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Mechanisms underlying the protective effect of tannic acid
against arsenic trioxide-induced cardiotoxicity in rats:
Potential involvement of mitochondrial apoptosis
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Abstract. Arsenic trioxide (ATO) is a frontline chemotherapy
drug used in the therapy of acute promyelocytic leukemia.
However, the clinical use of ATO is hindered by its cardio-
toxicity. The present study aimed to observe the potential
effects and underlying mechanisms of tannic acid (TA) against
ATO-induced cardiotoxicity. Male rats were intraperitoneally
injected with ATO (5 mg/kg/day) to induce cardiotoxicity.
TA (20 and 40 mg/kg/day) was administered to evaluate its
cardioprotective efficacy against ATO-induced heart injury
in rats. Administration of ATO resulted in pathological
damage in the heart and increased oxidative stress as well
as levels of serum cardiac biomarkers creatine kinase and
lactate dehydrogenase and the inflammatory marker NF-kB
(p65). Conversely, TA markedly reversed this phenomenon.
Additionally, TA treatment caused a notable decrease in the
expression levels of cleaved caspase-3/caspase-3, Bax, p53
and Bad, while increasing Bcl-2 expression levels. Notably,
the application of TA decreased the expression levels of cyto-
chrome ¢, second mitochondria-derived activator of caspases
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and high-temperature requirement A2, which are apoptosis
mitochondrial-associated proteins. The present findings indi-
cated that TA protected against ATO-induced cardiotoxicity,
which may be associated with oxidative stress, inflammation
and mitochondrial apoptosis.

Introduction

Arsenic, a naturally prevalent element, is found in the envi-
ronment and certain foods. Arsenic has two forms in the
environment: Organic and inorganic. Inorganic arsenic has
two valences: Arsenite (III) and arsenate (V) (1). Generally,
inorganic arsenic is more toxic than organic arsenic, and
trivalent arsenic is more toxic than pentavalent arsenic (2).
Arsenic trioxide (ATO) is the primary effective ingredient of
white arsenic, which is inorganic arsenic. It has been used in
the therapy of acute promyelocytic leukemia since the early
1990s. ATO is a safe and effective anticancer drug and is not
prone to drug resistance (3). Researchers have attempted to use
ATO in the treatment of other types of tumor: ATO has also
been reported to achieve a favorable therapeutic effect in the
treatment of malignant tumors such as lymphoma, gastric (4),
esophageal (5), liver and lung cancer, neuroblastoma (6) and
breast cancer (7).

However, in the treatment of solid tumors, high concen-
trations of ATO can cause serious side effects, such as
cardiotoxicity (8), hepatotoxicity (9), fluid retention (10),
alimentary symptoms (11) and rash (12). ATO induces
serious cardiotoxicity and potential cardiovascular side
effects, including sudden death due to acute toxic myocar-
dial damage (13,14). ATO also has a toxic effect on the
liver, kidney and nervous system (15-17). These factors
limit the clinical application of ATO. Potential mecha-
nisms of ATO-induced cardiotoxicity include oxidative
stress, mitochondrial DNA injury, apoptosis and functional
disruption of ion channels (18). Several studies have indi-
cated that mitochondrial damage, caspase activation and
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p53 signaling are the pathways underlying arsenic-induced
apoptosis (1,18).

Mitochondria, intracellular double membrane organelles,
are considered the ‘power plant’ of eukaryotic cells (19).
Mitochondria are the primary site of intracellular oxidative
phosphorylation and synthesis of adenosine triphosphate,
which provides energy for cell activity (20). Mitochondria
also participate in cell signaling, differentiation, proliferation
and apoptosis (21). The heart, the most energy consuming
organ, has the highest content of mitochondria of all types
of tissue (22). The heart requires efficient oxidative metabo-
lism and derives almost all of its energy from mitochondrial
oxidative phosphorylation (23). Therefore, mitochondria are
important for myocardial development as well as healthy func-
tion. Beyond their role as a cellular powerhouse, mitochondria
produce reactive oxygen species (ROS) (24), which lead to
oxidative injury and regulate cardiomyocyte apoptosis. Hence,
mitochondrial dysfunction and ROS production are consid-
ered key factors in cardiac disease. Creatine kinase (CK)
and lactate dehydrogenase (LDH) are vital biomarkers for
the diagnosis of myocardial injury (25). Studies have shown
that ATO increases LDH content and consequently results in
cardiomyocyte necrosis (26,27).

There are two major antioxidant systems in the body:
The enzyme antioxidant system [involving superoxide
dismutase (SOD) and catalase (CAT)] and the non-enzyme
antioxidant system (involving vitamins C and E, gluta-
thione, carotenoid, copper and zinc) (28). When oxidative
stress occurs, these two systems are out of balance, which
leads to tissue damage (29). Studies have shown that exces-
sive ROS during ATO treatment leads to destruction in the
endogenous antioxidant system (30,31). In addition, studies
have suggested that high doses of ATO can cause oxidative
stress, increased ROS and inhibit enzyme and mitochondrial
activity (32,33). Mitochondrial impairment leads to the
release of mitochondrial-associated proteins cytochrome c,
second mitochondria-derived activator of caspases (Smac)
and high-temperature requirement A2 (HtrA2); the release of
cytochrome c can activate caspase-3 (34). Moreover, the Bcl-2
family, which serves a crucial role in the regulation of cardio-
myocyte apoptosis, is a primary regulator of cytochrome
c release and caspase-3 activation (34). Arsenic exposure
increases the levels of pro-apoptotic proteins Bax (35) and
Bad (36) and decreases the expression levels of anti-apoptotic
protein Bcl-2 (37). Furthermore, one study reported that
arsenic exposure activates phosphorylation of the NF-xB
pathway (36). The NF-xB pathway participates in the inflam-
matory response, which results in apoptosis (38). Thus, we
hypothesized that the potential mechanism of ATO-induced
cardiotoxicity may be associated with oxidative stress, inflam-
mation and mitochondrial apoptosis.

Tannic acid (TA) is found in plants and foods, such as
apples, pears, beans, tea and red wine. TA is a water-soluble
polyphenol compound with a complex chemical structure
(C;6Hs,0,46; Fig. 1), containing a glucose core covalently
linked to 3-5 gallic acid residues through the hydrolysis of
ester bonds (39). TA has been revealed to exert antioxidant,
anti-inflammatory, anticarcinogenic, antimutagenic and anti-
atherogenic properties (40). It is also capable of protecting
against drug toxicity (41).
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Our previous studies have indicated that TA has benefi-
cial effects on cardiovascular disease (42-44); moreover, we
found that TA ameliorates ATO-induced nephrotoxicity (45).
However, the effects of TA on ATO-induced cardiotoxicity
have not yet been reported. The aim of the present study was to
evaluate whether TA can protect against ATO-induced heart
injury in rats.

Materials and methods

Chemicals and materials. TA (>98% purity) was acquired
from Sigma-Aldrich (Merck KGaA). ATO was purchased
from Beijing SL Pharmaceutical Co.,Ltd. Kits for determining
total CK and LDH, as well as catalase (CAT), malondialde-
hyde (MDA) and superoxide dismutase (SOD) activity were
obtained from Nanjing Jiancheng Bioengineering Institute.
All solvents were analytical grade and commercially
available.

Animals and experimental protocol. A total of 50 adult male
Sprague-Dawley rats (age, 6-8 weeks; weight, 180-220 g)
were obtained from Hebei Medical University. Male rats were
raised under standard conditions (22-25°C and 45-55% relative
humidity with a 12-h light/dark cycle), with ad libitum access
to pellet food and water. Animal experiments were performed
in accordance with the Animal Care and Ethics Committee of
Hebei University of Chinese Medicine (Shijiazhuang, China).
The Animal Care and Ethics Committee of Hebei University of
Chinese Medicine approved all animal protocols (approval no.
DWLL2018038).

Male rats were stochastically separated into five groups:
i) Control (Control, 0.1 ml/kg/day); ii) ATO-alone (ATO,
5 mg/kg/day); iii) ATO + low-dose TA (ATO + L-TA,
20 mg/kg/day); iv) ATO + high-dose TA (ATO + H-TA,
40 mg/kg/day); and v) TA-alone (TA, 40 mg/kg/day). Rats
were intraperitoneally (i.p.) injected with ATO (5 mg/kg) to
establish an ATO-induced cardiotoxicity model. Dose selec-
tion was determined according to previous literature (46,47).
Studies have reported that the median lethal dose of ATO is
14.98 mg/kg body weight in rats (48,49). The Control group
received isovolumic normal saline. The ATO + L-TA and
ATO + H-TA groups underwent intragastric administration
of TA (20 and 40 mg/kg/day, respectively) every morning
and were intraperitoneally injected with ATO (5 mg/kg/day)
every afternoon (40,42,45). After 7 days, sodium pentobar-
bital (40 mg/kg, i.p.; Sigma-Aldrich; Merck KGaA) was used
to anesthetize rats, and the heart was removed and measured.

Histopathological examination. Cardiac specimens were
fixed in 4% paraformaldehyde at room temperature for 48 h.
Following fixation, all paraffin-embedded samples were
sectioned at 4 ym and stained at room temperature with
0.1% hematoxylin (Hebei Bohai Biological Engineering
Development Co.,Ltd.) for 5 min and 0.5% eosin for 3 min (50).
Finally, pathological changes in myocardial tissue structure
were examined under a light microscope at x400 magnifica-
tion (Leica DM4000B; Leica Microsystems GmbH).

Measurement of cardiac marker enzymes. Rat serum was
separated by centrifugation at 1,500 x g for 10 min at 4°C



MOLECULAR MEDICINE REPORTS 22: 4663-4674, 2020

HO
OH
oHO
H o ° 9
’ 0
OH o
HO 0O
H
HO
HO OH
H

4665

OH
OH

(o]

OH

Figure 1. Structure of tannic acid.

and the activity of CK and LDH were detected using CK
(cat. no. A032) and LDH (cat. no. A020-1) assay kits (both
Nanjing Jiancheng Bioengineering Institute), respectively.
For CK assay, serum samples (20 ul) and mixed reagent were
added into tubes according to the manufacturer's protocol,
then vortex mixed and incubated at 37°C for 20 min. Then, R6
solution from the kit was added and the mixed solution was
centrifuged at 3,500 x g for 10 min at room temperature. Next,
the tubes were heated in a water bath at 45°C for 15 min and the
absorbance was detected at 660 nm using a microplate reader
(Varioskan LUX; Thermo Fisher Scientific, Inc.). The activity
of CK was calculated according to the formula provided in the
manufacturer's protocol.

For the LDH assay, serum samples (20 ul; 1:50), buffer
solution and coenzyme I solution were added into tubes,
vortex mixed and incubated at 37°C for 15 min, according to
the manufacturer's protocol. Then, 2 4-dinitrophenylhydrazine
solution was added before being vortex mixed and incubated
at 37°C for 15 min. Next, NaOH solution was added and incu-
bated at room temperature for 3 min, and the absorbance was
detected at 440 nm using a microplate reader (as aforemen-
tioned). The amount of LDH was assessed by measuring the
levels of pyruvic acid.

Measurement of ROS. The fluorescent probe dihydroethidine
(DHE) was used to measure the content of ROS in fresh heart
tissue samples using an ROS detection kit (cat. no. KGAFO019;
Nanjing KeyGen Biotech Co., Ltd.). The specimens were
embedded at optimum cutting temperature and flash-frozen
in liquid nitrogen and sectioned (thickness, 5 ym) using a
freezing microtome (Leica CM1950; Leica Microsystems
GmbH). Then, 50 uM DHE solution was added, and sections
were incubated at room temperature in a darkened incubator
for 30 min. Next, sections were washed three times with
PBS (5 min/wash). Finally, the sections were sealed using a
water-soluble encapsulant and examined using a fluorescence
microscope at x200 magnification (Leica DM4000B; Leica

Microsystems GmbH). The stained area of ROS was quanti-
tatively analyzed using Image Pro Plus 6.0 software (Media
Cybernetics, Inc.).

Measurement of serum levels of SOD, CAT and MDA.
Rat serum was separated by centrifugation at 1,500 x g for
10 min at 4°C and the serum levels of SOD, CAT and MDA
were detected using assay kits (cat. nos. AOO1-3, A007-1 and
A003-1, respectively; all Nanjing Jiancheng Bioengineering
Institute). According to the manufacturer's instruction, serum
samples and relevant solutions of the SOD assay kit were
mixed and incubated at 37°C for 20 min, then the absor-
bance was measured at 450 nm using a microplate reader
(as aforementioned). The activity of SOD was calculated as
U/ml. Similarly, the activity of CAT and MDA were analyzed
following the manufacturer's instructions. The absorbance of
CAT at 405 nm and the absorbance of MDA at 532 nm were
measured using a microplate reader (as aforementioned). The
activity of CAT was calculated as U/ml and the contents of
MDA were calculated as nmol/ml.

Immunohistochemistry. Tissue sections were subjected to
conventional dewaxing to water, rehydrated in a descending
series of ethanol (100, 95, 90 and 80%), and then incubated
with 3% H,0, for 20 min at 37°C. Sections were incubated
overnight at 4°C with primary antibodies against Bax
protein (1:80; cat. no. 50599-2-Ig), cytochrome ¢ (1:70;
cat. no. 10993-1-AP), HtrA2 (1:80; cat. no. 15775-1-AP) and
Smac (1:70; cat. no. 10434-1-AP) (all ProteinTech Group, Inc.).
Next, sections were washed three times using PBS solution. The
sections were incubated with horseradish peroxidase-conju-
gated secondary antibody (1:2,000, cat. no. PV-6001; OriGene
Technologies, Inc.) for 20 min at room temperature, and then
stained using the 3,3'diaminobenzidine (DAB) substrate
kit (cat. no. ZLI-9019; OriGene Technologies, Inc.). Color
development was induced with 0.5% DAB for 20 min at room
temperature. Lastly, the heart tissue samples were re-stained
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Table I. Primer sequences of p53, Bad and B-actin.
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Gene Primer sequence (5'—3") Fragment size, bp

p53 Forward: CCCCAGGATGTTGCAGAGTTG 150
Reverse: TTGAGAAGGGACGGAAGATGAC

Bad Forward: GAGTCGCCACAGTTCGTACC 156
Reverse: TCAAATTCATCGCTCATTCTTC

[-actin Forward: CCTAGACTTCGAGCAAGAGA 140

Reverse: GGAAGGAAGGCTGGAAGA

Figure 2. Effects of TA on cardiac histopathology. Representative sections were obtained from the myocardial tissue of Control, ATO, ATO + L-TA, ATO +
H-TA and TA groups. Magnification, x400; scale bar, 50 pm. TA, tannic acid; ATO, arsenic trioxide; L, low dose; H, high dose.

with 0.5% hematoxylin for 2 min at room temperature and
observed under a light microscope (magnification, x400).
Protein expression levels were measured using Image Pro Plus
6.0 software (Media Cybernetics, Inc.).

Western blotting. Frozen samples were weighed separately
and homogenized in RIPA lysis buffer (Beijing Solarbio
Science & Technology Co., Ltd.), then lysed overnight at 4°C.
The heart tissue samples were centrifuged at 12,000 x g for
10 min at 4°C, then supernatant (total protein extract) was
transferred to an EP tube and the protein level was quanti-
fied via the bicinchoninic acid method. Then, the protein
samples (50 ug) were transferred onto PVDF membranes
using 10% SDS-PAGE gels (EMD Millipore). The membranes
were gently removed and placed in a TBST blocking buffer
(5% skimmed milk in TBS-0.1% Tween-20) for 2 h at 37°C.
Next, the proteins were incubated with anti-NF-kB (p65)
(1:2,000; cat. no. 10745-1-AP; ProteinTech Group, Inc.),
anti-caspase 3 (1:600; cat. no. 19677-1-AP; ProteinTech
Group, Inc.), anti-cleaved caspase-3 (1:800; cat. no. AF7022;
Affinity Biosciences), anti-Bcl-2 (1:600; cat. no. 26593-1-AP;
ProteinTech Group, Inc.) and anti-f-actin (1:1,000;
cat. no. TA-09; OriGene Technologies, Inc.) overnight at 4°C.
Then, proteins were incubated with the horseradish peroxi-
dase-labeled secondary antibody (1:3,000; cat. no. ZB-2301;
OriGene Technologies, Inc.) for 90 min at room temperature.
Membranes were washed three times and proteins were visu-
alized using the ECL Detection system (TransGen Biotech
Co., Ltd.). After scanning the film with a Tanon1600, the gray
value of the band was measured by Tanon Gis 1D software
(Tanon Science and Technology Co., Ltd.).

Reverse transcription-quantitative (RT-q)PCR.
Total RNA was extracted from heart tissue samples using
TRIzol (cat. no. 15596-026; Invitrogen; Thermo Fisher

Scientific, Inc.). RT was performed with TIANScript RT kit
(cat. no. KR104-02; Tiangen Biotech Co., Ltd.) according to the
manufacturer's instructions. The gene expression levels of p53
and Bad in heart tissue were assessed via RT-qPCR using SYBR
Green (cat. no. FP205; Tiangen Biotech Co., Ltd.). f-actin was
used as the internal control. The PCR thermocycling conditions
were: Initial denaturation (95°C for 15 min), then 40 cycles of
denaturation (95°C for 10 sec), annealing (58°C for 30 sec) and
extension (72°C for 30 sec). The data was analyzed with the
2444 method (51). The primers used are listed in Table 1.

Data analysis. Data are presented as the mean + SEM of
three independent repeats. Statistical comparisons between
groups were measured using one-way ANOVA followed by
Bonferroni's test. The Bonferroni correction was used as a post
hoc test to eliminate false positives in multiple comparisons.
Origin 7.5 (OriginLab) and SPSS 15.0 (SPSS, Inc.) statistical
analysis software were used. P<0.05 was considered to indi-
cate a statistically significant difference.

Results

Effects of TA on heart histopathology. Histological changes
of rat heart samples were investigated by H&E staining.
Heart tissue exhibited a normal myocardium structure and
regular myocardial cell distribution in the Control group
(Fig. 2). However, in the ATO group, notable myocardial
tissue injury, disordered arrangement of cardiomyocytes, cell
nucleus pyknosis and degeneration, increased eosinophils and
focal inflammatory cell infiltration were observed. The ATO
+ L-TA and ATO + H-TA groups retained an almost normal
myocardial tissue structure (myocardial cells arranged closely,
rich cytoplasm, regular nucleus and normal cardiac muscle
bundles). In addition, there was no difference in myocardial
structure between the TA and Control groups.
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Figure 3. Effects of TA on the activity of CK and LDH. Activity of (A) CK and (B) LDH was measured in serum using commercial detection kits. Serum was
collected from the Control, ATO, ATO + L-TA, ATO + H-TA, and TA groups. Data are presented as the mean + SEM (n=6). “P<0.01 vs. Control; “P<0.05 and
#P<0.01 vs. ATO. CK, creatine kinase; LDH, lactate dehydrogenase; TA, tannic acid; ATO, arsenic trioxide; L, low dose; H, high dose.
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Figure 4. Effects of TA on the level of ROS in myocardial tissue. Production of ROS was measured in heart tissues with a dihydroethidium probe. The fluores-
cence intensity and ROS levels area percentages are shown. Magnification, x200; scale bar, 100 ym. “P<0.05 vs. Control; “P<0.05 and #P<0.01 vs. ATO. TA,
tannic acid; ROS, reactive oxygen species; ATO, arsenic trioxide; L, low dose; H, high dose.

Effects of TA on cardiotoxicity indices. CK and LDH levels
in the ATO group were significantly improved compared with
the Control group (Fig. 3), revealing that the experimental
model was successfully established. The CK and LDH levels
in the ATO + L-TA and ATO + H-TA groups were significantly
decreased compared with the ATO group.

Effects of TA on oxidative stress markers. Fluorescence inten-
sity was significantly enhanced in the ATO group, suggesting

that the level of ROS was higher in the heart tissue compared
with the Control group (Fig. 4). Following TA treatment,
fluorescence intensity significantly weakened. These results
indicated that TA protection against ATO-induced heart
damage may be associated with decreasing oxidative stress
and ROS production.

Effects of TA on levels of SOD, CAT, and MDA. Serum analysis
revealed that SOD (Fig. 5A) and CAT (Fig. 5B) levels in the
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Figure 5. Effects of TA on SOD, CAT activities and MDA content in serum. Levels of (A) SOD, (B) CAT and (C) MDA were evaluated in rat heart serum using
commercial detection kits. Data are presented as the mean + SEM (n=6). "'P<0.05 and “"P<0.01 vs. Control; “P<0.05 and "P<0.01 vs. ATO. TA, tannic acid;
SOD, superoxide dismutase; CAT, catalase; MDA, malondialdehyde; ATO, arsenic trioxide; L, low dose; H, high dose.

ATO group were significantly decreased compared with the
Control group. Compared with the ATO group, SOD and CAT
activity were increased in the ATO + L-TA and ATO + H-TA
groups. Moreover, MDA (Fig. 5C) levels increased following
ATO exposure compared with the Control group. Following,
TA administration, the levels of MDA were lower in the ATO
+ L-TA and ATO + H-TA groups.

Effects of TA on cytochrome c, Smac, HtrA2 and Bax expression
levels. Immunohistochemistry was used to measure the expres-
sion levels of cytochrome ¢, Smac, HtrA2 and Bax in the heart
tissue samples. Cytochrome ¢, Smac, HtrA2 and Bax expression
levels were significantly increased in the ATO group compared
with the Control (Fig. 6). Administration of 20 or 40 mg/kg/day
TA decreased the expression levels of cytochrome ¢, Smac,
HtrA2 and Bax, indicating that the cardiac protection of TA is a
result of its anti-mitochondrial apoptosis effect.

Effects of TA on the expression levels of caspase-3, cleaved
caspase-3, Bcl-2 and NF-kB (p65). Expression levels of
caspase-3, cleaved caspase-3 and NF-«xB (p65) were markedly
increased in the ATO group (Fig. 7A and E). However, the
expression levels of Bcl-2 significantly decreased (Fig. 7C).
The ratio of cleaved caspase-3/caspase-3 and NF-«xB (p65) was
significantly upregulated in the ATO group compared with the
Control (Fig. 7B and F). However, compared with the Control
group, the Bcl-2 (Fig. 7D) expression levels were significantly
lower in the ATO group. Following TA treatment, the ratio of
cleaved caspase-3/caspase-3 was significantly decreased, and
the expression levels of NF-kB (p65) were downregulated,
whereas Bcl-2 expression levels were significantly increased.

Effects of TA on the expression levels of p53 and Bad. The
expression levels of p53 and Bad in the ATO group were
significantly increased compared with the Control group
(Fig. 8). Subsequent TA administration caused a significant
decrease in p53 and Bad expression levels.

Discussion
There are an increasing number of studies on the cardiotox-

icity of ATO, which limits its wide clinical application (13,14).
The present study established a cardiotoxicity model in rats

by intraperitoneal injection with ATO (5 mg/kg). In addition,
high-dose TA-alone was administered to evaluate whether it
has a toxic effect on the heart. The results demonstrated that the
cardiotoxicity induced by ATO was primarily characterized by
histopathological changes. In the ATO group, myocardial cells
were swollen, the cytoplasm exhibited vacuolation and myocar-
dial fiber was abnormal (swelling of myocardial fiber, interstitial
oedema and myofibrillar loss. Serum increase of CK and LDH
enzymes was also detected. These findings demonstrated that
ATO had a toxic effect on the myocardium. Administration of
TA significantly ameliorated ATO-induced pathological changes
in myocardial tissue. In addition, there was no difference in
myocardial structure between the TA and Control groups.
Compared with the Control group, the levels of CK and LDH
in the TA group were not significantly different. These results
indicated that high-dose TA alone hardly induced cardiotoxicity.

Candidate mechanisms for the cardiotoxicity induced by
ATO include changes of cardiac ion channels, oxidative stress
injury and cardiomyocyte apoptosis (51). Compared with other
cells, cardiomyocytes are more susceptible to oxidative stress
due to weak antioxidant defenses (52) and enrichment of mito-
chondria (30).

Oxidative stress is considered to be an imbalance between
generation of ROS and the activity of antioxidant defenses.
Ocxidative stress is a negative consequence of the in vivo
production of radicals, and it is considered to be an important
factor leading to apoptosis (34). Multiple studies have reported
that high a concentration of arsenic can cause oxidative stress
and increase ROS (53,54). Excessive ROS cause injury to
numerous types of macromolecules, including DNA, lipid and
protein (34,55). ROS alters cell signaling processes, such as
gene expression level changes, transcription factor activation
and apoptosis (56). ATO has a high affinity with sulfhydryl
groups (57). ATO can penetrate the cell membrane and reach
the cytoplasm via diffusion, resulting in cytotoxicity by
increasing ROS (58). ROS are eliminated by the catalytic deac-
tivation of SOD and CAT in vivo. Therefore, these enzymes
can protect the body from radicals (59). In myocardial cells,
the electron transport chain, situated in the internal membrane
of the mitochondria, is the primary source of ROS (60).
Myocardial cells provide energy essential for cellular survival
and function. In addition, CK and LDH serve important roles
in energy metabolism in vivo. CK and LDH are also important
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Figure 6. Effects of TA on the expression levels of cytochrome ¢, Smac, HtrA2 and Bax. Morphological orientation of the expression levels of (A) cytochrome ¢,
(B) Smac, (C) HtrA2 and (D) Bax in myocardial tissue, as measured by immunohistochemistry. Magnification, x200; scale bar, 50 gm. Area percentage content
of (E) cytochrome ¢, (F) Smac, (G) HtrA2 and (H) Bax was calculated in the Control, ATO, ATO + L-TA, ATO + H-TA and TA groups. Data are presented as
the mean = SEM (n=6). “P<0.01 vs. Control; #/P<0.01 vs. ATO. Smac, second mitochondria-derived activator of caspases; HtrA2, high-temperature require-

ment A2; TA, tannic acid; ATO, arsenic trioxide; L, low dose; H, high dose.

parameters for the diagnosis of myocardial injury (25). In the
present study, following ATO administration, CAT and SOD
activity markedly decreased, and the MDA levels markedly
increased in serum. This result suggested that the cardiotox-
icity of ATO was associated with oxidative stress injury and
that TA significantly improved this phenomenon.

Mitochondria have long been considered to serve a
considerable role in cell growth. However, the important
function of mitochondria in programmed cell death was not
recognized until the mid-1990s (61). Mitochondria are not
only an important site generating cellular energy, but also the
primary source of ROS and free radicals (23). Concurrently,
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TA, tannic acid; ATO, arsenic trioxide; L, low dose; H, high dose.

the mitochondria are the target of multiple apoptotic signals,
which contribute to apoptosis (62). Studies have shown that
polyphenols affect mitochondrial function and structure by
modulating biosynthesis (mitogenesis), dynamics (fission,
fusion), transport and autophagic cleavage of damaged
mitochondria (mitophagy) (63,64). Wang et al (65) revealed
that curcumin downregulated PI3K/AKT/mTOR and
mTOR/p70S6K signaling pathways and activated autophagy,
thus demonstrating neuroprotection in APP/presenilin 1
double transgenic mice. Apoptosis or programmed death
is the mechanism of cell evolutionary conservation, which
selectively removes aged, damaged and other unnecessary
cells. This is a crucial part of numerous normal physiological

processes, such as embryonic development, normal tissue
growth and immunoreaction (66). Apoptosis is mediated by
caspase activation (67). Caspase is the effector of apoptosis;
it can bind to multiple types of substrate, resulting in specific
biochemical and morphological changes in apoptotic cells,
including changes in mitochondrial membrane permeability,
cytoskeleton reorganization, exposure of phosphatidyl-
serine and DNA fragmentation (68). Endogenous apoptosis
is caused by mitochondrial activation of oxidative stress.
Certain mitochondrial proteins, such as pro-apoptotic factor,
cytochrome ¢ apoptosis-inducing factor, Smac, HtrA2 and
endonuclease G, serve a regulatory role in apoptosis (63). The
first released proteins are cytochrome c, Htr2A and Smac
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Figure 8. Effects of TA on p53 and Bad expression levels. Gene expression levels of (A) p53 and (B) Bad were examined by reverse transcription-quantitative
PCR. Cardiac samples were obtained from the Control, ATO, ATO + L-TA, ATO + H-TA and TA groups. Data are presented as the mean = SEM (n=3). "P<0.05
and “P<0.01 vs. Control; "P<0.01 vs. ATO. TA, tannic acid; ATO, arsenic trioxide; L, low dose; H, high dose.

in the mitochondrial apoptosis pathway, and cytochrome
¢, released into the cytoplasm, is combined with apoptotic
protease-activating factor to form associated apoptotic
bodies. This promotes the self-activation of the caspase-9
precursor, then initiates the caspase-3 precursor and cleaves
caspase-3, resulting in apoptosis (69). In the present study,
the ratio of cleaved caspase-3/caspase-3 was increased,
which suggested activation of the caspase apoptosis pathway.
Moreover, Du et al (70) revealed that Smac/DIABLO
enhances cytochrome c-mediated caspase-3 activity. The
present results demonstrated an increase in expression levels
of cytochrome ¢, Smac and Htr2A, as well as the ratio of
cleaved caspase-3/caspase-3, in the ATO group, confirming
that ATO induced apoptotic events. The present study showed
that TA treatment markedly downregulated the expression
levels of the aforementioned apoptosis-associated genes and
decreased the number of apoptotic cells in the ATO + L-TA
and ATO + H-TA groups. In addition, the TA group exhibited
no significant difference in these protein expression levels.
Bcl-2 family proteins include anti-apoptotic genes Bcl-2
and apoptosis stimulating proteins, such as Bad and Bax (71).
These regulate the release of cytochrome ¢ and the activa-
tion of caspase-3, which play an essential role in the control
of mitochondrial apoptosis (72). The p53 protein is a tumor
suppressor and serves a crucial role in the regulation of
mitochondrial apoptosis, cell cycle and senescence (69). p53
signaling activates the transcription of Bad and Bax (73,74)
and suppresses the transcription of Bcl-2 (75,76). A previous
study demonstrated that low levels of p53 contribute to main-
taining mitochondrial activity and function (77). Additionally,
studies have reported that arsenic exposure causes the phos-
phorylation of the NF-xB (p65) pathway (36,78). Activation
of the NF-kB pathway triggers an inflammatory response,
which induces apoptosis. NF-kB exhibits pro-inflammatory
properties (79), and apoptosis is an indispensable mechanism
that inhibits prolonged inflammation (80). In accordance with
published studies, we observed that ATO exposure increased
the expression levels of p53 protein, Bax, Bad and NF-xB
(p65) and decreased those of Bcl-2 in rat heart. These results

demonstrated that ATO induced myocardial apoptosis via
mitochondria dysfunction and inflammation. Furthermore,
following administration of TA, the expression levels of p53
protein, Bax, Bad and NF-«kB (p65) were suppressed and Bcl-2
protein expression levels were promoted.

Based on the findings obtained from the present study, we
hypothesize that the beneficial protective effect of TA may be
achieved via ameliorating ATO-induced injury of cardiomyo-
cytes and inhibiting the release of cardiac marker enzymes
from the myocardium. In the present study, TA significantly
improved ATO-induced oxidative stress injury and mitochon-
drial function due to ROS scavenging properties. As such,
TA ameliorates ATO-induced cardiomyocyte apoptosis via
decreasing the release of mitochondrial-associated proteins
cytochrome ¢, Smac and Htr2A and inhibition of caspase-3
activation. In addition, the present study indicated that TA
plays an anti-inflammatory role by inhibiting the activation of
the NF-kB pathway; similarly, TA has a significant suppres-
sion of ATO-induced activation of the p53 pathway resulting
in decreased release of Bax and increasing the release of Bcl-2.
This protected the cardiomyocytes from ATO-induced cell
death.

The present study investigated the potential effects and
mechanisms of TA against ATO-induced cardiotoxicity. It has
recently been reported that combination of TA and antitumor
agent cisplatin may exert synergistic anticancer effects and
may be a novel adjuvant treatment for liver cancer (81). Our
next study will investigate whether TA has synergistic or
antagonistic effects when combined with ATO to treat malig-
nant tumors.

In conclusion, the present data suggested that mitochon-
drial dysfunction contributed to the cardiotoxicity of ATO,
as well as to an oxidative stress reaction and inflammatory
response. The present study demonstrated that TA adminis-
tration effectively improved ATO-induced cardiotoxicity. The
protective functions of TA may be associated with suppres-
sion of activation of the mitochondrial apoptosis pathway.
Collectively, the present findings revealed that TA provided
effective protection against ATO-induced cardiotoxicity.
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Based on these results, TA may have a potential defense
mechanism in ATO clinical therapy and diminish its cardio-
toxic effects. However, further investigation is required before
its clinical application.
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