 112	‑ 0.87	 6x10‑17	 ‑0.8	 1x10‑12

Brown	 79	‑ 0.79	 7x10‑12	 ‑0.7	 1x10‑8 

Modules identified by weighted gene co‑expression analysis are listed together with the number of genes they contained. Four co‑expression 
modules were significantly correlated to CKD disease status and disease type. CKD, chronic kidney disease.

Figure 6. Visualization of the gene co‑expression modules using a heatmap 
plot. This plot shows the topological overlap matrix among all differentially 
expressed genes in this analysis. Light colors represent lower overlap, and a 
darker red color indicates higher overlap. Blocks of darker colors along the 
diagonal indicate co‑expression modules.

Figure 7. Module‑trait relationships. Each row shows a module eigengene, 
and each column corresponds to a clinical trait. Each cell contains the corre-
sponding correlation and P‑value. The table is color‑coded by correlation 
according to the color legend.
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correlated with CKD clinical traits, whereas the other three 
modules (Blue, Brown and Yellow) were negatively corre-
lated with CKD clinical traits and mainly contained genes 
that were downregulated in patients with CKD. The most 
central (hub) genes in these modules were ACACA, CDK1, 
WT1, NPHS2, JUNB, ATF3, FOXO1 and ABL1, which 
suggested direct/indirect regulation of the CKD‑associated 
gene expression network; these genes may serve as potential 
biomarkers for detection and treatment of CKD.

CKD is a heterogeneous disease that arises from numerous 
diverse pathogenic mechanisms, including vascular, metabolic 

and immunological disorders (3). The glomeruli accumulate a 
large amount of extracellular matrix components, and the renal 
interstitium and periglomerular region become fibrotic (30,31). 
Histopathological analysis of end‑stage kidney samples 
provides clues to the origin of the disease (32). These results 
have indicated that progression from the original occurrence 
to end‑stage renal disease may have some common pathogenic 
mechanisms. High‑throughput gene expression profile data 
have been used to identify various molecular mechanisms 
involved in distinctly original kidney diseases. In a previous 
study, analyses of peripheral blood lymphocyte cells from 

Figure 8. Eigengene dendrogram and heatmap identify groups of correlated eigengenes termed meta‑modules. As a result, the upper dendrograms indicate that 
the Turquoise module is highly related to (A) CKD disease_status and (B) CKD disease_type. The heatmaps present eigengene adjacency.

Figure 9. Scatterplot of gene significance for CKD vs. module membership in the (A) Turquoise module, (B) Yellow module, (C) Brown module and (D) Blue 
module. The correlation coefficient and P‑value are listed above the scatterplots.
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donors with membranous nephropathy and normal controls 
identified dysregulated microRNAs (miRNAs) that serve an 
important role in the pathogenesis of nephropathy, and may 
serve as reliable diagnostic markers and potential therapeutic 

targets  (33). In addition, high‑throughput sequencing has 
identified circulating miRNAs that may serve as potential 
biomarkers for kidney damage in patients with systemic 
lupus erythematosus (34). Notwithstanding these findings, the 

Table II. GO enrichment analysis of genes in co‑expression modules.

				E    nrichment
Module	 Term ID	 Term	 Genes	 P‑value	 Term name

Turquoise	 GO:0006952	 BP	 34	 2.92x10‑4 	 Defense response
Turquoise	 GO:0006955	 BP	 31	 7.13x10‑4	 Immune response
Turquoise	 GO:0002376	 BP	 39	 1.45x10‑3	 Immune system process
Turquoise	 GO:0050896	 BP	 86	 9.04x10‑3	 Response to stimulus
Turquoise	 GO:0030574	 BP	 6	 2.23x10‑2	 Collagen catabolic process
Turquoise	 GO:0002443	 BP	 8	 2.48x10‑2	 Leukocyte mediated immunity
Turquoise	 GO:0001817	 BP	 15	 2.56x10‑2	 Regulation of cytokine production
Turquoise	 GO:0000278	 BP	 19	 4.13x10‑2	 Mitotic cell cycle
Turquoise	 GO:0016266	 BP	 5	 4.74x10‑2	 O‑glycan processing
Turquoise	 GO:0043067	 BP	 26	 4.74x10‑2	 Regulation of programmed cell death
Yellow	 GO:0032835	 BP	 9	 1.20x10‑10	 Glomerulus development
Yellow	 GO:0072006	 BP	 10	 5.00x10‑9	 Nephron development
Yellow	 GO:0001822	 BP	 12	 7.59x10‑9	 Kidney development
Yellow	 GO:0072001	 BP	 12	 9.89x10‑9	 Renal system development
Yellow	 GO:0001655	 BP	 12	 3.34x10‑8	 Urogenital system development
Yellow	 GO:0007275	 BP	 32	 5.87x10‑7	 Multicellular organismal development
Yellow	 GO:0044767	 BP	 34	 5.87x10‑7	 Single‑organism developmental process
Yellow	 GO:0048731	 BP	 30	 5.87x10‑7	 System development
Yellow	 GO:0032502	 BP	 34	 6.59x10‑7	 Developmental process
Yellow	 GO:0072015	 BP	 4	 3.37x10‑6	 Glomerular visceral epithelial cell development
Brown	 GO:0014070	 BP	 22	 5.49x10‑10	 Response to organic cyclic compound
Brown	 GO:0051591	 BP	 11	 8.16x10‑10	 Response to cAMP
Brown	 GO:0009605	 BP	 29	 9.59x10‑9	 Response to external stimulus
Brown	 GO:0045944	 BP	 22	 9.71x10‑9	 Positive regulation of transcription from RNA
					     polymerase II promoter
Brown	 GO:0048518	 BP	 45	 2.37x10‑8	 Positive regulation of biological process
Brown	 GO:0051254	 BP	 25	 3.39x10‑8	 Positive regulation of RNA metabolic process
Brown	 GO:0009893	 BP	 37	 5.48x10‑8	 Positive regulation of metabolic process
Brown	 GO:0045935	 BP	 26	 5.61x10‑8	 Positive regulation of nucleobase‑containing
					     compound metabolic process
Brown	 GO:2000113	 BP	 23	 6.13x10‑8	 Negative regulation of cellular macromolecule
					     biosynthetic process
Brown	 GO:0048522	 BP	 41	 6.30x10‑8	 Positive regulation of cellular process
Blue	 GO:0007167	 BP	 19	 8.06x10‑4	 Enzyme linked receptor protein signaling pathway
Blue	 GO:0009719	 BP	 23	 8.06x10‑4	 Response to endogenous stimulus
Blue	 GO:0009725	 BP	 18	 8.06x10‑4	 Response to hormone
Blue	 GO:0010033	 BP	 32	 8.06x10‑4	 Response to organic substance
Blue	 GO:0010941	 BP	 24	 8.06x10‑4	 Regulation of cell death
Blue	 GO:0042221	 BP	 40	 8.06x10‑4	 Response to chemical
Blue	 GO:0080090	 BP	 50	 8.06x10‑4	 Regulation of primary metabolic process
Blue	 GO:0071495	 BP	 19	 1.13x10‑3	 Cellular response to endogenous stimulus
Blue	 GO:0042981	 BP	 22	 1.48x10‑3	 Regulation of apoptotic process
Blue	 GO:0019222	 BP	 54	 1.84x10‑3	 Regulation of metabolic process

BP, biological process; GO, Gene Ontology.
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molecular mechanisms underlying CKD remain poorly under-
stood. The present results were somewhat consistent with 
these prior studies. A Turquoise module was identified, which 
contained genes that were mostly upregulated in patients 
with CKD, including genes that encoded proteins related to 
fibrosis (‘collagen catabolic process’ GO term, e.g., trans-
forming growth factor β1, collagen type I α1 chain, collagen 
type III α1 chain, collagen type IV α1 chain, COL4A2 and 
collagen type IV α3 chain). In addition, a novel intriguing 
co‑expression module (the Yellow module) was also detected 
in this study, which contained genes involved in ‘glomerulus 
development’, ‘kidney development’ and ‘multicellular organ-
ismal development’ GO terms [e.g. NPHS1 (35), NPHS2 (36), 
WT1 (37), podocalyxin‑like and PLCE1]. Since the Yellow 

module mainly contained genes downregulated in patients 
with CKD and was negatively correlated with CKD clinical 
traits; these results indicated that the renal parenchyma may be 
damaged in CKD and the corresponding repair mechanisms 
may be suppressed.

Subsequently, the constructed modules were further 
visualized using a protein interaction network. The 
genes in the Turquoise module included ACACA, CDK1, 
cyclin‑dependent kinases regulatory subunit 2 (CKS2), 
cyclin B1 (CCNB1), CDKN1C, COL4A2 and SERPINE2, 
which are mainly involved in the ‘defense response’, ‘collagen 
catabolic process’ and ‘mitotic cell cycle’ GO terms. ACACA 
encodes acetyl‑CoA carboxylase α, which serves a critical role 
in the regulation and metabolism of fatty acid biosynthesis in 

Figure 10. GO enrichment analysis of genes in the turquoise, yellow, brown, and blue modules.

Table III. AUC ROC values of different hub genes in patients with chronic kidney disease.

Hub genes	 AUC	 P‑value	 95% CI	 Cut‑off	 Sensitivity	 Specificity

ACACA	 0.86	 <0.0001	 0.75‑0.96	 0.55	 0.80	 0.71
CDK1	 0.83	 <0.0001	 0.72‑0.94	 0.51	 0.77	 0.67
NPHS2	 0.83	 <0.0001	 0.71‑0.95	 0.57	 0.77	 0.67
JUNB	 0.95	 <0.0001	 0.90‑1.00	 0.63	 0.90	 0.86
ATF3	 0.90	 <0.0001	 0.81‑0.99	 0.72	 0.83	 0.76
WT1	 0.87	 <0.0001	 0.77‑0.96	 0.57	 0.77	 0.67
FOXO1	 0.89	 <0.0001	 0.80‑0.98	 0.59	 0.83	 0.76
ABL1	 0.88	 <0.0001	 0.78‑0.98	 0.53	 0.83	 0.76
Combined	 1.00	 <0.0001	 1.00‑1.00	 1.00	 1.00	 1.00 

ABL1, cyclin‑dependent kinase 1; ACACA, acetyl‑CoA carboxylase α; ATF3, activating transcription factor 3; AUC, area under the curve; 
CDK1, cyclin‑dependent kinase 1; FOXO1, forkhead box O1; JUNB, JunB proto‑oncogene, AP‑1 transcription factor subunit; NPHS2, NPHS2 
stomatin family member, podocin; ROC, receiver operating characteristic; WT1, Wilm's tumor 1.
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mammals (38), although its role in CKD is currently unclear. 
CDK1, CKS2, CCNB1 and CDKN1C are genes involved in 
cell cycle regulation (39,40). A previous study reported that 
the expression levels of CDK1 and cyclin B2 are significantly 
upregulated in tubular epithelial cells from rats with chronic 
renal failure and that cycle arrest of tubular epithelial cells 
participates in kidney fibrogenesis (41). The other module of 
interest was the Yellow module. Genes in this module included 
WT1, NPHS1, NPHS2 and PLCE1, which mainly participate in 
the ‘glomerulus development’ GO term. WT1 is a pleiotropic 
transcription factor, and mutations in this gene lead to a set of 
clinical phenotypes that are caused by dysfunction of either 

renal podocytes or kidney progenitors (37). NPHS1, NPHS2 
and PLCE1 are genes encoding proteins that maintain normal 
kidney development and function, and homozygous genetic 
variants in NPHS1, NPHS2 and PLCE1 have been reported 
to be associated with development of congenital nephrotic 
syndrome  (42,43). According to the results of pathway 
enrichment analysis, the upregulated genes were mainly 
involved in cell cycle arrest and fibrogenesis, whereas the 
downregulated genes were mainly associated with kidney 
development and repair. Therefore, it was hypothesized that 
these hub genes may be potential diagnostic biomarkers and 
therapeutic targets for patients with CKD.

Figure 11. Visualization of co‑expression of genes in the co‑expression module. (A) Turquoise module, genes involved in the ‘mitotic cell cycle’, ‘collagen 
catabolic process’ and ‘defense response’ GO terms are marked in red, violet and green, respectively. (B) Yellow module, genes involved in ‘glomerulus devel-
opment’ and ‘multicellular organismal development’ GO terms are marked in red and violet, respectively. (C) Brown module, genes involved in the ‘response 
to external stimulus’ GO term are marked in red. (D) Blue module, genes involved in the ‘response to endogenous stimulus’ and ‘regulation of cell death’ GO 
terms are marked in red and violet, respectively. GO, Gene Ontology.



Molecular Medicine REPORTS  20:  2245-2257,  2019 2255

In conclusion, the Turquoise, Yellow, Brown and Blue 
modules were regarded as the most critical modules in patients 
with CKD based on gene expression data from renal biopsy 
samples, and the hub genes ACACA, CDK1, WT1, NPHS2, 
JUNB, ATF3, FOXO1 and ABL1 were significantly expressed 
in these modules. Further studies are underway to address the 
specific mechanisms of these hub genes in CKD. A detailed 
understanding of the roles served by these hub genes may 
provide insights into CKD, and lead to diagnostic and thera-
peutic opportunities for patients with CKD.
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