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Abstract. Pulmonary hypertension (PH) is a progressive 
lethal disease, which is characterized by abnormal vascular 
remodeling and persistently elevated pulmonary artery pres‑
sure, eventually leading to right heart failure and even death. 
although great progress has been made in treating PH, the 
mortality rate remains high. Metabolic disorders are one of the 
important hallmarks of PH. obesity, lipids, glucose tolerance 
and insulin resistance are risk factors for numerous cardiovas‑
cular diseases and are often accompanied by a considerable 
increase in serum uric acid (Sua) concentrations. uric acid 
(ua) is the end product of purine nucleotide metabolism and 
is closely related to cardiovascular diseases including PH. 
Hyperuricemia promotes the development and progression of 
PH through endothelial dysfunction, oxidative stress, inflam‑
matory responses and activation of the renin‑angiotensin 
system. in the present review, the advancements in knowledge 
about ua metabolism and PH, and the current understanding 
of the potential interactions and mechanisms of Sua in PH 
were systematically summarized, which may provide new 
insights into the pathogenesis of PH.
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1. Introduction

Pulmonary hypertension (PH) is a serious health problem that 
affects ~1% of the global population (1). in the united States 
and europe, pulmonary arterial hypertension (PaH) is found 
in 15‑50/million individuals (2). among them, idiopathic, heri‑
table and anorexigen‑induced PH account for 52.6% of total 
PH cases, of which 6‑10% of patients have a family history of 
PH (3,4). Furthermore, >70% of patients with PaH are women 
aged 20‑40 years, and its incidence is twice as high as that in 
men (5‑7). although the advancement of medical treatments 
has improved the survival rate, the prognosis of PH is still poor, 
and its mortality rate remains high (8). The 5‑year mortality 
rates of patients diagnosed with idiopathic pulmonary arterial 
hypertension (iPaH) or familiar PH were 31.8 and 46.3%, 
respectively in china as of 2014 (9). increasing evidence has 
shown that a variety of systemic metabolic derangements are 
associated with PH with a number of studies on this topic 
focused on the role of obesity, dyslipidemia, insulin resistance 
(ir), glucose intolerance and metabolic disorder in the progres‑
sion of pulmonary circulation diseases (10‑13). Hyperuricemia 
is an important metabolic syndrome and is closely associated 
with gout, coronary heart disease, hypertension, heart failure 
and atrial fibrillation through oxidative stress, endothelial 
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dysfunction, inflammatory reactions and activation of the 
renin‑angiotensin‑aldosterone system (14‑17). These condi‑
tions may directly lead to the occurrence or development of 
these diseases (18‑25). Whether hyperuricemia is an indepen‑
dent risk factor of PH and how hyperuricemia promotes the 
occurrence of PH remains to be determined. To the best of 
our knowledge, there has been no systematic analysis of these 
issues to date. in the present review, the complex relationship 
between hyperuricemia and PH is focused on providing a novel 
viewpoint and strategy for the prevention and treatment of PH.

2. Search strategy

PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science 
(webofscience.com/) and Science direct (https://www.scien‑
cedirect.com/) databases were searched for PH and uric acid 
(ua; hyperuricemia) relevant studies and systematic reviews 
without language or time restrictions. The search subject 
terms included: Pulmonary hypertension, pulmonary arterial 
hypertension, iPaH, secondary PH, cardiovascular disease, 
UA, serum UA (SUA), hyperuricemia, metabolic, inflamma‑
tory responses, oxidative stress, renin‑angiotensin system, 
endothelial dysfunction, smooth muscle cell proliferation. no 
artificial intelligence tools were used in the preparation of the 
reviews or manuscripts.

3. Pathophysiological basis of PH

PH is a chronic progressive disease, which is related to meta‑
bolic processes (26). PH is characterized by rising pulmonary 
artery pressure and vascular remodeling, which eventually 
lead to right heart failure and death (27). according to the 2022 
european Society of cardiology (eSc)/european respiratory 
Society (erS) Guidelines for the diagnosis and Treatment of 
Pulmonary Hypertension, PH is defined on the basis of right 
heart catheterization hemodynamic assessment. Pre‑capillary 
PH is defined as mean pulmonary arterial pressure  (mPAP) 
>20 mmHg at rest, pulmonary arterial wedge pressure (PaWP) 
<15 mmHg and pulmonary vascular resistance (PVr) >2 Wood 
units at rest. Postcapillary PH is defined as mPAP >20 mmHg 
and PAWP ≥15 mmHg at rest. Exercise PH is defined as an 
mPaP/cardiac output slope >3 mmHg/l/min between rest and 
exercise (28,29). Currently, the clinical classification of PH 
follows the 2015 eSc/erS guidelines for the diagnosis and 
treatment of PH (30,31) and the Proceedings of the 6th World 
Symposium on PH (32). PH is divided into five categories 
according to the etiology and hemodynamic parameters (33) 
as follows: i) PaH, including idiopathic and hereditary PH; 
ii) PH caused by left heart disease, including heart failure and 
valvular heart disease with a maintained or decreased ejec‑
tion fraction; iii) PH caused by pulmonary diseases and/or 
hypoxia, including chronic obstructive pulmonary disease, 
interstitial lung disease and other pulmonary diseases with 
mixed restrictive and obstructive modes; iv) chronic thrombo‑
embolic PH and other pulmonary artery obstructions; and v) 
PH with unclear and/or multifactorial mechanisms, including 
blood and systemic disease (31,34). PH is not a disease isolated 
to pulmonary circulation but is considered a systemic disease 
associated with notable metabolic dysfunction (35). among 
these, PH caused by left heart disease, lung disease and/or 

hypoxia and connective tissue disease may be closely related 
to metabolic disorders of the pulmonary circulation (36‑38). 
When pulmonary circulation metabolism is disordered, 
circulating metabolic substances can induce dysfunction of 
pulmonary artery endothelial cells (Paecs) and pulmonary 
artery smooth muscle cells  (PaSMcs), and stimulate exces‑
sive proliferation and anti‑apoptosis of pulmonary vascular 
cells (26). These conditions eventually lead to pulmonary 
vascular remodeling and provide conditions for the develop‑
ment of PH (39,40). ua, which is one of the products of purine 
metabolism, can be affected in certain pathological states, 
resulting in abnormal ua concentrations in the pulmonary 
circulation. although, increased ua in the pulmonary circula‑
tion deteriorates PH, the associated molecular mechanisms 
remain unclear (41). Before determining the effect of ua on 
PH, the sources, metabolic pathways and biological properties 
of ua need to be understood.

4. Metabolism and biological characteristics of UA

Source and metabolism of UA. ua can be derived exogenously 
and endogenously. exogenous ua, which accounts for 20% of 
the total ua, originates from exogenous foods rich in purine 
compounds, nucleic acids and nucleoproteins, such as animal 
viscera, seafood, mushrooms, beans, wine and meat (42). 
endogenous ua accounts for 80% of the total sources and is 
derived from purine products formed by the transformation, 
decomposition and metabolism of amino acids, phosphori‑
bosyl and nucleic acids in the body (43,44).

There are numerous enzymes involved in the conversion 
of adenine and guanine to ua. Xanthine oxidase is the key 
rate‑limiting enzyme in this process and it plays an important 
role in purine metabolism. Xanthine oxidase is involved in two 
important stages in the conversion of purines to ua: i) The 
conversion of hypoxanthine to xanthine; and ii) the conversion 
of xanthine to ua (45). Hypoxanthine nucleotides (inosine 
monophosphate) and guanine nucleotides are converted to 
xanthine by oxidation of xanthine oxidase‑hypoxanthine and 
deamination of guanine by guanine deaminase (46). Finally, 
xanthine is further oxidized to ua by xanthine oxidase (46‑48). 
in most mammals, uricase further oxidizes ua to allantoin, 
but humans cannot convert ua into allantoin, which is more 
soluble owing to the lack of uricase  (Fig. 1) (49‑51). Therefore, 
human purine catabolism ends in the ua stage.

The metabolism of Sua in vivo requires an important 
transporter called human urate transporter 1 (uraT1), which 
is encoded by the gene, SLC22A12 (52). it is expressed in the 
mural membrane of proximal renal tubular cells (53,54). Human 
uraT1 acts as a urate/anion exchanger and is involved in the 
reabsorption of urate in the kidneys (55). at a physiological pH, 
ua mainly exists in the form of urate (46). reportedly, ~70% 
of UA is metabolized in the kidney, and after filtration by the 
glomerulus, more than 90% of ua is reabsorbed and secreted 
by the renal tubules, with ~10% excreted in the urine (46,56). 
in addition, ~30% of ua is metabolized in the intestine (42). 
adenosine triphosphate binding cassette transporter 2, which 
is another urate transporter, is widely expressed on the surface 
of intestinal lumen cells and plays a major role in intestinal 
excretion (Fig. 2) (57‑60). Therefore, ua excretion occurs 
mainly in the kidneys and intestines.
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normal Sua concentrations are 89‑357 µmol/ l 
(1.5‑6.0 mg/dl) in women and 149‑417 µmol/l (2.5‑7.0 mg/dl) 

in men (46). However, impaired purine metabolism in the 
body, such as excessive purine food intake and disease 
(e.g., obesity, diabetes and tumor), can lead to increased 
ua production and/or decreased excretion, which further 
results in an increase in Sua concentrations and even 
hyperuricemia (61). Hyperuricemia is usually defined 
as an Sua concentration >417 µmol/l (7.0 mg/dl) in men 
and postmenopausal women, or ≥357 µmol/l (6.0 mg/dl) in 
premenopausal women with a normal purine diet (46). When 
the average Sua concentration in humans is higher than its 
solubility limit of 405 µmol/l (6.8 mg/dl), urate crystals are 
formed and deposited in the kidneys, tissues and joints (62), 
leading to renal calculi, gout and other diseases (e.g., gouty 
arthritis).

The variability of Sua concentrations is multifactorial, 
and it is also affected by genetic and non‑genetic factors (63). 
Genome‑wide association studies have shown that the poly‑
morphism and mutations of genes encoding Slc22a12, 
Slc2a9 and adenosine triphosphate binding cassette trans‑
porter 2 are related to hyperuricemia (64). in addition, the 
transporters uraT1, glucose transporter 9 (GluT9) and 
breast cancer resistance protein are associated with hyperuri‑
cemia and gout (64‑67). The concentration of UA is influenced 
by non‑genetic factors, mostly caused by excessive intake and 
decreased excretion.

Figure 1. Sources and metabolism of ua. endogenous and exogenous purines are metabolized to ua by Xo through the de novo and remedial synthesis 
pathways of purines. Purine metabolism terminates at the ua stage owing to the absence of uricase in the human body. However, rodents have the enzyme 
allantoinaise, which metabolizes ua into the more soluble allantoin, and further breaks it down into urea and ammonia. Xo, xanthine oxidase; ua, uric acid; 
iMP, inosine monophosphate; XdH, xanthine dehydrogenase; Xor, xanthine oxidoreductase.

Figure 2. excretion routes of ua. endogenous and exogenous purines are 
ultimately synthesized into ua through a variety of metabolic pathways. a 
total of 30% of the body's ua is excreted through the intestines and 70% 
in the kidneys. ua, uric acid; aBcG2, aTP‑binding cassette superfamily 
G member 2; HuraT1 human uric acid transporter 1; GluT1, glucose 
transporter 1.
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Physiological characteristics of UA. Biologically, ua can 
have not only pro‑oxidative but also anti‑oxidative proper‑
ties (68‑72).ua has antioxidant effects under physiological 
conditions. The antioxidant mechanism of ua is mainly 
driven by the fact that ua is an oxygen radical scavenger, 
scavenging superoxide anions, hydroxyl groups, singlet 
oxygen and other reactive substances in vivo (73,74). This 
protects the cardiovascular system from oxidative stress 
damage. ua acts as a pro‑oxidant in states with high levels 
of ua or low levels of other antioxidants (68). The oxidative 
effects of ua mainly manifest in mediating the immune 
response after cell injury (75), increasing pro‑inflammatory 
immune activation (76) and promoting low‑density lipopro‑
tein oxidation (77), the proliferation of smooth muscle cells 
and activation and the adhesion of platelets (78). in the pres‑
ence of cu2+ in the in vitro environment, ua is susceptible 
to antioxidant‑oxidant interconversion (79,80). in addition, 
ua can react with other oxidants (onoo−, oH−) and form 
pro‑oxidants, which participate in lipid metabolism and 
cause a chain reaction of lipophilic radical oxidation (81,82). 
Therefore, ua exerts oxidative and antioxidant effects at 
different concentrations (83,84). in cardiovascular disease, 
UA is considered a ‘double‑edged sword’ with beneficial and 
detrimental effects on cardiovascular disease (17,85). So, is 
there a similar association between ua and PH?.

5. Interaction of UA and PH

PH affects the level of UA metabolism. Hyperuricemia is 
commonly found in patients with secondary PH. Patients with 
PH and hemolytic diseases, such as thalassemia (86), sickle cell 
anemia (87), spherocytosis (88) and paroxysmal sleep hemo‑
globinuria (89,90), can develop erythrocyte lysis, adenosine 
deaminase release (91), tissue and organ hypoxia, reduced 
oxygen‑carrying capacity and increased ua metabolism (92). 
in patients with PH and metabolic syndrome (93), hyperinsu‑
linemia enhances the reabsorption of urate in the proximal 
tubules and UA concentrations increase (94). Inflammation, 
hypoxia and endothelial damage caused by connective tissue 
disease‑related PH, such as systemic sclerosis, systemic lupus 
erythematosus and Sjogren's syndrome, also play an impor‑
tant role in the increase in ua concentrations (95). after 
inflammation is activated, the release of cytokines promotes 
pulmonary artery vessel remodeling and cell proliferation, 
resulting in insufficient lung perfusion, tissue ischemia and 
hypoxia (96,97). These findings suggest that patients with 
secondary PH are closely associated with abnormal ua 
metabolism, and the SUA concentration reflects the severity 
of the illness to a certain extent. Therefore, ua may be useful 
as a potential biological marker of PH and may be able to be 
applied to the clinical setting and therefore, the importance of 
the application of ua in clinical treatment is discussed in the 
present review.

UA as a potential biomarker of PH. The relationship 
between SUA and IPAH was first discovered in 1999 (98). 
nagaya et al (98) found that patients with iPaH have consid‑
erably elevated Sua concentrations and the degree of Sua 
increase was positively correlated with the severity of new 
York Heart Association (NYHA)classification (99), negatively 

correlated with cardiac output, positively correlated with total 
pulmonary resistance, and correlated with the severity of 
iPaH, which was also an independent risk factor for poor prog‑
nosis of iPaH (98). The logarithm of Sua concentration was 
closely related to MPaP and right atrial pressure (100‑102). 
When Sua concentrations are >339 µmol/l (5.7 mg/dl), Sua 
concentrations predict right ventricular dysfunction in patients 
with iPaH (102,103). Baseline hyperuricemia and high vari‑
ability in SUA concentrations at the first follow‑up are strongly 
associated with 5‑year mortality in patients with iPaH (104). 
elevated Sua concentrations shorten the survival of patients 
with iPaH, whereas low Sua concentrations improve survival 
and delay clinical deterioration (105). Therefore, in the long 
term, high Sua concentrations may be a good predictor 
of survival in patients with iPaH. close monitoring of ua 
concentrations may be useful in assessing the disease severity, 
clinical prognosis of patients with PH and early detection of 
patients at high risk of death from iPaH.

Similar to iPaH, ua has high clinical value in connective 
tissue disease‑associated PH. in patients with PH secondary 
to systemic sclerosis, elevated Sua concentrations are nega‑
tively correlated with the 6‑min walk test distance and linearly 
correlated with pulmonary artery pressure (106‑109). Serum 
uric acid concentrations were significantly elevated in patients 
with systemic lupus erythematosus (Sle) secondary to PH and 
were significantly correlated with plasma NT‑pro‑B natriuretic 
peptide (nT‑pro‑BnP) levels and resting pulmonary systolic 
pressure (sPaP), as well as responding to the severity of Sle 
disease (110). When Sua is above the critical concentration 
of 6.5 mg/dl, the incidence of PH in patients with Sle can 
be reasonably and accurately predicted. Therefore, Sua 
concentrations can be used as an alternative marker to screen 
for PH in patients with Sle (111). When the baseline Sua 
concentration is ≥416 µmol/l (7 mg/dl), future development of 
PH secondary to Sle can be predicted (112). a multifactorial 
analysis showed that high ua concentrations were not only 
associated with all‑cause mortality from disease but also 
strongly associated with death from PH and thus, ua concen‑
trations may serve as an independent predictor of survival in 
patients with connective tissue‑related PH (113). Therefore, 
dynamic observation of Sua concentrations may be useful for 
assessing the severity of the condition and serve as a predictor 
of prognosis in connective tissue disease‑associated PH.

in conclusion, ua is not only a marker of metabolism but 
also a representative independent risk factor and predictor of 
PH. The aforementioned evidence suggests that ua is closely 
associated with PH (114‑117). However, the specific mecha‑
nisms involved in hyperuricemia promoting the development 
and progression of PH is unclear. in the present review, the 
effects of high ua concentrations on PH and the molecular 
mechanisms of the effects of high ua concentrations on endo‑
thelial cells, smooth muscle cells and renin‑angiotensin system 
(raS) activation are described.

6. Hyperuricemia promotes the development of PH

Hyperuricemia can mediate the development of cardiovas‑
cular disease by inducing endothelial dysfunction, oxidative 
stress, inflammatory responses and activation of the raS 
(Fig. 3) (118‑122). on a pathophysiological basis, ua also 
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induces pulmonary vascular endothelial dysfunction and 
promotes the transformation of smooth muscle cell prolifera‑
tion (123,124), thereby possibly promoting the development of 
PH. The series of molecular mechanisms whereby ua affects 
the course of PH through a series of molecular mechanisms 
are described in the present review.

UA induces endothelial dysfunction. endothelial cells are in 
direct contact with blood flow and act as a permeability barrier 
to maintain the exchange between the tissues of the vessel wall 
and blood (125,126). Furthermore, endothelial cells secrete 
vasoactive substances and cytokines, which also play an 
important role in regulating vasoconstriction, vascular inflam‑
mation, platelet aggregation and adhesion (127). Therefore, 
the integrity of endothelial function plays a major role in 
maintaining cardiovascular homeostasis.

endothelial dysfunction is one of the main pathological 
features of PH (128‑130). numerous studies have shown that 
hyperuricemia causes endothelial dysfunction and may play 
an important role in the vascular remodeling of PH (131). 

However, the specific mechanisms by which ua affects 
endothelial dysfunction are not fully understood.

nitric oxide  (no) is an endothelium‑derived relaxing 
factor and it regulates vascular tension, inhibits platelet 
activation and causes intimal hyperplasia (132). High ua 
concentrations are hypothesized to result in endothelial 
dysfunction by affecting the production of no, which may 
contribute to PH (133). ua may affect the formation of no 
in two ways. Firstly, ua can be directly oxidized with no to 
form superoxide anion, which consumes high levels of no. 
Secondly, there are various pathways by which ua inhibits 
no production which are described in the present review.

endothelial no synthase (enoS) is a key enzyme for 
no synthesis in endothelial cells. This enzyme catalyzes the 
hydrolysis of l‑arginine to produce no (134). ua can enter 
endothelial cells through uraT1 on the cell membrane (135), 
inducing intracellular reactive oxygen species production, 
endoplasmic reticulum stress and protein kinase c activa‑
tion (136). activated protein kinase c inactivates the inhibitory 
site of enoS, Thr495, by phosphorylating it and rendering it 

Figure 3. High UA affects the development of cardiovascular disease through endothelial dysfunction, oxidative stress, inflammation and activation of the 
raS system. disturbances in ua metabolism can cause hyperuricemia, which affects the development and progression of cardiovascular diseases through 
endothelial dysfunction, oxidative stress, inflammation and activation of the RAS system. Pre‑capillary PH: mPAP >20 mmHg, PAWP <15 mmHg and PVR 
>2 Wood units at rest. Post‑capillary PH: mPAP >20 mmHg and PAWP ≥15 mmHg at rest. PH, pulmonary hypertension; CHD, coronary heart disease; AF, 
atrial fibrillation; HF, heart failure; RAS, renin‑angiotensin system; UA, uric acid; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial wedge 
pressure; PVr, pulmonary vascular resistance; no, nitric oxide; enoS, endothelial no synthase; Xor, xanthine oxidoreductase.
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unable to bind calmodulin and catalyzes no synthesis (136). 
in addition to regulating glucose homeostasis, insulin activates 
the signal of phosphatidylinositol 3‑kinase  (Pi3K)‑protein 
kinase B (akt), which promotes the activation of enoS 
phosphorylation and no production, thus inducing vaso‑
dilation (137). Hyperuricemia antagonizes insulin receptor 
substrates and blocks insulin‑dependent enoS phosphoryla‑
tion in the Pi3K/akt/enoS pathway, thereby inhibiting no 
production (137,138). elevated ua concentrations in patients 
with metabolic syndrome (MS) can trigger endothelial 
dysfunction by decreasing endothelial no bioavailability, 
while reduced no production in this pathway may be associ‑
ated with hyperinsulinemia and insulin resistance (ir) (139), 
which lead to increased monocyte adhesion and impaired 
cellular energy metabolism (140,141).However, allopurinol 
may restore the effect of insulin on no production and vaso‑
dilation by reducing Sua concentrations, thereby improving 
the associated clinical symptoms (142,143).

UA also increases the expression of the inflammatory cyto‑
kines interleukin‑6 and interleukin‑8, tumor necrosis factor‑α 
and mir‑155 by activating nuclear factor‑κB (nF‑κB) (144,145). 
overexpression of mir‑155 leads to decreased enoS stability, 
reduced no production and endothelial dysfunction (146). 
By contrast, the use of nF‑κB inhibitor ii can prevent the 
ua‑induced decrease in no and the inflammatory reac‑
tion (145). Furthermore, arginase competes with enoS to 
bind l‑arginine and catalyze its hydrolysis to ornithine and 
urea (147). However, ua reduces no production in endothelial 
cells by increasing arginase activity and promoting competi‑
tion between arginine and enoS for l‑arginine (41,147). 
Mitochondrial damage is also a major feature of endothelial 
dysfunction. ua can trigger mitochondrial calcium overload 
and reactive oxygen species production by activating the mito‑
chondrial na+/ca2+ exchanger (148). This process can inhibit 
the tricarboxylic acid cycle and damage mitochondrial dna, 
thus leading to endothelial dysfunction (149). These findings 
suggest that ua induces reduced no production and vascular 
endothelial dysfunction, which in turn causes abnormal 
pulmonary vasoconstriction and provides a pathophysiological 
basis for the development of PH.

UA promotes smooth muscle cell proliferation. ua can 
enter vascular smooth muscle cells (VSMcs) via uraT1 
(Slc22a12, a member of the organic anion transporter 
superfamily) (150,151), stimulating specific mitogen‑activated 
protein kinases (MaPKs), erK 1/2 and p38 MaPK (152,153). 
This stimulation induces cyclooxygenase‑2 production and 
local coagulation, promotes platelet‑derived growth factor 
(PdGF)‑a and PdGF‑c chain secretion and upregulates 
PdGF‑a receptor mrna expression, promotes VSMc 
proliferation, increases cell survival and reduces apop‑
tosis (123,153‑159). However, angiotensin Ⅱ (Ang II) type 
i receptor inhibits ua‑induced activation of p38 MaPK 
and erK 1/2, thereby blocking the proliferative pathway 
of VSMcs (153,160). in addition, ua may also regulate the 
proliferation of smooth muscle cells by inducing inflamma‑
tory responses and activation of the chemokine monocyte 
chemoattractant protein 1, transcription factor activator 
protein‑1, nF‑κB and inflammasome nod‑like receptor 
protein 3 (153,161,162). Xanthine oxidase and uraT1 were 

up‑regulated in remodeled pulmonary artery walls in patients 
of iPaH, monocrotaline (McT) and Sugen‑hypoxia rats, 
increasing intracellular ua production, which promotes the 
proliferation of pulmonary artery smooth muscle cells, leading 
to further deterioration of PH (163). Thus, ua promotes 
smooth muscle cell proliferation and may play an important 
role in vascular remodeling in PH.

Activation of the RAS by UA aggravates pulmonary artery 
pressure. The raS is an important and complex endocrine 
system in the body. it not only plays an important role in 
regulating blood pressure and maintaining extracellular fluid 
homeostasis, but also affects the normal development of the 
cardiovascular system and maintains homeostasis of cardio‑
vascular function (164). Several studies have shown that 
elevated Sua concentrations may be associated with activa‑
tion of the raS (121,161,165‑168). in animal studies, high ua 
concentrations inhibited noS‑1 activity in glomerular dense 
plaques, downregulated no production and activated the 
raS (157,160,169‑171), leading to elevated blood pressure. 
These findings are consistent with human studies suggesting 
that ua activates the raS to mediate an elevation in blood 
pressure (172,173). usually, the activation of raS begins 
with the decrease of blood flow through renal artery (174).
The production of angiotensin peptides is first initiated by 
the synthesis and processing of preprorenin in juxtaglomer‑
ular cells neighboring the renal glomerulus with subsequent 
proteolytic cleavage of the signal peptide, intracellular sorting 
of prorenin to dense‑core secretory vesicles, and cleavage 
of the prosegment, producing catalytically active renin that 
is secreted in the systemic circulation (164,175,176). renin 
hydrolyzes angiotensinogen secreted by the liver to produce 
angiotensin i (ang i) (177). in Paecs, ang i is cleaved to 
ang ii by angiotensin‑converting enzyme (178). in the mech‑
anism of high ua‑induced endothelial dysfunction, excess 
ua can be rapidly taken up by vascular smooth muscle cells, 
and intracellular ua upregulates angiotensinogen mrna 
expression, thereby promoting ang ii production and ang 
ii type 1 receptor (main effector peptide of raS) expres‑
sion (179). These findings suggest that UA upregulates Ang 
Ⅱ expression, activates the RAS system, produces oxidative 
stress, and leads to endothelial cell senescence and apop‑
tosis (179,180). ang ii, which is a pleiotropic endocrine and 
paracrine hormone, upregulates vasopressin released by the 
central nervous system and induces VSMc contraction in 
the pulmonary circulation and systemic arterial and venous 
circulation (176,181). in addition, ang ii stimulates the 
release of aldosterone, which stimulates mineralocorticoid 
receptors in Paecs, inducing hypertrophy of PaSMcs and 
pulmonary artery vascular remodeling (182‑185). However, 
the vascular remodeling effects caused by ua and ang ii 
stimulation of VSMc proliferation and hypertrophy is inhib‑
ited by losartan [an angiotensin receptor blocker (arB)] 
and captopril [an angiotensin‑converting enzyme inhibitor 
(acei)] (157,186). ang ii also promotes vasoconstriction, 
proliferation, inflammation and fibrosis in the pulmonary 
vascular system and lung parenchyma by stimulating anG 
ii type 1 receptor (187,188). all of these studies suggest 
that ua mediates the relationship between the raS and 
PH, promoting pulmonary vascular remodeling, enhancing 
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pulmonary vasoconstriction and ultimately exacerbating the 
progression of PH.

7. Potential mechanisms by which PH affects UA 
concentrations

PH affects ua concentrations in two main ways. First, an eleva‑
tion in Sua concentrations in patients with PH is mainly due 
to tissue ischemia/hypoxia and oxidative stress (30,189,190). 
When oxygen metabolism is abnormal in the body, tissue 
ischemia or hypoxia and oxidative stress can lead to elevated 
ua concentrations (191,192). For example, PH is associated 
with chronic heart failure and chronic obstructive pulmonary 
disease, tissue hypoxia, increased anaerobic metabolism, 
decreased adenosine triphosphate synthesis and accelerated 
purine degradation, leading to increased uric acid produc‑
tion (193‑195). in addition, patients with heart failure are often 
associated with renal insufficiency or even renal failure, which 

can reduce ua excretion and lead to increased ua concentra‑
tions (196). as Sua concentrations rise, free radicals released 
by xanthine oxidase may activate inflammatory cells (197). 
When ua concentrations exceed the threshold, hyperuricemia 
enhances intracellular urate accumulation via down‑regulation 
of cell‑surface BcrP/aBcG2 expression in vascular endothe‑
lial cells (198), leading to endothelial dysfunction, leukocyte 
recruitment, cytokine release, and stimulation of activation 
and proliferation of VSMcs, as well as vasoconstriction 
and diastolic dysfunction (199) and ultimately, exacerbates 
tissue hypoxia (200). Moreover, hyperuricemia is involved in 
oxidative metabolism, platelet adhesion, blood rheology and 
platelet aggregation (201,202). These processes can increase 
platelet adhesion and make patients with PH more susceptible 
to pulmonary vascular thrombosis (203). Hypoxia also leads 
to impaired pulmonary vascular perfusion, and the release of 
additional cytokines further accelerates vascular remodeling 
and fibrosis (191,204,205). The effect of the use of drugs, such 

Figure 4. investigation of the molecular mechanisms of the potential association between high ua concentrations and Paecs and PaSMcs. after entering 
endothelial cells, ua induces the production of roS, activates mitochondria to trigger calcium overload and affects noS activity or stability through various 
pathways. The activation of these pathways causes reduced NO production and an inflammatory response, which leads to endothelial dysfunction and abnormal 
pulmonary vascular constriction. ua can also directly act on smooth muscle cells, promoting smooth muscle cell proliferation. no, nitric oxide, no; Paecs, 
pulmonary artery endothelial cells; PaSMcs, pulmonary arterial smooth muscle cells; Xo, xanthine oxidase; raS, renin‑angiotensin system; uraT1, urate 
transport protein 1; GluT‑9, glucose transporter‑9; nlrP3, nod‑like receptor protein 3; enoS, endothelial no synthase; ncX mito, mitochondrial na+/ca2+ 
exchanger; nF‑κB, nuclear factor‑κB; PKc, protein kinase c; er, endoplasmic reticulum; roS, reactive oxygen species; ir, insulin receptor; irS1, insulin 
receptor substrate 1; McP‑1, monocyte chemoattractant protein 1; (P)Pr, renin (pro)receptor.
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as diuretics in the setting of heart failure, on ua concentrations 
should not be overlooked. Borghi et al (206) reported that tab 
diuretics, thiazides and aspirin may increase Sua concentra‑
tions. When PH is combined with underlying diseases, such as 
renal insufficiency, hypermetabolic syndrome, obesity, hyper‑
lipidemia, hypertension, coronary artery disease and diabetes 
mellitus, it can also result in hyperuricemia (11,93,131). These 
diseases mainly cause dysfunction of ua excretion/increased 
ua synthesis (199). additionally, the use of clinical medica‑
tions in these conditions can interfere with ua concentrations. 
examples of these medications include calcium channel 
blockers (e.g., amlodipine and cilnidipine) (207), angio‑
tensin‑converting enzyme inhibitors (e.g., captopril, enalapril 
and ramipril) (208,209), angiotensin‑converting enzyme ii 
receptor antagonists (e.g., losartan) (210), lipid‑lowering agents 
(e.g., atorvastatin, simvastatin, ezetimibe and fenofibrate) (211), 
weight loss medications (e.g., orlistat) (212) and hypoglycemic 
agents (e.g., metformin) (213). additionally, sodium glucose 
transporter protein 2 reduces ua concentrations (214,215). 
Therefore, PH with hypoxia leads to elevated ua concentra‑
tions. However, ua, as a risk marker, exacerbates the severity 
of PH and increases the risk of death due to PH.

8. Protective effect of UA‑lowering drugs on PH

currently, ua‑lowering drugs mainly include the following 
categories: i) drugs that inhibit ua production (xanthine 
oxidase inhibitors, such as allopurinol and febuxo‑
stat) (216,217); ii) drugs that promote ua excretion (drugs 
that inhibit the production of the ua reabsorption proteins 
uraT1 and GluT9, such as benzbromarone and proben‑
ecid) (218,219); iii) drugs that promote ua catabolism (ua 
enzymes, such as rasburicase and pegloticase) (220,221); and 
iv) antihypertensive drugs (aceis such as enalapril, and arBs 
such as irbesartan and losartan) (208,210). Based on the role 
of ua in PH, some of these drugs (e.g., allopurinol and benz‑
bromarone) have been shown to reduce Sua concentrations 
and has a certain protective effects against arterial hyperten‑
sion (163,222‑224). Therefore, lowering Sua concentration 
has the potential to serve as a target for the treatment of PH.

9. Conclusions and prospects

increasing evidence has shown that ua is inextricably 
associated with PH and may serve as a circulating marker of 
PH (189) (Fig. 4). ua may be involved in PH by mediating 
inflammatory responses, oxidative stress, raS activa‑
tion and endothelial dysfunction (131). PH leads to tissue 
ischemia/hypoxia and oxidative stress, and impaired ua 
metabolism, which lead to an increase in Sua concentra‑
tions (225,226). However, the causal relationship between 
ua and PH is not completely clear. Hyperuricemia may 
be considered a risk factor/independent risk factor for 
PH and a predictor of disease onset, progression and 
prognosis (115,116,227), but whether Sua can be used as 
a circulating marker for PH needs to be validated by addi‑
tional clinical and basic research. in addition, to determine 
whether lowering Sua concentrations improves the clinical 
symptoms of PH, further investigation and clinical studies 
are required.
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