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Abstract. The myelin and lymphocyte protein (Mal) family 
is a novel gene family first identified and characterized in 2002. 
This family is comprised of seven members, including Mal, 
Mal2, plasmolipin, Mall, myeloid differentiation‑associ‑
ated marker (MYadM), MYadMl2 and cMTM8, which 
are located on different chromosomes. In addition to exhib‑
iting extensive activity during transcytosis, the MAL family 
plays a vital role in the neurological, digestive, respiratory, 
genitourinary and other physiological systems. Furthermore, 
the intimate association between Mal and the pathogenesis, 
progression and metastasis of malignancies, attributable to 
several mechanisms such as dna methylation has also been 
elucidated. In the present review, an overview of the structural 
and functional properties of the Mal family and the latest 
research findings regarding the relationship between several 
MAL members and various cancers is provided. Furthermore, 
the potential clinical and scientific significance of MAL is 
discussed and directions for future research are summarized.
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1. Introduction

The myelin and lymphocyte protein (Mal) family belongs 
to the Mal and related proteins for vesicle formation and 
membrane link (MARVEL) superfamily, first characterized in 
2002 (Fig. 1A) (1,2). Alonso and Weissman (3) first identified 
the human Mal cdna while searching for genes selectively 
expressed during T cell differentiation. MAL has been demon‑
strated as an element of the machinery that transports apical 
proteins through direct pathways in Madin‑darby canine 
kidney cells depleted of endogenous MAL (4‑7). At a steady 
state, MAL predominantly localizes to the apical zone of 
polarized epithelia and continuously shuttles between the Golgi 
apparatus and plasma membrane, functioning as a key carrier 
in membrane signaling in the direct transcytosis pathway (8,9).

Transcytosis is a specialized transcellular transport 
process enabling targeted transport of cargo, such as soluble 
molecules, macromolecules and pathogens, across epithelial 
barriers via direct and indirect pathways (10). The indirect 
pathway is common in most polarized epithelia, while the 
direct pathway is exclusive to certain epithelial cell types. 
The direct pathway appears mediated by incorporation of 
cargo proteins into specialized membrane microdomains or 
lipid rafts that generate apical‑destined vesicular carriers (11). 
in the direct pathway, cargo is endocytosed on one epithelial 
side, transported in vesicles formed through the Golgi and 
delivered subsequently to the opposite side of the epithelial 
barrier (10,11). Conversely, the indirect pathway first shuttles 
cargo to the basolateral or apical membrane (chiefly basolat‑
eral), where it is endocytosed into early endosomes before 
targeting the opposite membrane surface (11,12). Endocytosed 
proteins can be recycled to the original membrane, degraded in 
late endosomes and lysosomes, or transcytosed to the opposite 
surface (Fig. 2) (11,12).

The MARVEL superfamily consists of proteins containing 
the evolutionarily conserved MARVEL domain, present in 24 
human proteins (2). Besides the MAL family, the MARVEL 
superfamily also comprises the chemokine‑like factor 
MARVEL transmembrane domain containing (CMTM), 
physin and tight junction‑associated MARVEL protein 
families (Fig. 1B) (1,13‑17).

The MAL family is generally considered to consist of six 
members based on MAL proteins. MAL2, T‑cell differen‑
tiation protein‑like (MALL)/BENE and plasmolipin (PLLP) 
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exhibit a tetraspanin topology similar to MAL. The other 
two members, myeloid differentiation‑associated marker 
(MYadM) and MYadM‑like2 (MYadMl2), contain an 
additional MARVEL domain and form a distinct branch 
within the family (15). Additionally, the chemokine‑like 
factory (CKLF) superfamily was originally described in 2001, 
and CKLF‑like MARVEL transmembrane domain‑containing 
8 (CMTM8) shares 39.3% of amino acid homology with PLLP, 
thus it is often classified as a MAL family member (18,19). 
although Mal family members have different nomenclatures, 
they are considered proteolipid proteins due to the 20‑40% 
overall amino acid identity and similar hydrophobicity profiles 
(Table I) (20).

Functionally, the MAL family plays an important biological 
role in membrane transport, impacting neurological, digestive, 
respiratory, genitourinary and other physiological systems 
through signaling pathways including Notch, ERK/MAPK and 
EGFR (21‑27). Moreover, the MAL family is involved in the 
pathogenesis, progression and metastasis of various cancers, 
with each member exhibiting differential functions in malig‑
nancies to promote or inhibit disease advancement (28,29). 
numerous digestive system and female reproductive system 
cancers have been linked to Mal family members through 
various mechanisms (30‑34).

dna methylation occurs at cytosine residues in the 
cytosine‑guanine sequence (CpG). CpG islands, often located 
around the gene promoters, are genomic regions with high CpG 
density and G+C content >50% (35,36). Abnormal hypermeth‑
ylation of CpG islands upstream of tumor suppressor genes is a 
main mechanism of gene inactivation in human tumorigenesis, 
playing an important role in pathogenesis (37). Except for 
MYadM and MYadMl2, all Mal family genes contain a 
CpG island at their promoter region, making them susceptible 
to epigenetic regulation by DNA methylation (38).

as carriers in transcellular trafficking pathways, 
Mal proteins can function as either tumor suppressors or 
promoters, influencing cancer development (39). Methylated 
Mal combined with cell adhesion molecule 1 (cadM1) 
has been widely utilized as an early diagnostic biomarker 
for cervical cancer (40,41). Conversely, MAL2 participates 
in indirect apical transport and may modulate antitumor 
immunity when expressed at aberrant high or low levels in 
different tissues (42,43). Moreover, the homologs PLLP is 
expressed not only in the nervous system and kidney, but 
also in a number of other tissues such as thymus, testis, lung, 
and thyroid gland (44). MALL induces nuclear aberrations 
that can promote carcinogenesis in various tissues (45), 
while CMTM8 closely regulates EGFR signaling pathways 
and disease progression (27). MYADM and MYADML2 
are associated with myeloid differentiation and endothe‑
lial inflammation, with upregulated expression in certain 
diseases (46).

Therefore, Mal family members have differential 
tumor‑associated functions and mechanisms. Further eluci‑
dating their roles in tumor pathogenesis, progression and 
metastasis will significantly advance molecular detection and 
gene therapy, providing new hope to patients with cancer. The 
present review discusses the relationships between individual 
Mal proteins and cancers, aiming to elucidate patterns and 
offer alternative therapeutic strategies.

2. MAL/VIP17

Mal is encoded on chromosome 2q11 and produces a 17 kda 
integral membrane protein found in lipid rafts (47‑49). Lipid 
rafts are sphingolipid‑ and cholesterol‑enriched microdomains 
important for segregating cell surface components and influ‑
encing membrane dynamics, trafficking, adhesion, signaling 
and apoptosis (50,51). In epithelial cells, MAL predominantly 
localizes to the trans‑Golgi network (TGN), transporting 
vesicles to regulate protein sorting (6). MAL knockdown 
decreases apical vesicle transport, leading to accumulation 
of apical proteins in the Golgi (6). In T cells, MAL affects 
differentiation by modulating sorting but does not impact 
membrane localization of lymphocyte‑specific kinase (Lck) 
or T cell receptor signaling (52,53). MAL interacts with the 
glycosylphosphatidylinositol‑anchored protein cd59 and lck, 
suggesting that it can bind lipids to function as a membrane 
adaptor (6). MAL is also a key factor in exosome secretion 
from human T cells (54).

Beyond T cells, MAL is expressed in polarized epithelia 
and myelinating cells including the kidney, stomach, colon and 
oligodendrocytes (55‑59). In these cells, apical protein/lipid 
transport is essential for epithelial function, with loss of 
polarity associated with transformation (49). During oligo‑
dendrocytes maturation and Schwann cell myelination, Mal 
expression and lipid raft binding mediate polarization (59).

MAL is widely expressed in respiratory, neurological, 
genitourinary, gastrointestinal and endocrine/exocrine epithe‑
lial tissues (Table II) (24,60,61). It has dichotomous roles in 
carcinogenesis as either a tumor suppressor or progression 
factor (39). Evidence supporting its tumor suppressor activity 
includes ectopic MAL expression inhibiting growth and 
reducing viability of cancer cells in nude mouse models, 
blocking G1/S transition and increasing Fas‑mediated apop‑
tosis (32,62‑67). However, MAL acts as an oncogenic factor 
in endometrial carcinoma and certain lymphomas, such as 
thymic large B cell lymphomas but not in nodal diffuse large 
B cell lymphomas (39,68‑72).

association between aberrant Mal gene methyla‑
tion/protein expression and pathological features or clinical 
outcomes have been reported in multiple cancers such as 
colon, esophagus, breast and so on (73‑75). Rescue expression 
experiments using 5‑aza‑2'‑deoxycytidine (decitabine, DAC) 
with or without trichostatin a to inhibit dna methylation 
and deacetylation have provided further evidence that hyper‑
methylation is the predominant mechanism silencing Mal in 
particular malignancies (Table III) (32,41,62,63,73‑115).

Several studies have demonstrated that aberrant Mal 
promoter methylation is associated with Mal silencing in 
breast, esophageal and colorectal carcinomas, and shows 
promise as an early biomarker alongside other markers (73‑75). 
MAL hypermethylation is common in Barrett's‑associated 
esophageal adenocarcinoma but not squamous cell carcinoma, 
suggesting utility as an adenocarcinoma‑specific biomarker 
linked to high‑risk features (74). Besides suppressing motility, 
aggressiveness, tumorigenicity and inducing apoptosis, Mal 
exerts tumor suppressive effects in esophageal cancer (32). 
univariate and multivariate analyses have associated Mal 
methylation with poorer disease‑free survival in patients with 
gastric cancer, highlighting its potential as an independent 
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marker (76). Moreover, the MAL protein can inhibit gastric 
cancer invasion and metastasis by interfering with STaT3 
phosphorylation (77). Another study detected MAL hypermeth‑
ylation in 80% (49/61) of colorectal cancers and 71% (45/63) of 
adenomas vs. only 4% (1/23) of normal mucosa samples using 
methylation‑specific polymerase chain reaction, indicating 
MAL is downregulated early during progression (73).

In breast cancer cells and 69% of primary tumors, bisulfite 
sequencing revealed MAL promoter CpG island hypermeth‑
ylation relative to normal breast epithelia (75,78). Restoring 
MAL expression reduces tumor cell migration and alters lipid 
raft organization (75,78). Among patients with breast cancer 
not receiving chemotherapy, low MAL expression is prog‑
nostic for worse disease‑free survival, supporting its use as an 
adjuvant predictor (75).

CADM1/MAL methylation in high‑risk human papil‑
lomavirus (HPV) positive Pap smears associates with extent 
and duration of underlying cervical pathology, increasing in 
invasive cervical cancer (79,80). Combined detection plays 
an important diagnostic role in identifying precancerous 
cervical intraepithelial neoplasia (81‑83). MAL also serves as 
an indicator distinguishing long‑term and short‑term ovarian 
cancer prognoses, with silencing conferring treatment resis‑
tance (84,85). Lee et al (86) found that Mal methylation 
status marks platinum sensitivity in ovarian cancer, suggesting 
MAL represents a therapeutic target. Furthermore, low 
CADM1/high MAL levels associate with improved prognosis 
in Merkel cell carcinoma (87), whereas low Mal predicts 
poor Wilms' tumor outlook by altering the microenviron‑
ment (88). Finally, MAL demonstrates consistently reduced 
expression in head/neck and oral squamous cell carcinomas, 
with overexpression inhibiting proliferation, invasion and 
tumorigenesis (63,89‑91,115).

Non‑coding mRNAs (ncRNAs) modulate the expres‑
sion of protein‑coding genes and are classified as short, 
such as micro RNAs (miRNAs), or long ncRNA (lncRNA). 

LncRNA‑AC103563.8 promotes oral carcinoma development 
by suppressing MAL expression or interacting with other 
tumor‑related proteins, such as rPS3a, hnrnPK, HSPa9, 
RPS3, NCL and RPL12 (105).

3. MAL2

MAL2, encoded on chromosome 8q24, was first identified 
by Wilson et al (116) in 2001. MAL2 protein is a 19 kDa, 
four‑transmembrane integral protein sharing 35.8% homology 
with the Mal proteolipid required for apical transport, 
considered to be the closest family member to the Mal 
protein (116). In hepatoma HepG2, MAL2 selectively local‑
izes to cholesterol‑rich lipid raft membrane microdomains 
and is crucial for indirect route of raft‑dependent apical 
membrane transport (42). MAL2 interacts with the constitu‑
tively active, Golgi‑associated serine/threonine kinase 16 to 
sort soluble secretory cargo through the constitutive secretory 
pathway at the TGN in polarized hepatocytes (117). Unlike the 
Golgi‑predominant distribution of MAL, immunohistochem‑
istry (IHC) of thyroid follicles indicated that MAL2 localizes 
to the apical membrane within lipid rafts, implicating Mal2 
in transcytotic cargo transport from perinuclear endosomes 
to the apical surface via a raft‑dependent pathway (118). 
However, studies in Pc‑3 prostate and breast cancer cells 
demonstrated additional Mal2 distribution in non‑lipid 
raft components, suggesting its distinct functions inside and 
outside the lipid raft (119,120). In HepG2 cells, after CD59 
endocytosis, some Mal2 redistributed into vesicular clus‑
ters concentrating cd59 and leaving cd59 accessible to the 
basolateral recycling transferrin receptor. The receptor then 
segregates before the clusters fuse into Mal2+ structures that 
move apically to deliver CD59 (21). MAL2 loss blocks apical 
transport of polymeric immunoglobulin a receptor (piga‑r) 
and cd59, leading to perinuclear endosomal accumulation 
reachable by transferrin (42). MAL2 also regulates pIgA‑R 
Golgi‑to‑membrane transfer, whereby pIgA‑R remains in 
the Golgi when expressed alone in hepatic WIF‑B cells, but 
reaches the cell surface, undergoes endocytosis and localizes 
to Mal2+ regions when co‑expressed with MAL2 (121).

IHC shows MAL2 expression in the respiratory, diges‑
tive, genitourinary, endocrine and exocrine epithelia (often 
apically) as well as in specialized secretory cell clusters 
such as pancreatic endocrine cells. Peripheral neurons, mast 
cells, dendritic cells and hepatocytes also express MAL2 
(Table II) (22). Chromosome 8q24 gains, encompassing the 
Mal2 locus, associate with several epithelial cancer types 
and may explain upregulated MAL2 transcription in subsets 
of these malignancies (122,123).

Overexpression of MAL2 in breast cancer can interact with 
β‑catenin in breast cells, inducing c‑Myc to promote prolif‑
eration and invasion by regulating epithelial‑mesenchymal 
transition (124,125). MAL2 also associates with decreased 
immune infiltration and eosinophil/dendritic cell expres‑
sion, conferring worse prognosis (126). Multi‑omics analysis 
and cytology experiments by Yuan et al (127) showed high 
Mal2 levels in invasive breast, pancreatic, bladder, ovarian, 
cervical and other carcinomas, and high MAL2 expression 
associated with unfavorable prognosis in certain tumors. Yeast 
two‑hybridization, pull‑down and coimmunoprecipitation 

Figure 1. (A) Phylogenetic tree depicting the relationship of the MAL‑family 
within human MARVEL domain‑containing proteins. (B) Predicted 
structure of human MAL according to AlphaFold (https://alphafold.ebi.
ac.uk/entry/P21145). The alignment of the indicated proteins, excluding 
their cytoplasmic amino‑ and carboxyl‑terminal tails, was performed using 
the Muscle algorithm of the Jalview software, and the resulting alignment 
was analyzed using Mega 11 software. The protein accession numbers 
are as follows: MAL (NP_002362.1), MAL2 (NP_443118.1), MALL 
(NP_005425.1), PLLP (NP_057077.1), CMTM8 (NP_849199.2), MYADM 
(NP_612382.1), MYADML2 (NP_001138585.2). MAL, myelin and lympho‑
cyte protein; MARVEL, MAL and associated proteins for vesicle formation 
and membrane link; PLLP, plasmolipin; CMTM8, CKLF‑like MARVEL 
transmembrane domain‑containing 8; MYadM, myeloid differentia‑
tion‑associated marker; TAMP, tight junction‑associated MARVEL protein.
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experiments showed that the N‑terminus of MAL2 inter‑
acts with tumor protein d52 (TPd52) in breast cancer 
cells per (116). Jeong et al (128) demonstrated that Mal2 
plays key roles in breast cancer lipid raft formation, Her2 
signaling and membrane stability. As a chaperone protein 
for tumor‑associated protein mucin 1 (Muc1), Mal2 binds 
Muc1 in non‑raft fractions, potentially promoting breast 
tumorigenesis by modulating MUC1 expression and local‑
ization (120). In addition, MAL2 can prompt breast cancer 
immune evasion through MHc‑i endocytosis and degrada‑
tion, hindering antigen presentation and cd8+ T cell response. 
MAL2 inhibition conversely enhances cytotoxicity and 
recognition to suppress tumor growth (43,129). Zhu et al (130) 
found that the MAL2/MUC1‑C/PI3K/AKT/mTOR signaling 
elicits triple‑negative breast cancer (TNBC) aggressiveness, 
mitigated by targeted small molecules.

In non‑small cell lung cancer cells, MAL2 overexpres‑
sion hyperactivates MAPK/mTOR signaling, thus, targeting 
this pathway may improve therapeutic efficacy in these 
patients (29,131). MAL2 also interacts with IQGAP1 in 
pancreatic cancer, heightening ERK1/2 phosphorylation 
to drive progression and associate with increased metas‑
tasis (25,131,132). Chronic pancreatitis maintains MAL2 
expression, providing utility as a diagnostic marker (133). 

The ST8SIA6‑AS1/miR‑145‑5P/MAL2 axis promotes the 
progression of cholangiocarcinoma and may help improve 
clinical outcomes (134). MAL2 is expressed in prostate cancer 
and may regulate disease progression through the notch 
signaling pathway (26). Gao et al (134) found that mir‑129 
negatively regulates expression of MAL2 in papillary thyroid 
carcinoma and may be a potential therapeutic target. The high 
expression of MAL2 exhibits TPD52‑associated expression in 
ovarian/colorectal tumors, although the survival of patients 
with ovarian cancer shows no clear association (30,135,136). 
Various other malignancies overexpress MAL2, including 
gastric, cervical, bladder, oral and head/neck squamous cell 
carcinoma (31,34,137‑139).

circular (circ) rnas, which are a subclass of lncrna struc‑
tured in a loop with the 3' and 5' RNA ends joined covalently, 
can inhibit mirna activity, whereas other lncrnas promote 
miRNA functions (140,141). For instance, miR‑129 suppresses 
Mal2 in papillary thyroid cancer, representing a potential ther‑
apeutic target (140). The ST8SIA6‑AS1/miR‑145‑5P/MAL2 
axis promotes the progression of cholangiocarcinoma and may 
help improve clinical outcomes (142). Additional examples 
include co‑regulation of Mal2 by mir‑802 and the circrna, 
circ_0084904 in cervical cancer (31), by mirna320a along‑
side the lncrna, metastasis‑associated lung adenocarcinoma 

Figure 2. Schematic representation of transcytosis. Transcytosis involves two fundamental pathways. In the direct route, proteins are sorted in the TGN and 
transported directly to the apical or basolateral surface. In the indirect route, proteins are initially sent to one surface, then endocytosed and subsequently 
delivered to early endosomes. Endocytosed proteins may either recycle to the surface, undergo degradation by late endosomes and lysosomes (not shown) or 
undergo transcytosis to the opposite surface. MAL protein primarily localizes to the TGN, facilitating the transport of vesicles to regulate protein sorting. 
TGN, trans‑Golgi network; MAL, myelin and lymphocyte protein.
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Table II. Distribution of MAL and MAL2 in different human tissues.

Tissue/organ MAL+ and Mal2+ expression MAL+ and Mal2‑ expression MAL2+ and Mal‑ expression

Esophagus Stratified squamous epithelium ‑ ‑
Stomach Parietal cells, chief cells and ‑ ‑
 surface mucous cells
Small intestine Crypt cells, Paneth cells and Lymphocytes (Peyer's patches) ‑
 enterocytes with microvilli
large intestine Mucous cells ‑ ‑
Liver Hepatocytes and intrahepatic ‑ Biliary canaliculi
 ductal epithelium
Pancreas acinar cells, ductal cells and ‑ ‑
 endocrine cells
Kidney Distal convoluted tubules, ‑ Glomerulus
 collecting tubules and loop of Henle
Bladder/ureter ‑ Superficial cells from Ductal and acinar cells
  transitional
  epithelium
Prostate ‑ ductal and acinar cells ‑
Bronchi/trachea Respiratory epithelium ‑ ‑
 and goblet cells
lung Type 2 pneumocytes and ‑ alveolar lining cells
 mucous cells
lymph node High endothelial venules T cells dendritic cells
 endothelium
Thymus Hassall's corpuscles Cortical thymocytes and Epithelial cells
  medullary thymocytes
Thyroid gland  Thyrocytes ‑
Adrenal gland Medullary cells, zona ‑ ‑
 reticularis, zona glomerulosa and
 zona fasciculata
Testis leydig and Sertoli cells ‑ ‑
Uterine Cervix Uterine corpus endometrium ‑
Skin ‑ Ductal eccrine cells Apical keratinizing epithelium
   and sebaceous glands

MAL, myelin and lymphocyte protein.

Table I. Overview of MAL family members.

Gene names Protein names Length

Mal Myelin and lymphocyte protein (T‑lymphocyte 153
 maturation‑associated protein) 
Mal2 Protein Mal2 176
PllP  Plasmolipin; plasma membrane proteolipid 182
PMlP 
TM4SF11
MALL  MAL‑like protein; protein BENE 153
BENE
MYADM UNQ553/PRO1110 Myeloid‑associated differentiation marker; protein SB135 322
MYadMl2 Myeloid‑associated differentiation marker‑like protein 2 307
CMTM8  CKLF‑like MARVEL transmembrane domain‑containing 173
CKLFSF8 protein 8; chemokine‑like factor superfamily member 8
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transcript 1 in bladder cancer (34) and by linc00460 and 
mirna320a to enable breast cancer cell proliferation and 
ferroptosis evasion (143).

Notably, the research of López‑Coral et al (122) showed 
lower Mal2 protein levels in hepatocellular carcinoma, chol‑
angiocarcinoma and renal cell carcinoma relative to normal 
tissue. This implies MAL2 protein may have tumor‑suppressive 
roles, potentially by inducing actin‑remodeling filopodia to 
reduce migration, invasion and proliferation‑effects reversed 
upon MAL2 loss (Table IV) (122).

4. PLLP/TM4SF11

PllP protein is a transmembrane protein encoded by the 
PllP gene, also known as transmembrane 4 superfamily 
member 11 (TM4SF11), which plays a role in epithelial 
development, differentiation and migration (144‑147). PLLP 
is chemically similar to Mal and proteolipid protein (PlP), 
a type of myelin protein, sharing 29% homology and 49% 
similarity with MAL. This conserved sequence facilitates the 
classification PLLP as a MAL family member (2,148,149). In 
polarized cells, PLLP predominantly localizes to the apical 
membrane with some basolateral distribution. PLLP, like its 
homologue MAL, is isolated in the lipid raft in the trans‑Golgi 
apparatus network and before its transport to the apical and 
basolateral cell surfaces (147,150‑152). PLLP is delivered to 
the plasma membrane via microtubules as a component of 
vesicles (147,150). Endocytosed PLLP then forms marginal 
vesicles transported back to the Golgi and other regions, 
completing an intracellular cycle (144,153,154). Interaction 
with ganglioside GM1 restructures the extracellular loops of 
PllP, propagating a conformational signal through the plasma 
membrane to the intracellular domain, consistent with the role 
of PLLP in signal transduction (155).

Western blotting experiments demonstrate PLLP expres‑
sion in nervous, digestive (stomach, esophagus and colon), 
renal, cardiac, pulmonary, musculoskeletal, immune (thymus) 
and reproductive (ovarian and testicular) tissues, as well 
as endocrine glands such as the adrenal, parotid, subman‑
dibular, Cowper's and prostate (44,156‑158). Abundant apical 

localization manifests in kidney tubular epithelia and diverse 
gastric glandular regions (44,158). Nervous system expres‑
sion includes spinal leucoplast, peripheral Schwann cells 
and central oligodendrocytes (44,156,157,159). While PLLP 
resides apically in epithelia, phosphorylated PllP in neural 
cells contributes to myelination by inducing myelin precursor 
domains in the Golgi (44,158). PLLP plays an important role 
by activating the notch signaling pathway, which is essen‑
tial for cell differentiation and processes such as epidermal 
regeneration and diabetic wound healing (145,160). Reduced 
PLLP levels in patients with idiopathic pulmonary fibrosis 
implies protective roles in promoting endothelial develop‑
ment, membranes and cell junctions (161). However, no clear 
evidence elucidates PllP‑mediated tumorigenesis via notch 
or other pathways.

5. MALL/BENE

The MALL protein, also called BENE, was originally identi‑
fied proximal to immunoglobulin light chain κ locus. MALL 
comprises a protein‑lipid with a four‑transmembrane topology 
resembling PlP, PllP and Mal that circulates between cell 
membranes, endosomes and Golgi to mediate apical trans‑
port (162,163). Electron microscopy and immunofluorescence 
analyses in endothelial‑like ECV304 cells revealed predominant 
MALL localization to intracellular tubulovesicular structures with 
partial caveolin‑1 colocalization (163). Co‑immunoprecipitations 
confirmed Mall‑caveolin‑1 interactions, reflecting roles 
in cholesterol regulation (163). Beyond this membrane form, 
Mall also resides within promyelocytic leukemia nuclear 
body condensates (164). During mitosis, MALL accumulates in 
solid‑like condensates around the spindle but, when in excess, 
the condensates mis‑localized, altered the distribution of nuclear 
proteins emerin laP2β and BAF, and caused nuclear aberra‑
tions, which are a hallmark of cancer cells (164).

MALL is expressed in prostate, intestinal, cardiac and other 
tissues, but not brain, thymus, hepatic or splenic tissue (15). 
Oncogenesis appears to induce MALL expression in some 
cancers such as pancreatic and kidney while it is reduced in 
other malignancies such as colorectal, breast and lung (164). 

Table III. Regulation of MAL gene hypermethylation and expression in cancer.

 MAL gene Silenced MAL MAL mRNA expression
Cancer hypermethylation mRNA expression rescue by DAC treatment (Refs.)

esophagus Yes Yes Yes (32,74,92‑94)
Stomach Yes Yes ‑ (76,77,95,96)
colon Yes Yes Yes (73,97‑101)
Breast Yes Yes Yes (75,78,102)
Cervix Yes Yes Yes (41,62,79,81,82,103‑106)
ovary no no ‑ (84‑86,107,108)
Skin no no ‑ (87)
Prostate Yes Yes ‑ (109,110)
Head and neck Yes Yes Yes (63,90,111‑114)
oral cavity Yes Yes ‑ (89,115)

MAL, myelin and lymphocyte protein; DAC, decitabine.
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In colorectal cancer, significantly decreased MALL impacts 
caveolin‑1 signal transduction and Akt‑1 activity (165‑167). 
Mall suppresses colorectal growth and metastasis by inhib‑
iting the metastasis/angiogenesis‑associated ERK/MAPK 
pathway (167). Conversely, in pancreatic cancer there is 
overexpression of MALL and nuclear abnormalities confer‑
ring poorer prognosis (164). MALL also associates with 
unfavorable kidney cancer outcomes (168).

6. MYADM and MYADML2

MYadM is an eight‑transmembrane protein with two 
MARVEL domains residing in nuclear and cytoplasmic 
membranes. It regulates plasma membrane‑cytoskeleton 
connections, thereby controlling endothelial inflamma‑
tion (46,159,169). Previous studies demonstrate selective 
MYADM expression in myeloid lineage and hematopoietic 
cells, implicating roles in myeloid differentiation (170‑172). 
MYADM also shows abundant expression in various tissue 
epithelia and neural/pulmonary tissues (46,173). In pulmonary 
arterial hypertension, MYadM elicits smooth muscle prolif‑
eration through microrna‑182‑3p induction and vascular 
remodeling (174).

Several cancers exhibit upregulated MYADM protein, 
including metastatic melanoma and hepatocellular carcinoma, 
where it constitutes an independent survival/prognostic 
factor (175‑178). During prostate cancer metastasis, MYADM 
upregulation in tumor‑osteoclast/endothelial co‑cultures 
also support roles in facilitating spread (179). Furthermore, 
increased MYadM mrna marks myeloid leukemia 

differentiation, providing utility as a disease monitoring 
marker (170). In biomarker studies of prostate cancer recurring 
within five years in African Americans, MYADM associates 
with this aggressive disease course (180).

MYadMl2, a protein structurally similar to MYadM, 
exhibits elevated mRNA expression levels in hepatocellular 
carcinoma (181). Pathological results show cell population 
formed highly metastatic tumors in lung after being muta‑
genized with CRISPR activation. In vitro validation indicated 
overexpression of MYADML2 promoted proliferation and 
invasion of cells, and the inhibition suppressed cancer prog‑
ress (181). Its role in reducing sensitivity to chemotherapeutic 
drugs has also been documented (181).

7. CMTM8

cMTM8, a novel chemokine comprising 173 amino acids, 
shares up to 39.3% amino acid sequence homology with the 
Mal family molecule PllP, thus classifying it within the 
MAL family (18). Research has demonstrated that CMTM8 
expedites the internalization of transferrin receptor and 
EGFR, hastening the clearance of EGFR from the cell surface 
upon ligand induction (182). Furthermore, CMTM8 modu‑
lates EGFR‑mediated signaling pathways by reducing ERK 
phosphorylation levels (183). Subsequent investigations have 
revealed that cMTM8 induces apoptosis in cells through both 
caspase‑dependent and caspase‑independent pathways (184). 
li et al (182) reported CMTM8‑V2 as a selective splicing 
isoform of cMTM8, maintaining the ability to induce apop‑
tosis. However, the second exon encoding the MARVEL 

Table IV. Relative mechanism with the expression of MAL2 in different cancers.

cancer Mal2+ Mal2‑ (Refs.)

Breast MAL2/β‑catenin/c‑Myc axis, epithelial‑ ‑ (43,116,120,125,
 mesenchymal transition, low immune  128‑130,143)
 infiltration, TPD52, HER2signaling pathway,
 MAL2/MUC1‑C/PI3K/AKT/mTOR
 pathway, MUC1, MHC‑I complex,
 miR‑320a/MAL2 axis,
 LINC00460/miR‑320a/MAL2 axis
Lung MAL2/MAPK/mTOR pathway ‑ (29)
Colon/rectum TPD52 ‑ (134,135)
Liver ‑ Myc protein expression (122)
Pancreas ERK1/2 phosphorylation ‑ (25,131,133)
Bile duct ST8SIA6‑AS1/miR‑145‑5P/MAL2 axis Myc protein expression (122,142)
Kidney ‑ Myc protein expression (122)
Prostate notch signaling pathway ‑ (26)
Bladder MALAT/miR‑384/MAL2 axis ‑ (34)
ovary TPd52 ‑ (30)
Cervix miR‑802/MAL2 axis ‑ (31)
Thyroid gland miR‑129/MAL2 axis ‑ (141)
Oral cavity miR‑383‑5p/MAL2 axis ‑ (136)

Mal, myelin and lymphocyte protein; TPd52, tumor protein d52; Muc1, mucin 1; MalaT, metastasis‑associated lung adenocarcinoma 
transcript.
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domain and cytoplasmic YXX motif is absent in this isoform, 
thereby not impacting EGFR internalization.

While CMTM8 is widely expressed in numerous healthy 
human tissues, its downregulation or deletion has been 
observed in several solid tumors, including gastric cancer, lung 
squamous cell carcinoma, cervical cancer and renal clear cell 
carcinoma (182,185‑187). Overexpression of CMTM8 induces 
apoptosis in hepatocellular carcinoma cells by influencing 
caspase expression through mitochondria, thereby mediating 
related signaling pathways (184). Conversely, downregulation 
of cMTM8 activates the c‑Met signaling pathway, leading to 
the epithelial‑mesenchymal transition of hepatocellular carci‑
noma cells, facilitating tumor migration and invasion (188). In 
TNBC, miR‑582‑5p selectively inhibits CMTM8, resulting in 
decreased CMTM8 expression and attenuating its inhibitory 
effect on TNBC cell migration and invasion (189). Moreover, 
CMTM8 has been shown to inhibit the EGFR signaling 
pathway activity in osteosarcoma, suggesting its potential 
role as an osteosarcoma suppressor gene (190). Additionally, 
upregulation of cMTM8 inhibits the proliferation and inva‑
sion of bladder cancer T24 cells and enhances their sensitivity 
to chemotherapeutic drugs (191).

However, Gao et al (192) reported that overexpression of 
cMTM8 in bladder cancer promoted tumor growth and metas‑
tasis. High expression of CMTM8 has also been confirmed in 
colon and ovarian cancer (193,194). Lastly, Shi et al (195) iden‑
tified CMTM8 as a critical mediator of lysophosphatidic acid 
(LPA)‑induced pancreatic cancer invasion. CMTM8 interacts 
with lPa1 to activate the carcinogenic β‑catenin signaling 
transduction, thereby enhancing tumor migration and invasion.

8. Conclusion

The Mal family encompasses members that are widely 
distributed across various bodily systems, with their 

involvement in the digestive, respiratory, urinary and circula‑
tory systems being successively uncovered. These proteins 
play crucial roles in tumorigenesis signaling pathways and 
cell cycle regulation, thereby influencing tumor development 
and patient prognosis (38,39,42,68,136,164). However, the 
current understanding of their specific molecular mecha‑
nisms remains limited. Notably, high expression of MAL 
family members in normal tissues and their decreased 
expression in tumor tissues provide a reliable basis for tumor 
diagnosis. Furthermore, the expression of MAL in certain 
tumor tissues associates with the malignancy of tumors, 
offering prognostic value for patients with cancer (38,85,101,
127,155,164,184). Overexpression of MAL has been shown to 
induce apoptosis in tumor cells, while its inhibition leads to 
epithelial‑to‑mesenchymal transition, suggesting its potential 
as a suppressor of tumor cell proliferation and a candidate for 
tumor immunotherapy (1,38).

non‑invasive molecular detection techniques for cancer 
screening are rapidly advancing, with Mal family members 
serving as important cancer biomarkers in clinical testing 
(Table V). These members have been extensively utilized in 
non‑invasive tests, such as Mal methylation assays in blood, 
urine and feces‑derived samples from patients with various 
tumors (82,196‑199), as well as the analysis of Mal2 tran‑
script levels in blood from patients with gynecological and 
metastatic breast cancer (200,201). Integration of antibodies 
targeting MAL family members into existing antibody 
panels used in standard clinical practice for identifying 
cancer biomarkers in biopsies and surgical specimens, along 
with their application in liquid biopsies, may offer valuable 
avenues for enhanced prognostic and diagnostic insights in 
cancer cases.

While gene methylation or expression analyses are not 
commonly performed in medical pathology departments, iHc 
analysis of protein expression stands as the gold standard for 

Table V. Strategies to test MAL family members in clinical oncology research.

Strategies Methods Samples advantages disadvantages Prospect

Gene Hybridization of Biopsy/surgical Accurate and Not sensitive and Cancer
expression cDNA microarrays, specimens and quantitative rare in clinical research
analyses RT‑PCR/quantitative biofluids such as  practice
 rT‑Pcr, rna‑seq blood, urine and
 and western blotting feces
dna Sequencing of
methylation bisulfite‑treated DNA, Biofluids such as Predictive Complex data Cancer
 MSP, quantitative MSP blood, urine and value analysis and rare prevention
 and pyrosequencing feces  in clinical practice and
     treatment
IHC ‑ Biopsy/surgical Direct, high Cannot be Cancer
  specimens sensitivity quantitative, only diagnosis
   and gold standard qualitative and
   for cancer cell  treatment
   characterization

MAL, myelin and lymphocyte protein; MSP, methylation‑specific PCR; IHC, immunohistochemistry.
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characterizing cancer cells and has been used in research. 
additionally, rT‑qPcr and western blotting techniques have 
been employed to investigate the expression of MAL family 
genes.

Moreover, Mal family members can serve as predic‑
tive biomarkers for specific treatment modalities. For 
instance, MAL has been identified as one of the most highly 
expressed genes in survivors of short‑term serous ovarian 
cancer (84), with its transcripts significantly overexpressed 
in ovarian cancer cell lines resistant to conventional 
platinum‑based and other chemotherapeutic agents (85). 
This suggests its potential use in predicting the response to 
platinum‑based drugs and as a target for developing novel 
therapies to improve the sensitivity of ovarian cancer to 
these drugs. Similarly, MAL serves as a potential biomarker 
with clinical significance in predicting the response of 
patients with breast cancer to anthracycline and taxane, 
commonly used in adjuvant chemotherapy for early breast 
cancer (38,202,203). Additionally, the level of MAL2 
transcripts in pancreatic cancer demonstrates an inverse 
correlation with resistance to various chemotherapeutic 
agents, making it a potential indicator of chemotherapy 
response (204). Furthermore, MYADM has been identi‑
fied as a potential biomarker for predicting the response to 
the drug MS‑275, and possibly other histone deacetylase 
inhibitors, in colon adenocarcinoma (205).

While progress has been made in understanding the 
function of certain MAL family proteins, further explora‑
tion of their expression, molecular mechanisms and related 
signaling pathways in tumors is expected to not only serve 
as molecular markers for detecting tumorigenesis, progres‑
sion and metastasis, but also lead to new breakthroughs in 
prognostic prediction and treatment of patients with cancer. 
This necessitates continued research to fully comprehend the 
role of Mal family proteins in normal and tumor cells, with 
potential implications for the development of targeted thera‑
peutic agents.

In conclusion, a deeper investigation into the expression, 
molecular mechanisms and associated signaling pathways 
of Mal family members in tumors is anticipated to serve 
not only as molecular markers for detecting tumorigenesis, 
progression and metastasis, but also to yield novel insights for 
prognostic prediction and treatment of patients with cancer.
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