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Abstract. Ischemic stroke poses a major threat to human 
health. Therefore, the molecular mechanisms of cerebral isch‑
emia/reperfusion injury (CIRI) need to be further clarified, 
and the associated treatment approaches require exploration. 
The NOD‑like receptor thermal protein domain associated 
protein 3 (NLRP3) inflammasome serves an important role 
in causing CIRI, and its activation exacerbates the underlying 
injury. Activation of the NLRP3 inflammasome triggers the 
maturation and production of the inflammatory molecules 
IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis 
and CIRI damage. Thus, the NLRP3 inflammasome may be a 

viable target for the treatment of CIRI. In the present review, 
the mechanisms of the NLRP3 inflammasome in the intense 
inflammatory response and pyroptosis induced by CIRI 
are discussed, and the therapeutic strategies that target the 
NLRP3‑mediated inflammatory response and pyroptosis in 
CIRI are summarized. At present, certain drugs have already 
been studied, highlighting future therapeutic perspectives.
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1. Introduction

Stroke is a leading cause of human death and disability, and 
poses a major threat to humans (1). In total, ~85% of stroke 
are caused by cerebral ischemia and 15% are caused by 
cerebral hemorrhage (2). Cerebral ischemia is the result of a 
lack of blood supply due to occlusion of the cerebral arteries, 
which results in a lack of glucose and oxygen supply to all 
brain cells. Therefore, lack of blood in the brain disturbs 
intracellular homeostasis, which causes inflammation, oxida‑
tive damage, excitotoxicity and finally the death of brain 
cells (3). Thrombolysis to restore blood supply to the brain 
is currently a viable treatment option for (4). However, rapid 
reperfusion can lead to further damage to areas of the brain, 
a condition known as cerebral ischemia/reperfusion injury 
(CIRI) (5,6). Nevertheless, there are a number of possible 
mechanisms by which CIRI can occur, including inflam‑
matory response (7), Ca2+ overload (8), overproduction of 
reactive oxygen species (ROS) (9), neuronal damage caused 
by glutamate (10) and mitochondria induced‑autophagy (11). 
Of these mechanisms, neuroinflammation serves a key role 
in CIRI, including via local cytokine upregulation and 
leukocyte infiltration (12).
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Inflammasomes are protein complexes, and potent 
substances that activate inflammatory mediators, which was 
first proposed by Martinon et al (13) in 2002. Inflammasomes 
are part of the innate immune response of the body against 
pathogen invasion, inflammasomes are activated by cellular 
infection or stress stimulation and induce the expression, 
maturation and release of various pro‑inflammatory cytokines 
like IL‑18 and IL‑1β, thereby triggering a range of inflamma‑
tory responses (14,15). Inflammasomes are mainly composed 
of the nucleotide‑binding oligomeric domain‑like receptor 
(NLR) family, which can be divided into three subfamilies: 
The NLRP, nucleotide‑binding oligomerization domains 
(NODs) and the ice protease‑activating factor (IPAF) subfami‑
lies, including NLR family apoptosis inhibitory protein and 
IPAF (14).

The NOD‑like receptor thermal protein domain associated 
protein 3 (NLRP3) inflammasome is the most widely studied 
inflammasomes and contains NLRP3, Pro‑caspase‑1 and 
apoptosis‑associated spot‑like protein (ASC) (16‑18) (Fig. 1B). 
NLRP3 consists of an amino‑terminal pyrin domain structural 
domain, a central nucleotide‑binding structural domain and an 
oligomeric structural domain (19) (Fig. 1A). NLRP3 inflam‑
masome assembly is initiated by the interaction of the pyrin 
structural domain of NLRP3 with the pyrin structural domain 
of ASC (20). The NLRP3 inflammasome serves a key role in the 
innate immune system, and activation of the NLRP3 inflam‑
masome mediates the activation of downstream caspase‑1 and 
secretion of the pro‑inflammatory cytokines, IL‑1β and IL‑18, 
in response to microbial invasion and cellular damage (21). The 
NLRP3 inflammasome can be activated by different stimuli, 
including damage‑associated molecular patterns (DAMPS) 
and pathogen‑associated molecular patterns (PAMPs) (16). 
DAMPS are regulated by the pro‑inflammatory pathway, such 
as toll‑like receptor (TLR)/NF‑κB) signaling pathway, which 
increases NLRP3 and IL‑1β protein expression (22,23) and 
reduces the activation threshold of NLRP3 through additional 
post‑translational modifications (24‑26). PAMPs include Ca2+ 
signaling disruption, mitochondrial dysfunction, ROS produc‑
tion, K+ efflux and lysosomal rupture, promoting assembly of 
the inflammasome and activating caspase‑1, which catalyzes 
the conversion of pro‑IL‑1β to active IL‑1β (27,28).

As a novel form of programmed cell death, pyroptosis is 
mainly induced by the gasdermin (GSDM) family (29,30). 
Of the six members of the GSDM family, five are closely 
related to pyroptosis and these are GSDMA, GSDMB, 
GSDMC, GSDMD and GSDME (31). Members of the GSDM 
family have highly conserved N‑terminal and C‑terminal 
domains, and the N‑terminal domain can form pores in the 
cell membrane, causing pyroptosis (32). Activation of inflam‑
masomes can mediate the scission of GSDMD by caspase, 
which results in formation of GSDMD‑N‑terminal and finally 
leads to pyroptosis (33). In addition, pyroptosis is also a crucial 
pathophysiological process in ischemic stroke (34).

2. NLRP3 inflammasome is involved in CIRI

Activation of the NLRP3 inflammasome can induce CIRI (35). 
Abulafia et al (36) first demonstrated that the NLRP inflam‑
masome serves a key role in the inflammatory response to 
ischemic stroke. Furthermore, CIRI causes upregulation of 

NLRP3 expression (37) and inhibition of the NLRP3 inflam‑
masome might exert a neuroprotective effect to attenuate CIRI 
following stroke onset (38). In addition, the NLRP3 inflam‑
masome inhibitor, MCC950, attenuates cerebral infarction, 
edema, hemorrhagic transformation and neurological deficits 
in mice following CIRI (38). Furthermore, NLRP3 inhibi‑
tion facilitates diabetes‑mediated cognitive impairment and 
vascular neural remodeling after CIRI (39,40). Additionally, 
the NLRP3 inflammasome drives the inflammatory response 
in CIRI as revealed in a study by Franke et al (35), which 
demonstrated that NLRP3 mRNA and protein expression 
was elevated following CIRI, meanwhile other inflammatory 
vesicles did not change significantly (NLR family CARD 
domain‑containing 4, absent in melanoma 2 and NLRP1). A 
disintegrin and metalloproteinase 8 (ADAM8) is a transmem‑
brane protein with a number of different functions that serves 
an important role in tumor and neuroinflammation‑related 
diseases (41). In addition, there is evidence indicating that 
ADAM8 can aggravate CIRI by activating the NLRP3 inflam‑
masome  (41). Furthermore, the NLRP3 inflammasome is 
a key causative factor in stroke‑induced blood‑brain barrier 
disruption, in which the NLRP3 inflammasome exacerbates 
CIRI by activating inflammatory signaling cascades, inducing 
pyroptosis of brain endothelial cells and promoting disruption 
of the blood‑brain barrier (42). Early inhibition or blockade 
of NLRP3 activation protects against CIRI by reducing 
inflammation and stabilizing the blood‑brain barrier (42). In 
summary, the NLRP3 inflammasome activation is one of the 
key mechanisms for CIRI. Therefore, further research that 
focuses on the NLRP3 inflammasome as a therapeutic target 
for CIRI and the prevention and treatment of ischemic stroke 
is essential.

3. Mechanisms of the NLRP3 inflammasome in CIRI

ROS‑mediated activation of the NLRP3 inf lamma‑
some. Oxidative stress is known to be implicated in the 
pathogenesis of CIRI, and a study has demonstrated that 
oxidative stress serves an important role in the prevention 
and treatment of ischemic stroke by regulating the level of 
inflammation (43). Oxidative stress can produce ROS. ROS 
are radicals containing oxygen atoms, and include H2O2, 
O2‑ and OH‑. ROS are mainly derived from the mitochondria 
and can also be produced by cellular enzymes, including 
lipoxygenase and cyclooxygenase, which are responsible for 
inflammasome activation (44). CIRI takes place when the 
tissue damage caused by restoration of the blood supply to 
the tissue after a period of ischemia causes tissue damage. 
This reconstitution of blood flow causes accumulation of 
ROS, disturbance of cellular ion homeostasis and induce 
inflammatory response, thereby triggering further damage 
to ischemic tissues (44). In particular, ROS induce NLRP3 
inflammasome activation and stimulate tissue inflammation 
during CIRI (44,45). Furthermore, ROS have been demon‑
strated to be a proximal signal for NLRP3 inflammasome 
activation in inflammatory diseases including CIRI, renal 
and cardiac ischemia‑reperfusion  (46). Pro‑oxidant and 
pro‑inflammatory thioredoxin‑interacting protein (TXNIP), 
a key regulator of ROS, is associated with inflammation (47). 
TXNIP is required for NLRP3 activation, which leads to the 
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initiation or worsening of the disease state (48). The increase 
in ROS generation leads to the upregulation of thioredoxin, 
TXNIP recruitment of NLRP3 and NLRP3 activation (49). 
TXNIP is activated by ROS and promotes NLRP3 inflam‑
masome activation by binding to NLRP3 following ischemic 
stroke (Fig. 2), and inhibition of TXNIP expression reduces 
inflammasome activation after ischemic stroke  (49,50). 
Mitochondria also serve an important role in the regulation 
of ROS. Uncoupling protein 2 (UCP2) is an inner membrane 
protein of the mitochondria that has been reported to regu‑
late mitochondrial potential and ROS production  (51,52). 
At present, there is a study has reported that UCP2 serves 
an important role in CIRI. UCP2 deficiency aggravates 
hyperglycemia‑induced CIRI by enhancing NLRP3 inflam‑
masome activation and ROS generation (53). Since ROS are 
an important activator of NLRP3 following CIRI, strategies 
that eliminate excessive ROS may be effective therapeutic 
approaches for ischemic stroke.

Activation of the TLR4/NF‑κB signaling pathway mediates 
upregulation of NLRP3 inf lammasome expression. 
TLR4 is a transmembrane receptor protein of the innate 
immune system that is upregulated following CIRI  (54). 
Upregulation of TLR4 activates NF‑κB, which induces 
the release of number of proinflammatory factors such as 

IL‑18 and IL‑1β, triggering an inflammatory response and 
leading to brain injury (54). Microglia are intrinsic myeloid 
cells of the central nervous system and are involved in the 
development of CIRI. For macrophages or microglia, the 
presence of an NLRP3 activator alone is not sufficient 
to induce inf lammasome activation, and its activation 
requires initiation signals  (55). NLRP3 inflammasome 
activation must first be induced by initiating stimuli, such 
as ligands for TLRs, NLRs (such as NOD1 and NOD2) or 
cytokine receptors, which activate the transcription factor 
NF‑κB and upregulate NLRP3 and IL‑1β expression (55). 
Previous studies have demonstrated that activation of the 
TLR4/NF‑κB signaling pathway is a fundamental step in 
the formation of the NLRP3 inflammasome and is closely 
associated with activation of the NLRP3 inf lamma‑
some (56,57). TLR4 serves an important role in CIRI and 
is widely expressed in the brain, especially in microglia 
and endothelial cells  (58,59). Furthermore, inhibition of 
the TLR4/NF‑κB signaling pathway can reduce CIRI by 
regulating the inflammatory response and apoptosis (60). 
Collectively, the aforementioned studies have demonstrated 
that TLR4 activation is a key factor in the upregulation of 
NLRP3 expression following CIRI, implying that targeting 
TLR4 or its downstream proteins is likely to be an effective 
treatment for ischemic stroke (Fig. 2).

Figure 1. Structure of NLRP3 and the NLRP3 inflammasome. (A) NLRP3 consists of an amino‑terminal PYD structural domain, a central nucleotide‑binding 
structural domain and an oligomeric structural domain. (B) The NLRP3 inflammasome contains NLRP3, Pro‑caspase‑1 and ASC. ASC, apoptosis‑associated 
spot‑like protein; NACHT, nucleotide‑binding and oligomerization domain; LRR, leucine‑rich repeat; NLRP3, NOD‑like receptor thermal protein domain 
associated protein 3; PYD, pyrin domain.
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Autophagy can inhibit NLRP3 inflammasome activation. 
Autophagy acts as a stable self‑sustaining process in numerous 
physiological and pathological processes of eukaryotic cells. In 
this process, bilayers encapsulate pathogens, abnormal proteins 
and organelles to form autophagosomes, which are transferred 
to lysosomes for degradation (61). Autophagy can be classified 
as macroautophagy, microautophagy and chaperone‑mediated 
autophagy depending on the duration of action, the inducing 
signal, the type of target and the transit pathway into the 
lysosome (16,62). Macroautophagy involves the formation of 
double‑membrane vesicles that separate the cytoplasm. These 
intact vesicles, termed autophagic vesicles, then fuse with lyso‑
somes for subsequent degradation (63,64). In microautophagy, 
the material to be degraded reaches the lysosomal lumen via 
lysosomal invagination or the endoplasmic membrane (65,66). 
Chaperone‑mediated autophagy only occurs in mammalian 
cells and allows for the selective degradation of proteins 
with specific amino acid sequences (67). Among these three 
autophagic processes, macroautophagy, commonly termed 
autophagy, is the most active form and has been extensively 
studied in disease (68,69). Conserved proteins such as Beclin1, 
LC3 and P62 are involved in the autophagic process and are 

considered autophagy‑related proteins  (63). Autophagy is 
affected by various parameters such as endoplasmic reticulum 
stress (ERS), ROS, nutritional deficiencies, immune or inflam‑
matory stimuli, accumulation of organelle damage, and the 
Ca2+ concentration (70,71). Under physiological conditions, 
autophagy is typically maintained at basal levels. However, in 
pathological states, upregulated autophagy removes dysfunc‑
tional proteins from cells and aids cell survival (72). Autophagy 
can inhibit NLRP3 activation by reducing ASC expression, 
increasing phosphorylation of NLRP3 and scavenging 
ROS (16). The cytoplasmic protein, activating transcription 
factor 4 (ATF4), serves an important role in the regulation 
of autophagy, and ATF4 is a member of the activating tran‑
scription factor/cAMP response element binding protein 
family  (73). As a transcription factor, ATF4 was involved 
in Endoplasmic reticulum (ER) homeostasis, autophagy and 
inflammation response (73). In addition, ATF4 inhibits the 
NLRP3 inflammasome‑mediated inflammatory response via 
upregulation of Parkin‑dependent mitochondrial autophagy 
in CIRI (74). Finally, autophagy can target the degradation 
of IL‑1β, inhibit activation of the NLRP3 inflammasome and 
reduce the release of inflammatory cytokines (75,76). Thus, 

Figure 2. Mechanisms of the NLRP3 inflammasome in CIRI. ROS act as a signal for NLRP3 activation during CIRI. TLR4 triggers NLRP3‑mediated 
inflammatory responses and pyroptosis by increasing NLRP3 expression by regulating the NF‑κB transcription factor pathway. Autophagy can prevent 
NLRP3 activation by eliminating ROS. Additionally, α7nAChR and CYLD activation can inhibit NLRP3. Caspase‑12 is responsible for activating the NLRP3 
inflammasome. α7nAChR, α7 nicotinic acetylcholine receptor; AMPK, AMP‑activated protein kinase; ASC, apoptosis‑associated spot‑like protein; ATF4, 
activating transcription factor 4; CIRI, cerebral ischemia/reperfusion injury; CYLD, cylindromatosis; ERS, endoplasmic reticulum stress; LRR, leucine‑rich 
repeat; NLRP3, NOD‑like receptor thermal protein domain associated protein 3; PYD, pyrin domain; ROS, reactive oxygen species; TLR4, toll‑like receptor 4; 
TXNIP, thioredoxin‑interacting protein; UCP2, uncoupling protein 2; mtROS, mitochondrial reactive oxygen species; NACHT, Nucleotide‑binding and oligo‑
merization domain; CARD, caspase activation and recruitment domain; FL‑GSDMD, full length‑GSDMD; GSDMD‑N, GSDMD‑N‑terminal.
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autophagy has been shown to negatively regulate the NLRP3 
inflammasome activation and effectively reduce CIRI (Fig. 2).

Other pathways mediating the inhibition of the NLRP3 
inflammasome. In addition to the aforementioned three 
methods of activation, NLRP3 can also be activated by other 
pathways following CIRI. For example, there is evidence that 
the α7 nicotinic acetylcholine receptor (α7nAChR) is critical 
in mediating cholinergic anti‑inflammatory signaling (77). 
Electroacupuncture promotes α7nAChR‑mediated inhibition 
of the NLRP3 inflammasome, thereby reducing CIRI and 
neuroinflammation (78), which implies that α7nAChR may be 
an upstream signal for NLRP3 activation. ERS is severe in 
ischemic brain injury and leads to an inflammatory response 
via activation of caspase‑12 (79). In a previous study, pretreat‑
ment with the caspase‑12 specific inhibitor Z‑ATAD‑FMK 
attenuated cell injury and apoptosis, and reduced the levels of 
NLRP3, caspase‑1, IL‑1β and cleaved caspase‑3 compared with 
oxygen‑glucose deprivation/recovery (OGD/R) group (79). 
Therefore, the NLRP3 inflammasome signaling pathway may 
be inhibited by suppression of caspase‑12 signaling to attenuate 
CIRI. In addition, electroacupuncture induces upregulation of 
neuronal cylindromatosis (CYLD) expression, which exerts 
anti‑inflammatory and neuroprotective effects by inhibiting 
NLRP3 expression, regulates the interaction between neurons 
and microglia, reduces M1 microglia in the peri‑ischemic 
cortex, and improves the activation of M2 microglia, thereby 
reducing CIRI (80). Collectively, the above studies demon‑
strated that both α7nAChR and CYLD can inhibit NLRP3 
inflammasome activation, while ERS‑mediated caspase‑12 
activation can upregulate NLRP3 expression (Fig. 2).

Activation of the NLRP3 inflammasome promotes the 
release of downstream inflammatory factors and facilitates 
pyroptosis in CIRI. Activation of inflammasomes has been 
associated with various inflammatory diseases, including 
post‑ischemic inflammation following ischemic stroke (12). 
Inflammasomes mediate the activation of caspase‑1, which in 
turn induces the secretion of pro‑inflammatory cytokines and 
pyroptosis (81). Caspase‑1 is activated upon recruitment to 
the inflammasome, then activated caspase‑1 cleaves the cyto‑
kines Pro‑IL‑1β and Pro‑IL‑18 into their mature bioactive 
forms (13,82). IL‑1β controls fever, pain threshold, vasodila‑
tion, and hypotension, and promotes immune cell infiltration 
into infected or damaged tissues (83). IL‑18 is required for 
production of IFN‑γ, a costimulatory cytokine that mediates 
adaptive immunity  (84). CIRI activates NLRP3, induces 
the release of IL‑1β and IL‑18 and promotes maturation of 
GSDMD‑N, and leads to severe neuronal pyroptosis  (85). 
Previous studies have demonstrated that the expression levels 
of GSDMD‑N, NLRP1/3, IL‑1β and IL‑18 in Sprague‑Dawley 
rats and mice were increased following CIRI compared with 
the Sham group, and intervention treatment of these inflam‑
matory factors attenuated CIRI (86‑90). In another study, the 
mRNA expression levels of NLRP3, caspase‑1, IL‑1β, IL‑6 
and TNF‑α were increased in microglia after OGD/R treat‑
ment compared with the control group (91). Overall, NLRP3 
inflammasome activation promotes the release of down‑
stream inflammatory factors and causes GSDMD‑mediated 
pyroptosis following CIRI (Fig. 2).

4. Therapeutic strategies targeting NLRP3 in CIRI

Therapeutic strategies that alleviate CIRI by reducing the 
activation of NLRP3 via ROS inhibition. During CIRI, 
ROS stimulate tissue inflammation and activate the NLRP3 
inflammasome. Inflammatory diseases are often character‑
ized by the activation of the NLRP3 inflammasome, which 
is primarily triggered by ROS. Therefore, inhibiting the 
production of ROS or increasing their consumption following 
CIRI could be a viable treatment option for stroke (92). In a 
study by Cao et al (93), it was demonstrated that ruscogenin 
reduced ROS levels following CIRI, which in turn inhibited 
TXNIP/NLRP3 inflammasome activation and mitigated isch‑
emia‑induced blood‑brain barrier dysfunction. Additionally, 
astilbin has been reported to reduce the brain infarct volume 
and alleviate neurological deficits in middle cerebral artery 
occlusion (MCAO) rats (94). Furthermore, astilbin has been 
demonstrated to inhibit cellular inflammation induced by 
OGD/R by suppressing the activation of the ROS‑NLRP3 
inflammasome axis (94). Cepharanthine has also been demon‑
strated to reduce CIRI by inhibiting the 12/15‑lipoxygenase 
signaling pathway, leading to a decrease in ROS and the down‑
regulation of NLRP3 expression (95). In addition, ATN‑161 has 
been indicated to exert a protective effect on cells by reducing 
the levels of mitochondrial superoxide radicals, thereby allevi‑
ating oxidative stress and intracellular ROS during the onset 
of CIRI (96). However, tomentosin promotes the production of 
superoxide dismutase in rats during CIRI, which scavenges free 
radicals, accelerates the antioxidant system, inhibits NLRP3 
signaling and attenuates CIRI (97). Oleanolic acid (OA) has 
been demonstrated to reduce microglia activation and ROS in 
CIRI, suggesting that OA may exert neuroprotective effects on 
ischemic stroke by inhibiting NLRP3 inflammasome activa‑
tion through the reduction of ROS (98). The aforementioned 
studies have demonstrated that decreasing ROS levels can 
mitigate the harm caused by CIRI or cellular OGD/R treat‑
ment. Therefore, inhibiting the ROS may be a viable option for 
the treatment of stroke (Table I).

Therapeutic strategies that attenuate CIRI by inhibiting 
TRL4‑mediated NLRP3 upregulation. TLR4 is an important 
factor in CIRI, and its downstream NF‑κB signaling pathway 
is crucial in the formation of the NLRP3 inflammasome 
and is closely linked to its activation  (54). Inhibiting the 
TLR4/NF‑κB signaling pathway at the onset of CIRI may 
be a viable treatment option for stroke (54). Cui et al  (99) 
conducted a study on anthocyanin derived from Myrica rubra, 
and revealed that treatment of ischemia/reperfusion (I/R) mice 
with purified anthocyanin extracts for 1 week resulted in a 
decrease in brain infarct volume, disease damage, and nitric 
oxide and malondialdehyde levels, while superoxide dismutase 
levels were increased compared with Sham group (99). In 
addition, treatment with meisoindigo resulted in improve‑
ments in neurological scores, reduced infarct volume and 
decreased brain edema in MCAO/R mice compared with 
Sham group. Further analysis revealed that meisoindigo inhib‑
ited the expression of TLR4/NF‑κB signaling pathway‑related 
proteins in a dose‑dependent manner. This inhibition led to 
the downregulation of NLRP3, high mobility group box 1 
and IL‑1β expression (100). D‑carvone has been reported to 
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inhibit the TLR4‑induced signaling pathway of inflamma‑
tory cytokines and reduce NLRP3 expression, leading to the 
successful amelioration of I/R‑induced neuroinflammation 
in the brains of rats. As a result, I/R‑induced brain injury in 
the hippocampal and cortical regions was attenuated (101). 
Exosomes treated with melatonin have been shown to effec‑
tively reduce the infarct size and improve functional recovery 
by modulating the TLR4/NF‑κB signaling pathway and 
reducing NLRP3‑induced inflammation following CIRI (102). 
Additionally, tomentosin treatment enhances antioxidant 
capacity to reduce ROS levels, while also reducing the expres‑
sion of TLR4 and its downstream pro‑inflammatory cytokines. 
This ultimately inhibits NLRP3 expression and attenuates 
CIRI  (97). Vinpocetine has been revealed to inhibit the 
NF‑κB pathway‑related proteins, which in turn downregulates 
NLRP3 expression levels. This inhibition leads to a reduction 
in the release of pro‑inflammatory cytokines, resulting in a 
decrease in the size of cerebral infarcts and an improvement 
in behavioral recovery in MCAO mice (103). Salidroside has 
been demonstrated to reverse NLRP3 inflammasome activa‑
tion, resulting in downregulated levels of NLRP3, ASC, 
caspase‑1, IL‑1β and IL‑18 proteins, as well as the suppression 
of key components of the TLR4 signaling pathway in BV2 
cells following OGD/R (104). The specific TLR4 inhibitor, 
TAK242, exhibited the same effect as salidroside on BV2 cells 
following OGD/R induction, indicating that salidroside has the 
capability to specifically inhibit the TLR4/NF‑κB signaling 
pathway, reducing NLRP3 expression and attenuating 
CIRI (104). Curcumin has been demonstrated to attenuate 
white matter damage caused by stroke to some extent by 
inhibiting the NF‑κB/NLRP3 signaling pathway, improving 
functional outcomes and reducing microglia apoptosis (105). 
In summary, the aforementioned studies demonstrated that 
inhibiting the TLR4/NF‑κB signaling pathway through phar‑
macological treatment can effectively suppress the expression 
and activation of NLRP3, thereby reducing the inflammatory 
response and cellular damage caused by CIRI. Furthermore, 
inhibiting the upregulation of NLRP3 expression mediated 
by TLR4 may be a viable clinical treatment option for stroke 
(Table I).

Therapeutic strategies that mitigate CIRI by enhancing 
the autophagy‑mediated inhibition of NLRP3 activation. 
Autophagy serves a crucial role in various pathophysiological 
processes such as renal and cardiac ischemia‑reperfusion 
and CIRI. In pathological conditions, autophagy can hinder 
the activation of the NLRP3 inflammasome by eliminating 
endogenous inflammasome activators such as ROS, cytokines 
and damaged mitochondria from inflammatory components. 
Inducing cellular autophagy through pharmacological interven‑
tion during the onset of CIRI may be a viable option for treating 
patients following ischemic stroke (106). Exosomes secreted 
from bone marrow mesenchymal stem cells (BMSC‑Exos) 
have been found to increase autophagic flux in PC12 cells 
treated with OGD/R, while also inhibiting OGD/R‑induced 
pyroptosis  (107). Experimental data further indicated that 
BMSC‑Exos treatment led to decreased NLRP3 expression, as 
well as elevated LC3 II/I and phosphorylated‑AMPK)/AMPK 
levels  (107). These findings suggested that BMSC‑Exos 
promoted autophagic flux in PC12 cells via the AMPK/mTOR 

signaling pathway, while also inhibiting NLRP3 inflamma‑
some‑mediated pyroptosis  (107). As a result, BMSC‑Exos 
offer protective benefits to PC12 cells, shielding the cells 
from OGD/R injury (107). In a similar study, it was identified 
that human umbilical cord mesenchymal stem cell‑derived 
exosomes (MSC‑Exos) had a positive impact on BV2 cell 
viability following OGD/R (108). Additionally, the expression 
levels of NLRP3, cleaved caspase‑1 and GSDMD‑N, as well 
as the release of IL‑1β and IL‑18, were decreased, while trans‑
locase of outer mitochondrial membrane 20 and cytochrome 
c oxidase subunit 4 isoform 1 expression was increased. 
However, the neuroprotective effect of MSC‑Exos was partially 
abolished by FOXO3a small interfering RNA treatment, which 
also attenuated the inhibition of mitochondrial phagocytosis 
and pyroptosis induced by MSC‑Exos treatment. This study 
suggests that FOXO3a expression is increased by MSC‑exos, 
which in turn enhances mitochondrial autophagy in microglia. 
MSC‑Exos treatment inhibits pyroptosis induced by CIRI 
and ultimately reduces nerve damage (108). Pien‑Tze‑Huang 
has been demonstrated to regulate essential autophagic 
proteins via the AMPK/mTOR/unc‑51 like autophagy acti‑
vating kinase 1 (ULK1)‑related signaling pathway. This 
regulation enhances the autophagic response and inhibits 
the production of key pro‑inflammatory mediators, as well 
as the expression of NLRP3 and caspase‑1 p20 proteins in 
lipopolysaccharide‑induced BV2 cells. These findings suggest 
that Pien‑Tze‑Huang may enhance autophagy following CIRI 
via the AMPK/mTOR/ULK1 signaling pathway, thereby 
reducing NLRP3‑associated neuroinflammation  (109). In 
summary, the aforementioned studies all indicated that 
activation of the NLRP3 inflammasome can be effectively 
suppressed by enhancing autophagy‑mediated inhibition of 
NLRP3 activation. This in turn can lead to a protection in 
CIRI (Table I).

Therapeutic strategies that attenuate CIRI by inhibiting 
NLRP3 activation or expression through other pathways. In 
addition to inhibiting the activation of the NLRP3 inflamma‑
some by reducing ROS, regulating the TLR4/NF‑κB pathway 
or enhancing autophagy, there are a number of other thera‑
peutic strategies available to inhibit NLRP3 through different 
signaling pathways (Table I ). The NLRP3 inflammasome 
serves a crucial role in regulating the release of inflammatory 
factors and GSDMD‑mediated pyroptosis in CIRI. Inhibiting 
NLRP3 activation or expression can effectively reduce 
the injury caused by CIRI  (18). It has been demonstrated 
that Qingkailing can effectively reduce the inflammatory 
response following CIRI, which is achieved by inhibiting 
AMPK‑mediated NLRP3 activation and in turn attenuating 
CIRI (110). Similarly, astragaloside IV has been demonstrated 
to alleviate CIRI by inhibiting NLRP3 inflammasome‑medi‑
ated apoptosis through the activation of nuclear factor 
erythroid 2‑related factor 2 (Nrf2) (111). Additionally, elec‑
troacupuncture has been demonstrated to promote α7nAChR 
and CYLD‑mediated inhibition of the NLRP3 inflammasome, 
thereby reducing CIRI and neuroinflammation (78,80). The 
use of vagus nerve stimulation (VNS) treatment has been 
found to inhibit expression of pyroptosis‑related molecules, as 
well as reduce the number of pyrogenic cells and membrane 
pores. Notably, α7nAChR agonists have been found to 
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mimic the neuroprotective effects of VNS, which suggests 
that VNS serves a protective role in CIRI by promoting 
α7nAChR inhibition of NLRP3‑mediated pyroptosis (112). 
The caspase‑12‑specific inhibitor, Z‑ATAD‑FMK, has been 
reported to reduce cell injury and apoptosis in an OGD/R 
treatment group by inhibiting the activation of NLRP3. This 
inhibition also resulted in decreased levels of caspase‑1, IL‑1β 
and cleaved caspase‑3 compared with control group, indicating 
that CIRI could be alleviated by inhibiting caspase‑12 (79). 
Gualou Guizhi granule (GLGZG) has been found to effectively 
reduce CIRI by activating the PI3K/AKT signaling pathway 
and inhibiting cellular pyroptosis. Additionally, GLGZG 
suppresses NLRP3 expression and the release of its down‑
stream inflammatory factors (113). Another study found that 
Tongxinluo can inhibit the pyroptosis of astrocytes during the 
onset of CIRI. Furthermore, Tongxinluo reduces the expression 
of NLRP3, caspase‑11/1, IL‑1β and IL6, and attenuates CIRI 
by decreasing the accumulation of amyloid‑β peptide (114). 
Icariin has been demonstrated to reduce NLRP3 expression 
by inhibiting the inositol‑requiring enzyme 1/X‑box binding 
protein 1 signaling pathway, which decreases the expression 
of downstream inflammatory factors, reducing pyroptosis and 
attenuating CIRI (91). In addition, remimazolam has been 
reported to downregulate the expression of NLRP3 and its 
associated released inflammatory factors IL‑18 and IL‑1β, as 
well as GSDMD, in MCAO rats. This suggests that remima‑
zolam may serve a protective role against CIRI by inhibiting 
NLRP3 (89). Similarly, Xingxiong injection administration 
has been demonstrated to activate the AKT/Nrf2 signaling 
pathway and inhibit the NLRP3 inflammasome during the 
onset of CIRI, thereby exerting a protective effect (90).

5. Conclusion

Activation of the NLRP3 inflammasome is critical for the mecha‑
nisms of CIRI. In the present review, the mechanisms of NLRP3 
activation during the onset of CIRI are discussed and are shown 
in Fig. 2. ROS and TLR4 can promote activation of the NLRP3 
inflammasome and its downstream inflammatory response. To 
some extent, autophagy can negatively regulate NLRP3 activa‑
tion, which has protected CIRI. Additionally, α7nAChR and 
CYLD activation can inhibit NLRP3, while caspase‑12 activates 
the NLRP3 inflammasome. Activation of NLRP3 ultimately 
leads to an inflammatory response, as well as GSDMD‑mediated 
pyroptosis. Furthermore, in the studies described previously have 
demonstrated that specifically inhibiting the NLRP3 inflamma‑
some can mitigate neuroinflammation and improve outcomes 
following CIRI. The present review also examines current 
therapeutic approaches that aim to inhibit the NLRP3 inflamma‑
some to reduce the inflammatory response and pyroptosis during 
the onset of CIRI (Table I). As such, the present review offers 
a thorough theoretical foundation for conducting fundamental 
research on CIRI. Specifically, it provides a detailed overview of 
the mechanism of action of the NLRP3 inflammasome during 
CIRI, which will serve as a basis for future research in this field. 
It is recommended that further research also investigates the 
role of the NLRP3 inflammasome in pathogenesis and identifies 
novel therapies. The NLRP3 inflammasome may be considered 
a crucial target for the treatment of CIRI and may broaden the 
therapeutic field of ischemic stroke.

To the best of our knowledge, the present review was the 
first to categorize drugs that serve a protective role in CIRI by 
targeting the NLRP3 inflammasome with different molecular 
mechanisms. This provides novel strategies for the clinical 
treatment of ischemic stroke as well as novel ideas for other 
diseases in which the NLRP3 inflammasome serves a critical 
role in the pathologic process. For example, Pien‑Tze‑Huang is 
an herbal medicine used for a variety of inflammatory diseases, 
whether Pien‑Tze‑Huang has a protective effect in hemorrhagic 
stroke or in renal ischemic reperfusion is also a question that 
deserves in‑depth exploration. Exploring whether drugs that 
are protective in CIRI by targeting NLRP3 inflammasome 
also exert protective roles in other inflammatory diseases will 
contribute to the greater social value and economic benefits.
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