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Abstract. Cardiovascular diseases are caused by patho-
logical cardiac remodeling, which involves fibrosis,
inflammation and cell dysfunction. This includes autophagy,
apoptosis, oxidative stress, mitochondrial dysfunction,
changes in energy metabolism, angiogenesis and dysregula-
tion of signaling pathways. These changes in heart structure
and/or function ultimately result in heart failure. In an
effort to prevent this, multiple cardiovascular outcome trials
have demonstrated the cardiac benefits of sodium-glucose
cotransporter type 2 inhibitors (SGLT2is), hypoglycemic
drugs initially designed to treat type 2 diabetes mellitus.
SGLT2is include empagliflozin and dapagliflozin, which
are listed as guideline drugs in the 2021 European
Guidelines for Heart Failure and the 2022 American
Heart Association/American College of Cardiology/Heart
Failure Society of America Guidelines for Heart Failure
Management. In recent years, multiple studies using animal
models have explored the mechanisms by which SGLT2is
prevent cardiac remodeling. This article reviews the role
of SGLT2is in cardiac remodeling induced by different
etiologies to provide a guideline for further evaluation of
the mechanisms underlying the inhibition of pathological
cardiac remodeling by SGLT?2is, as well as the development
of novel drug targets.
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1. Introduction

Inthe event of external triggers, cardiac insufficiency responds
to adaptive alterations in both the structure and function of
the heart, commonly referred to as cardiac remodeling. These
alterations include changes in genomic expression levels, cell
morphology and abnormal interstitial secretion (1,2). Cardiac
remodeling is divided into physiological and pathological
types. Physiological cardiac remodeling is a reversible adap-
tive reaction that primarily occurs during growth, exercise
and pregnancy (3). Where pathological cardiac remodeling
is an irreversible adaptive response caused by numerous
conditions, including myocardial infarction (MI), isch-
emia/reperfusion (I/R) injury, pressure loading, inflammation
and oxidative stress (4,5). Direct manifestations of cardiac
remodeling include myocardial hypertrophy and cardiac
fibrosis and continued poor remodeling can lead to heart
failure (6-8). Thus, determining the mechanisms that lead to
cardiac remodeling and preventing undesirable remodeling
is essential.

Sodium-glucose cotransporter type 2 inhibitors (SGLT2is)
are hypoglycemic medications that inhibit SGLT2 in the
renal tubules, decreasing glucose reabsorption, lowering
the renal glucose threshold and initiating glucose excretion
in the urine (9). Compared with other traditional hypogly-
cemic drugs, SGLT2is are primarily used for treating type 2
diabetes but have also been reported to exert cardiovascular
benefits. According to cardiovascular outcome studies,
SGLT2is reduce the incidence of hospitalization due to heart
failure (10-14). The ‘new tetrad’ of cornerstone heart failure
medications has replaced the original ‘golden triangle’ and
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now includes beta-blockers, aldosterone receptor antagonists,
renin-angiotensin system inhibitors and SGLT2is (15,16).

The four SGLT?2 inhibitors widely used in clinical treat-
ment are Empagliflozin (EMPA), Dapagliflozin (DAPA),
Canagliflozin (CANA) and Ertugliflozin; these have been
approved by the US Food and Drug Administration and the
European Medicines Agency (17). EMPA and DAPA are
widely used for heart failure prevention and treatment (15,16).
Existing studies have confirmed the lack of SGLT2 expression
in cardiac tissue, thereby necessitating the investigation of
the myocardial protective effect of SGLT2is (18). It has been
suggested that SGLT2is exerts a diuretic effect via glomerular
reabsorption, reducing blood volume and cardiac load and
protecting the heart by reducing myocardial oxygen consump-
tion. However, as this diuretic effect is dependent on blood
glucose concentration, the cardiac benefit in non-diabetic
patients has not been determined (19). Therefore, the protective
effect of SGLT2is on the myocardium may be exerted directly
on the heart. Several studies have shown that the anti-heart
failure effect of SGLT2is may be mediated by inhibiting or
reversing cardiac remodeling (20-22).

Currently, the molecular mechanisms and signaling path-
ways of SGLT2is in cardiac remodeling are being investigated.
The present review provides a foundation and supports the
investigation of novel mechanisms of cardiac remodeling
and heart failure, as well as the development of novel drug
targets based on the function and molecular mechanisms
of SGLT2is-mediated inhibition of pathological cardiac
remodeling (Fig. 1).

2. Effects of SGLT2is on cardiac structure and function

Pathological cardiac remodeling is often manifested by changes
in the morphology and size of the left ventricle. In addition,
the left ventricular (LV) mass index (LVMI) and LV ejection
fraction (LVEF) are used as evaluation indexes of cardiac struc-
tural function (23,24). Studies have reported that SGLT2isThe
improved cardiac function is mainly manifested as increased
LVEF and decreased LV end-diastolic volume (LVEDV), LV
end-systolic volume (LVESV), left atrial volume index (LAVI)
and LVMI (22,25-35). However, LV diastolic dysfunction
(LVDD) often manifests as altered LV diastolic filling and is
assessed based on the peak mitral E wave velocity to early
mitral or septal annular tissue Doppler velocity ratio (E/e'), peak
mitral E wave velocity to A wave velocity ratio and LAVI (36).
SGLT2is also improved ejection fraction, LVEDV, LVESV and
diastolic dysfunction in animal models of heart failure (37-46).

Regarding cardiac structure, the LV mass (LVM), LV wall
thickness and LV wall thickness-to-cavity radius can be used
to determine the structural and morphological changes of
the LV. Specifically, increased LVM has been considered a
marker of clinical LV hypertrophy (47). Several studies have
demonstrated that the cardiovascular benefits of SGLT2is
may be achieved through reduced LVM, as it occurs without a
decline in the volume, which reflects the decrease in ventric-
ular wall thickness (26,29,30,48). However, the mechanisms
of decreasing wall thickness are yet to be elucidated. In the
present review, the effects of SGLT2is on cardiac structure
and function in patients with cardiovascular disease and
animal models were summarized (Tables I and II).

3. Effects of SGLT2is on myocardial hypertrophy in
cardiomyocytes and cardiac fibrosis in cardiac fibroblasts

Pathological cardiac remodeling causes hypertrophy of
cardiomyocytes and the proliferation of non-cardiomyocytes
in numerous cardiovascular diseases, including hypertension,
diabetic cardiomyopathy, aortic stenosis, M1, pathological stim-
ulation, cardiomyocyte hypertrophy and cardiac fibrosis (3).
The characteristics of cardiac hypertrophy are abnormal size
and function of myocardial cells, often manifested as increased
ventricular mass, myocardial cell volume and expression of
fetal genes, such as atrial natriuretic peptide, brain natriuretic
peptide and -myosin heavy chain (49). Myocardial fibrosis,
the excessive deposition of extracellular matrix, is closely
associated with the severity of myocardial fibrosis. Type I
collagen is the most abundant structural protein (50,51).
Myocardial fibroblasts are the main cellular effectors that lead
to cardiac fibrosis. Pathological stimuli can reduce the number
of cardiomyocytes, which in turn stimulates inflammation. In
order to compensate for the loss of cardiomyocytes, cardiac
fibroblasts proliferate and differentiate into myofibroblasts,
leading to scar formation (52).

Cardiac hypertrophy and cardiac fibrosis are the major
pathological processes in cardiac remodeling and are closely
related to the prognosis of cardiovascular diseases, making
them the primary intervention targets for heart failure (53,54).
Several studies have demonstrated that SGLT2is attenuates or
inhibits cardiomyocyte hypertrophy and cardiac fibrosis by
regulating multiple signaling pathways in numerous models,
such as transverse aortic constriction (TAC), left coronary
artery ligation MI and diabetes (39,40,55-63).

4.Role of SGLT2is in cellular pathophysiological processes

Apoptosis. Apoptosis is a type of programmed cell death
that serves a key role in embryonic development and tissue
homeostasis (64). Apoptosis is mediated by death receptors,
also known as extrinsic apoptotic pathways and mitochon-
dria, also called intrinsic apoptotic pathways, both of which
can activate cysteine-dependent proteases (caspases) (65).
Apoptosis serves a crucial role in the development of the heart
and is associated with the occurrence and development of
numerous cardiovascular diseases. Studies have reported that
apoptosis is a pathological feature of MI and heart failure, and
that the inhibition of apoptosis can prevent and treat post-MI
remodeling and heart failure (66).

Further studies have reported that SGLT2is reduces cardiac
remodeling and improves cardiac function by inhibiting the
apoptosis pathways. EMPA inhibits cardiomyocyte apoptosis
and improves cardiac remodeling in early MI in non-diabetic
mice (67).

In mice with autoimmune myocarditis induced by
a-myosin-heavy chain peptides, CANA markedly reduces
the Bax/Bcl-2 ratio and the level of cleaved caspase-3 protein,
followed by inhibition of apoptosis, which was reported to
improve myocarditis (68). In cardiac I/R rats, DAPA-induced
pre-ischemia upregulated the levels of anti-apoptotic protein
Bcl-2 to protect cardiomyocytes from apoptosis, thereby
alleviating cardiac mitochondrial dysfunction by reducing
reactive oxygen species (ROS) production (43). DAPA
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Figure 1. Possible role and mechanism of SGLT2is in inhibiting pathological cardiac remodeling. SGLT2is, sodium-glucose cotransporter type 2 inhibitors;
JAK, Janus kinase; STAT, signal transducer and activator of transcription; SGK1, Serum/glucocorticoid regulated kinase 1; sGC, soluble guanylate cyclase
enzyme; cGMP, cyclic guanosine monophosphate; PKG, cGMP-dependent protein kinase.

mediates the cardioprotective effect in diabetic rats by acti-
vating the phosphorylation of Akt,JAK2 and MAPK signaling
cascades, increasing the erythropoietin levels and reducing
apoptosis (69). DAPA also normalizes mitochondrial fission
and reduces cardiomyocyte apoptosis by activating the phos-
phoglycerate mutase member 5 (PGAMS5)/dynamin-related
protein 1 (Drpl) signaling pathway, thereby improving cardiac
remodeling after acute MI (70). However, this study did not
use an agonist for the PGAMS5/Drpl pathway, so the relation-
ship between DAPA and the PGAMS5/Drpl signaling pathway
could not be assessed.

Arecent study reported thatin Doxorubicin-induced cardiac
dysfunction, DAPA decreased the cardiac expression of Bax
and cleaved caspase-3, but increased the expression of Bcl-2,
as well as signal transducer and activator of transcription 3
(STAT?3) that was subsequently inhibited by Doxorubicin (71).
These findings indicate that DAPA activates the expression of
sirtuinl (SIRT1), which inhibits the protein kinase RNA-like
endoplasmic reticulum (ER) kinase (PERK)-eukaryotic trans-
lation initiation factor 2a (eIF2a)-C/EBP homologous protein
signaling pathway of the ER stress response in angiotensin
IT (Ang IT)-treated cardiomyocytes to reduce cardiomyocyte
apoptosis and improve TAC-induced cardiac remodeling

in mice (72). Therefore, it may be suggested that SGLT2is
improves damaged cardiac function by continual myocardial
cell apoptosis.

Many of the mechanisms are effectuated through the mito-
chondrial pathway. However, only a small number of studies
have assessed the role of SGLT2is in myocardial cell apoptosis
induced by the death receptor pathway. Hence, this mechanism
should be evaluated to understand the anti-apoptotic
mechanism of SGLT2is.

Autophagy. Autophagy is a process that degrades and recir-
culates damaged organelles, misfolded proteins and other
macromolecules through lysosomal-dependent pathways to
maintain cell homeostasis and function (73). Previous studies
have shown a crucial role of basal autophagy in cardiac develop-
ment and in the maintenance of normal cardiac function (74-77).
However, insufficient or excessive autophagy can affect the
development of pathological cardiac remodeling (78-80).
Furthermore, the activation of autophagy leads to the death of
cardiomyocytes in MI and I/R injury and has been shown to
have a dual effect in numerous research models, which may be
related to the Beclin 1 (BECN1) or AMPK-mammalian target
of rapamycin (mTOR) pathways (81-83). Several studies have
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Table I. Continued.

(Refs.)

Outcomes

Diagnostic method

Dose and action time

SGLT2i

Clinical trial number/type Patient characteristics

Author(s), year

(34)

LVEF?; LV-GLS?1

Echocardiography

10 mg, qd; 6 months

EMPA

Patients with type 2
diabetes mellitus and

A pilot prospective study.

GLISCAR study

Palmiero et al,

2023

reduced ejection fraction

heart failure (n=31)

(35)

LVEF?; LV-GLS?

Echocardiography

10 mg, qd; 6 months

EMPA/
DAPA

Patients with type 2

Real World Study

Russo et al, 2023

diabetes mellitus (n=35)

MOLECULAR MEDICINE REPORTS 29: 73, 2024 5

CMRI, cardiac magnetic resonance imaging; qd, quaque die; LAVI, left atrial volume index; LVMI, left ventricular mass index; E/e', ratio peak early diastolic mitral velocity to mitral annulus early diastolic

velocity; LVM, left ventricular mass; LVEF, left ventricular ejection fraction; LVEDVI, left ventricular end-diastolic volume index; LVESVI, left ventricular end-systolic volume index; LVEDV, left

ventricular end-diastolic volume; LVESYV, left ventricular end-systolic volume; E, early diastolic filling velocity; NT-proBNP, N-terminal pro-B-type natriuretic peptide; LV-GLS, LV global longitudinal

strain; SGLT2is, sodium-glucose cotransporter type 2 inhibitors; EMPA, Empagliflozin; DAPA, Dapagliflozin.

demonstrated that SGLT2is exerts cardioprotective effects
through the activation or inhibition of autophagy.

In mouse models of coronary artery ligation-induced
diabetic and non-diabetic MI, EMPA-treated mice demon-
strated a significant decrease in cardiomyocyte death due
to excessive autophagy, which reduced autophagic flux by
targeting the Na*/H* exchanger 1 (NHEI) on cardiomyo-
cytes (63). EMPA exerts myocardial protective effects through
mitochondrial autophagy and the novel BECNI1-Toll-like
receptor (TLR)9-SIRT3 axis (84). Furthermore, EMPA exerts
cardioprotective effects in non-diabetic mice with MI with acute
hyperglycemia by suppressing beclin 1 (BCNI1)-dependent
autophagy rather than targeting NHE1 in cardiomyocytes (85).
Previous studies have demonstrated that BCN1 promotes the
crosstalk between apoptosis and autophagy (86). In another
study, EMPA was reported to inhibit ER stress-induced
autophagy by inhibiting the PERK/activating transcription
factor 4/BCNI signaling pathway, thereby alleviating myocar-
dial I/R injury and cardiomyocyte apoptosis (87). Furthermore,
overexpression of p62 and light chain 311/1 activates autophagy
when EMPA is administered. It reduces cardiac lipid toxicity
in Zucker diabetic fatty (ZDF) rats (88).

Likewise, DAPA represses cardiac remodeling and
hypoxia-induced apoptosis in heart failure through the activa-
tion of autophagy via the AMPK/mTOR pathway (89). It also
protects against myocardial I/R injury by limiting NLR family
pyrin domain containing 3 (NLRP3) inflammatory vesicle
activation and regulating autophagy (90). The dose of DAPA
administered in this study was 40 mg/kg/day, which is 20X
higher compared with the allometric-adapted dose used in
human clinical trials. It cannot be ruled out that the final result
is related to high doses. SGLT2is exert cardioprotective effects
through the activation and inhibition of autophagy via the inter-
ference of varied pathological conditions and detection time.
SGLT2is regulate autophagy through the AMPK pathway, ER
stress and inflammasomes. These pathways also regulate the
processes of cell apoptosis, inflammation and angiogenesis.
However, the association between these pathological processes
and autophagy or the precise mechanisms of SGLT2is are yet
to be elucidated.

Ferroptosis. Ferroptosis is a form of programmed cell death
different from cell apoptosis, cell necrosis and cell autophagy. It
is mediated by iron-dependent lipid peroxides and characterized
by reduced intracellular glutathione (GSH) expression, reduced
GSH peroxidase 4 (GPX4) activity and the accumulation of
ROS and lipid peroxides (91-93). Several studies have shown the
role of ferroptosis in numerous cardiovascular diseases, such as
cardiomyopathy, MI, myocardial I/R injury, atherosclerosis and
heart failure (94-98). Furthermore, SGLT2is exert cardiopro-
tective effects through the ferroptosis pathway. In model rats,
CANA can treat heart failure with preserved ejection fraction
(HFpEF) by reducing iron intake and iron overload, reducing
lipid peroxidation, increasing GSH production and inhibiting
oxidative stress to regulate ferroptosis (99).

Furthermore, advanced glycation end-products inhibit the
expression of solute carrier family 7 member 11 and ferritin in
diabetic cardiomyopathy and reduce GSH levels. This elevates
lipid peroxidation levels and ferroptosis, which in turn trig-
gers cardiac inflammation and cardiac remodeling, including
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Table II. Continued.

(Refs.)

Outcome

Diagnostic method

SGLT2i Dose and action time

Animal model

Author(s), year

Ves|; Ved|; (46)

Echocardiography

DAPA Two weeks after surgery,

Myocardial dysfunction

Lin et al, 2021

LVIDd|; LVEF?;

10 mg/kg/day for 6 weeks

induced by mitral regurgi-

tation in rats

LVFS1; +dP/dt}
LVEF|; LVFS|;

(178)

Angiotensin II-induced DAPA Oral administration of Echocardiography

cardiac fibrosis in rats

Zhang et al, 2021

e'1; Ele']; GLS|

5 mg/kg/day for 4 weeks
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Ves, end-systolic volume; Ved, end-diastolic volume; +dP/dt, maximal velocity of pressure rise; -dP/dt, maximal velocity of pressure fall; LVIDd, left ventricular internal dimension at end-diastole;
EDPVR, end-diastolic pressure volume relationship; LVEDP, left ventricular end-diastolic pressure; SGLT2is, sodium-glucose cotransporter type 2 inhibitors; CMRI, cardiac magnetic resonance imaging;

GLS, global longitudinal strain; EMPA, Empagliflozin; DAPA, Dapagliflozin.

cardiomyocyte hypertrophy, pro-fibrotic response, fibrosis and
ultimately cardiac dysfunction (100). Another study reported
that CANA may reduce ferroptosis and improve myocardial
oxidative stress in diabetic cardiomyopathy mice by regulating
iron metabolism and the systemic cystine-glutamate antiporter
(Xc)/GSH/GPX4 axis (101). However, the relationship and
specific mechanism of CANA in regulating iron metabolism
and the Xc/GSH/GPX4 axis require further evaluation. In
addition, CANA has been reported to inhibit inflammation
and ferroptosis through the activation of the AMPK pathway,
thereby reducing lipotoxicity in cardiomyocytes (102).

Furthermore, EMPA prevents DNA oxidation and
ferroptosis in trastuzumab-induced C57BL/6J mice, which
attenuates cardiotoxicity (103). Likewise, DAPA suppresses
the MAPK signaling pathway in a model of myocardial I/R
injury, reducing ferroptosis and exerting protective benefits on
the heart (104).

Inflammation.Inflammationis aleading factoraffecting cardiac
remodeling and the progression of heart failure (105,106).
Toll-like receptors (TLRs), a family of transmembrane recep-
tors, are recognized by danger-associated molecular patterns
(DAMPs) in MI and activate nuclear factor-B (NF-xB),
which in turn activates a cascade of inflammatory mediators,
including cell adhesion molecules, chemokines, and inflam-
matory cytokines (107,108). Furthermore, the inflammasome,
which are polymeric protein structures, form molecular plat-
forms that are activated when cells are infected or stressed,
stimulates the inflammatory response by activating several
inflammatory cytokines, such as IL-1 and IL-18 (109). Thus,
targeting specific cytokines, growth factors or inflammatory
pathways could alleviate adverse cardiac remodeling.
Proinflammatory cytokines: TNF-a, IL-1 and IL-6. The
activation of multiple pro-inflammatory cytokines, such as
TNF-a, IL-1 and IL-6, mediates cardiac remodeling through
their effects on cardiomyocytes, fibroblasts and immune
cells (110). These cytokines can induce cardiomyocyte hyper-
trophy and apoptosis (111-113). Pro-inflammatory cytokines
enhance the activity of matrix metalloproteinases and decrease
the production of extracellular matrix (ECM) components
in fibroblasts, which causes the ECM to degrade (114-116).
Thus, pro-inflammatory cytokines serve a role in pathological
cardiac remodeling. Furthermore, the pleiotropic anti-inflam-
matory factor IL-10 decreases the expression of TNF-a, IL-1
and IL-6 to reduce cardiac inflammation (117,118).
Furthermore, SGLT2is downregulates pro-inflam-
matory cytokines and improves cardiac function in
cardiovascular diseases. DAPA decreased the levels of inflam-
matory cytokines IL-6 and TNF-o in HFpEF pigs administered
deoxycorticosterone acetate and Ang II to construct an ejection
fraction-preserving heart failure model (41). Likewise, EMPA
decreased TNF-a and IL-6 levels in patients with HfpEF and
ZDF obese rats, reduced inflammation and enhanced myocar-
dial function (119). Furthermore, EMPA markedly decreased
the level of TNF-a and reduced myocardial fibrosis in hyper-
tensive heart failure rats (42). DAPA decreased the levels of
the pro-inflammatory cytokines IL-1, IL-6 and TNF-a in viral
myocarditis mice infected with Coxsackievirus B3. DAPA
facilitated macrophage polarization through STAT3-related
pathways to reduce myocarditis (120). Furthermore, DAPA
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improves cardiac hypertrophy in streptozocin-induced type 2
diabetic rats by inhibiting the nuclear translocation of NF-xB
and reducing the expression of calpain-1 in cardiomyocytes,
decreasing IL-6 and TNF-a levels and upregulating IL-10
levels (58). In addition, DAPA regulates malondialdehyde,
TNF-a and ROS levels by blocking the C-X3-C motif chemo-
kine ligand 1/receptor 1 axis and NF-xB activity, thereby
reducing lipopolysaccharide-induced inflammation and oxida-
tive stress (121). However, this study was performed in vitro
using HOC2 cells and requires validation in patients.

NLRP3 inflammasome. The NLRP3 inflammasome acceler-
ates the process of fibrosis by stimulating the production of
proinflammatory cytokines IL-1$ and IL-18 (122). Several
factors, including MI, stress, obesity, diabetes and metabolic
syndrome, activate the NLRP3 inflammasome and promote
inflammation (123-125). DAPA exerts anti-inflammatory
effects on the development of diabetic cardiomyopathy in
type 2 diabetic mice by decreasing the expression of NLRP3
inflammasome, IL-1f, IL-6 and TNF-a (126,127). Likewise,
EMPA inhibits cardiac fibrosis and inflammation in
non-diabetic mice treated with Doxorubicin via the NLRP3
and MyD88 signaling pathways and inhibition of NLRP3
and NF-«B inhibits the pro-inflammatory cytokine storms
in Doxorubicin-treated cardiomyocytes (128). Furthermore,
DAPA decreases p38-dependent TLR4 expression to prevent
NLRP3 activation, which then enhances cardiac function in
Doxorubicin-induced dilated cardiomyopathy (129). Finally,
CANA reduces type 17 T-helper cell infiltration and protects
cardiomyocytes from apoptosis by inhibiting the NLRP3
inflammasome pathway, which reduces myocarditis-induced
cardiac inflammation (68).

Macrophages also serve a role in the inflammatory response
during cardiac remodeling (130). SGLT2is reduce cardiac fibrosis
by regulating macrophage M2 polarization in infarcted rat hearts
via the STAT3 signaling pathway (131). Inflammatory and NF-xB
signaling pathways are triggered in patients with arrhythmogenic
cardiomyopathy (ACM) (132). DAPA reduces cardiac fibrosis
and inflammation in ACM mice by reversing hypoxia-inducible
factor (HIF)-2a signaling, inhibiting the NF-kB signaling
pathway (133). Accumulating evidence indicates that the role
of SGLT2is in controlling inflammation is associated with fat
reduction, which is efficacious in epicardial adipose tissue (134).
Although the aforementioned studies have reported that SGLT?2is
serve a myocardial-protective role through anti-inflammatory
mechanisms, another study on EMPA reported conflicting
results; EMPA did not show any effect on the NLRP3 inflamma-
some pathway or interleukin-1f levels (135). The present review
concluded that the effectiveness of SGLT2is in inhibiting inflam-
mation is indeterminate, and more comprehensive information is
essential to draw further conclusions.

Oxidative stress and mitochondrial dysfunction. Oxidative
stress is a redox imbalance caused by the excessive production
of ROS and/or an impaired antioxidant response (136). The
primary ROS sources in the heart are mitochondria, NADPH
oxidase (NOX), xanthine oxidase (XO) and uncoupled nitric
oxide synthase (NOS) (137). A large number of heart cells can
be affected by NOX via redox signal transduction. NOX regu-
lates redox-sensitive target proteins to limit the production of

ROS (138). Under physiological circumstances, normal ROS
signaling controls the growth and maturation of cardiomyo-
cytes, the processing of cardiac calcium, excitatory systolic
coupling and vascular tone (139). However, oxidative stress
effectuated by a sharp rise in ROS causes cardiac hypertrophy,
fibrosis, apoptosis and contractile failure under pathological
circumstances (140). Furthermore, oxidative stress is consid-
ered a key factor in the development of pathological cardiac
remodeling and heart failure, as this disrupts mitochondrial
activity by inducing oxidative damage to mitochondrial DNA,
RNA, lipids and proteins. Oxidative stress also impairs myocar-
dial cell systolic function by inducing mitochondria-associated
oxidative modifications of excitation-contraction-coupled core
proteins (141). Several studies have shown that the cardiac
benefits of SGLT2is are reduced oxidative stress in vivo and
ameliorated mitochondrial dysfunction through multiple
signaling pathways.

EMPA improves mitochondrial function by inhibiting
mitochondrial fission in type 2 diabetic hearts, as demon-
strated by an increase in the expression of mitochondrial
fusion-related proteins mitofusin-1 and optic atrophy 1 and the
inhibition of DRP1 expression in type 2 diabetic db/db mice
and H9C2 cardiomyocytes. In the present study, oxidative
stress was reduced by increasing the expression of nuclear
factor erythroid 2-related factor 2 (Nrf2) and its downstream
genetic targets (59).

DAPA protects cardiomyocytes from hypergly-
cemia-induced damage by inhibiting NOX-mediated oxidative
stress (142), whereas treatment with EMPA reduces LV hyper-
trophy and fibrosis after TAC and MI in non-diabetic mouse
models and Sprague Dawley (SD) rats with coronary artery
ligation-induced oxidative stress. Hypertrophy and fibrosis
were improved by upregulating mitochondrial biogenesis,
enhancing mitochondrial oxidative phosphorylation, reducing
ROS production, attenuating apoptosis and increasing
autophagy (39,143). EMPA treatment in diet-induced obese
mice reduced cardiac fat accumulation and mitochondrial
injury, improved myocardial hypertrophy and cardiac fibrosis
and reduced cardiac dysfunction. This effect may be reduced
by Sestrin2-mediated AMPK-mTOR signaling and Nrf2/heme
oxygenase 1-mediated oxidative stress responses (144). In
addition, EMPA inhibited high-fructose diet-induced cardiac
dysfunction in type 2 diabetic SD rats by attenuating mitochon-
dria-driven oxidative stress (145). DAPA reduces oxidative
stress, mitochondrial dysfunction, fibrosis, hypertrophy and
inflammation in Doxorubicin-stimulated rats via inhibition of
PIBK/AKT/Nrf2 signaling (61). This study used only male and
no female animals, while females may be more sensitive to
Doxorubicin and mimic the clinical state.

Energy metabolism. Modifications in myocardial energy
metabolism contribute to the development of pathological
cardiac remodeling (146). It is often manifested by a switch
of the heart back to the fetal genetic program and a shift
in preference of metabolic substrate from fatty acids to
glucose (147,148). Cardiac remodeling is associated with
reduced lipid oxidation capacity and increased glucose
dependence (149). Although the conversion of myocardial
metabolic substrates from fatty acids to glucose lowers oxygen
consumption, it can be detrimental to cardiac performance
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and aggravate heart failure because of insufficient energy
production (150,151). Furthermore, preserving fatty acid
oxidation during stress overload prevents the effects of glucose
on cardiac remodeling (152,153). Thus, promoting the use of
fatty acids and other metabolic substrates to regulate energy
metabolism may be a promising therapeutic strategy for heart
failure and to improve cardiac remodeling (154).

EMPA reduces excessive glycolysis in TAC-induced
cardiac overload mice by binding to glucose transporter
(GLUT) proteins, such as GLUT1 and GLUT4, which
increases the expression of CD36, restores fatty acid uptake
and improves mitochondrial oxidative phosphorylation. The
reduced glucose uptake may also lead to an impaired pentose
phosphate pathway, which in turn activates AMP-activated
protein kinases and blocks mTOR complex 1 (mTORCI) to
reduce cardiac hypertrophy (57).

Contrastingly, EMPA has been shown to improve diabetic
cardiac remodeling in diabetic cardiomyopathic rats by
reducing fatty acid and increasing glucose metabolism (155),
although this may be related to increased fatty acids in diabetic
heart disease, which leads to lipid toxicity and insulin resis-
tance (146,156), hence the contrasting results reported. EMPA
significantly elevated cardiac metabolism and cardiac ATP
production in coronary artery-ligated non-diabetic male SD
rats by increasing ketone body bioavailability and myocardial
oxidation of glucose and fatty acids (39). However, this study
did not provide direct evidence that EMPA-treated hearts were
associated with increased ketone body oxidation, nor did it
quantify the relationship between ketone body oxidation and
increased myocardial ATP levels.

Similarly, EMPA altered the myocardial fuel metabolic
substrates from glucose to ketone bodies, free fatty acids and
branched-chain amino acids in non-diabetic pigs induced
by 2 h of proximal balloon occlusion of the left anterior
descending branch. This improved myocardial energy,
enhanced LV systolic function and improved unfavorable LV
remodeling (38).

Angiogenesis. Angiogenesis is the physiological and pathological
process of forming new microvessels from pre-existing capil-
laries in response to hypoxia. Angiogenesis involves endothelial
cell proliferation, migration, differentiation, tube formation and
regulation of angiogenic factors (157-159). The development
of cardiac remodeling is significantly influenced by microvas-
cular density (157,160). Several studies have demonstrated that
promoting angiogenesis increases the density of microvessels
and arteriolar, thus reducing cardiac remodeling (161-165).
Previous studies have shown that EMPA promotes
myocardial microcirculatory perfusion and cardiac function
by reducing AMPK-mediated mitochondrial fission and
oxidative stress and stabilizing F-actin (166). Studies in a
mouse model of diabetes-related hindlimb ischemia found
that DAPA promotes vascular endothelial cell proliferation
and migration through the prolyl hydroxylase domain protein
2/HIF-1a axis, the secretion of multiple angiogenic factors,
the formation of neovascularization and increases in blood
perfusion (167). EMPA improves systolic dysfunction during
LV pressure overload in mice by activating the AKT/endo-
thelial NOS (eNOS)/NO pathway to prevent endothelial
apoptosis and maintain capillarization (168). In the event of

myocardial I/R injury in non-diabetic mice, EMPA inhibits
the DNA-dependent protein kinase catalytic subunit/fission
1 protein/mitochondrial fission pathway, protecting the
microvascular system (169). However, the microvascular
function in vivo is difficult to evaluate. In this study, only
electron microscopy was used to observe the structural
changes of microvessels in mice treated with EMPA, which
is insufficient. However, coronary blood flow reserve can also
be used. Another study demonstrated that DAPA reduces
cardiac endothelial dysfunction and microvascular injury by
inhibition of the XO/sarco(endo) plasmic reticulum calcium
ATPase 2/calmodulin-dependent kinase II/coffilin pathway
in I/R injury mice (170). EMPA also improves endothelial
cell dysfunction induced by a mutant aldehyde dehydroge-
nase 2 unable to metabolize acetaldehyde by inhibiting NHEI
and activating the AKT kinase and eNOS pathways (171).
EMPA attenuates cardiac microvascular I/R injury through
the activation of the AMP-activated protein kinase al
(AMPKal)/UNC-52-like kinase 1/FUNI14 domain containing
1/mitophagy pathway (172).

5. Molecular mechanisms of SGLT2is in pathological
cardiac remodeling

TGF-f1/Smad2/3 pathway. The development of cardiac
fibrosis is regulated by members of the TGF-f family,
particularly TGF-f1, which activates Smad-dependent or
non-Smad-mediated signaling pathways (173). TGF-p1 is a key
cytokine mediating the conversion of cardiac fibroblasts into
myofibroblasts that is regulated by numerous substances (174).
Previous studies have shown that EMPA significantly decreases
TGF-f1/Smad?2 levels and upregulates the expression of the
negative feedback regulator Smad7 to alleviate cardiac oxida-
tive stress and fibrosis in diabetic mice (175). Furthermore,
the antifibrotic activity of Smad7 on TGF-f§ and epidermal
growth factor receptor 2 reduces myofibroblast activation
and the production of structural and matrix proteins (176).
Early administration of EMPA during MI reduces myocardial
fibrosis and inhibits the TGF-1/Smad3 fibrotic pathway (177).
This study explored the effects of EMPA on early cardiac
physiology and fibrosis after myocardial infarction. Only
samples taken after 4 weeks of administration were exam-
ined, and earlier samples were not evaluated, so the results
may differ. DAPA reduces TGF-f1 levels and increases the
expression of the negative feedback regulator Smad7 in Ang
II-induced cardiac remodeling (178).

Reportedly, the activation of AMPKa inhibits the
TGF-f/Smad pathway (179,180). DAPA protects against
diabetic cardiomyopathy and myocardial fibrosis by inhibiting
endothelial-interstitial transformation and fibroblast activa-
tion in the AMPKo/TGF-f3/Smad signaling pathway (181).
Furthermore, DAPA reduces myocardial fibrosis by inhibiting
TGF-B1/Smad signaling pathways in normoglycemic chronic
heart failure rabbits (182).

MAPK pathway. MAPK is a class of highly conserved
serine/threonine protein kinases regulated by a cascade of
tertiary phosphorylation activation (183,184). MAPK is divided
into four subgroups: Extracellular signal-regulated kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK), p38 MAPK and
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Figure 2. Role of SGLT2is in inhibiting pathological cardiac remodeling. SGLT2is, sodium-glucose cotransporter type 2 inhibitors; AMPK, AMP-activated
protein kinase; NHEI, Na*/H* exchanger 1; SIRT1, sirtuin-1; XO, xanthine oxidase; SERCA2, sarco(endo)plasmic reticulum calcium-ATPase 2; CaMKII,
calmodulin-dependent kinase II; HIF1-a, hypoxia-inducible factor 1-a; SGK1, serum and glucocorticoid-induced protein kinase 1.

ERKS5 (185,186). Under pathological conditions, the MAPK
signaling pathway is activated by numerous extracellular
stimulation signals and is essential for cell proliferation,
differentiation, apoptosis and stress response (184,187). These
findings suggested that the MAPK signaling pathway regulates
cardiac remodeling due to multiple pathologies (188-191).
Furthermore, TAC activated ERK1/2, p38 and JNK in mice
and treatment with DAPA inhibited the expression of JNK
and p38 to reduce cardiac remodeling (56). Likewise, DAPA
attenuated palmitic acid-induced cell hypertrophy and apoptosis
and improved cardiac dysfunction and remodeling in high-fat
diet-induced obese mice. This protective effect both in vivo and
in vitro is mediated by the NHEI/MAPK signaling pathway (192),
and whether DAPA exerts cardio-protective effects through NHE1
requires further evaluation. Furthermore, this suggests that the
protective effect of EMPA on the heart may be mediated through
stimulation of the ERK1/2 signaling pathway in I/R injury (69).

mTOR and Akt. mTOR, a class of atypical serine/threonine
protein kinases, is a member of the phosphatidylinositol
3-kinase (PI3K)-related protein kinase family. The interaction
of mTOR with different proteins forms two macromolecular
complexes with different structures and functions, mTORC1
and mTORC2 (193). mTOR also integrates multiple extracel-
lular signals, such as nutrient levels, energy and growth factors,
and serves a role in cell growth, proliferation, survival, protein
synthesis, autophagy and metabolism (194,195). Several studies
have shown its crucial role in the physiological and patho-
logical processes of the heart (196-201). Furthermore, the Akt

and AMPK pathways are regulators of mTORCI, with AMPK
negatively regulating the mTOR signaling pathway (202).
Another study reported that Ertugliflozin reduces LV
fibrosis in mice with cardiac hypertrophy by activating the
AMPK/mTOR pathway and inhibiting its downstream targets
p70S6K and 4E-BP1 (203). This target mediates translation
to promote mMTORCI synthesis and causes mTORCI-induced
myocardial hypertrophy (204). Likewise, EMPA modulates
autophagy in cardiomyocytes to ameliorate sunitinib-induced
cardiac dysfunction, an effect mediated by the activation of
sunitinib-inhibited AMPK and reducing Sunitinib-activated
mTOR levels (37). AMPK/mTOR is one of the main pathways
regulating autophagy, which can be regulated by direct phos-
phorylation of UNC-51-like kinases 1 (205). Furthermore,
EMPA improves obesity-related cardiac dysfunction by
increasing the AMPK level and endothelial nitric oxide
synthase phosphorylation, and inhibiting Akt and mTOR phos-
phorylation (144). Previous research has demonstrated that the
heart can be protected by inhibiting the PI3K/AKT/mTOR
pathway (206). CANA alleviates cardiomyocyte lipotoxicity
in diabetic cardiomyopathy mouse models by blocking
the mTOR/HIF-1 pathway (207). Likewise, CANA is an
SGLT1i/SGLT2is and its impact on the mTOR signaling
pathway should be excluded from SGLT1 interference.

Other molecular signaling pathways. Serum and glucocorti-
coid-induced protein kinase 1 (SGK1) are the main mediators of
cardiacremodeling through the activation of epithelial sodium channel
(ENaC) proteins responsible for promoting fibrosis and upregulating
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Figure 3. Indirect effect of SGLT2is on pathological cardiac remodeling by inhibiting the crosstalk between inflammation and oxidative stress. SGLT2is,
sodium-glucose cotransporter type 2 inhibitors; ROS, reactive oxygen species; kB, inhibitor of NF-kB.

NHEI activity (208,209). DAPA attenuates LVDD and myocardial
fibrosis by modulating SGK1 signaling and ENaC protein (210).
Due to the use of pigs in this study, the sample size was small and
the results had statistical limitations. The JAK/STAT signaling
pathway is a promoter of fibroblast activation and ischemic-induced
cardiac dysfunction (211,212). CANA attenuates fibrosis by reducing
JAK/STAT signaling, activating AMPK and through antioxidant
signaling (213). Characteristics of diabetic cardiomyopathy include
decreased cyclic guanosine monophosphate (cGMP) levels and
altered soluble guanylate cyclase enzyme (sGC)-cGMP- dependent
protein kinase (PKG) signaling, which regulate systolic and diastolic
dysfunction under diabetic conditions (214,215). Furthermore, EMPA
improves cardiac function by preventing oxidative stress-induced
injury via the sSGC/cGMP/PKG pathway (216).

6. Conclusion

The present review provided a comprehensive summary of the
molecular mechanisms through which SGLT?2is attenuate patho-
logical cardiac remodeling in animal and in vitro cellular models.
The molecular pathways of SGLT2is in cardiac remodeling in
terms of cardiac hypertrophy, cardiac fibrosis, inflammation,

apoptosis, autophagy, ferroptosis, oxidative stress and energy
metabolism, were summarized in Fig. 2. Thus, which supports
the potential use of SGLT2i as a therapeutic which can inhibit
numerous mechanisms of cardiac remodeling, such as MI, I/R
and diabetic cardiomyopathy. SGLT2is are directly or indirectly
involved in regulating molecular pathways of cardiac remodeling.
Of note, the interaction between inflammation and oxidative
stress increases the production of ROS and pro-inflammatory
mediators, and SGLT?2is inhibit this interaction to regulate cardiac
remodeling (Fig. 3). Based on this summary, it is speculated that
SGLT2is exert inhibitory effects on cardiac remodeling (Fig. 4).

To date, the effect of SGLT2is on cardiac remodeling has
been evaluated by several approaches, but studies on how it
functions in the heart require further evaluation. In addition,
the epigenetic mechanisms of SGLT2is in cardiac remod-
eling have not been reported. In recent years, the impact of
epigenetics on disease development has received significant
attention and studies on cardiac diseases suggest that the
epigenetic mechanisms of SGLT2is require further assessment
in future studies.

Regarding diabetic and non-diabetic pathological cardiac
remodeling, few studies have simultaneously compared
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Figure 4. Schematic of the regulatory mechanisms of SGLT2is in pathological cardiac remodeling. SGLT2is, sodium-glucose cotransporter type 2 inhibitors;
HMGBI, high mobility group box 1; TNF-a, tumor necrosis factor-a; ROS, reactive oxygen species; AMPK, AMP-activated protein; Nrf2, nuclear factor
erythroid 2-related factor 2; NF-kB, nuclear factor-B; ERK, extracellular signal-regulated kinase; PI3K, phosphatidylinositol 3-kinase; CD36, cluster of
differentiation 36; SGK1, serum and glucocorticoid-induced protein kinase 1; NHEI, Na*/H* exchanger 1; SIRTI, sirtuin-1; XO, xanthine oxidase; SERCA2,
sarco(endo)plasmic reticulum calcium-ATPase 2; CaMKII, calmodulin-dependent kinase II; HIF1-a, hypoxia-inducible factor 1-a; sGC, soluble guanylate
cyclase enzyme; cGMP, cyclic guanosine monophosphate; PKG, cGMP-dependent protein kinase; elF2, eukaryotic initiation factor 2; PERK, protein kinase
RNA-like ER kinase; CHOP, C/EBP homologous protein; ATF4, activating transcription factor 4; ULK1, UNC-52-like kinase 1; GSK3p, glycogen synthase
kinase 3f3; p70S6K, 70 kDa ribosomal protein S6 kinase; 4EBP1, 4E-binding protein 1; SLC7A11, solute carrier family 7a member 11; PPARa, peroxisome
proliferator-activated receptor a; NCX, sodium-calcium exchangers; TFR1, transferrin receptor 1; FTN-H, ferritin heavy-chain; AP-1, activator protein-1; EPO,
erythropoietin; NETSs, neutrophil extracellular traps; HO-1, heme oxygenase-1; TRL4, toll-like receptor 4; MyD88, myeloid differentiation primary response
88; NLRP3, NLR family pyrin domain containing 3; COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; OXPHOS, oxidative phosphorylation;
Drpl, dynamin-related protein 1; eNOS, endothelial nitric oxide synthase; Fis-1, fission 1; MFN-1, mitofusin 1; CPT1, carnitine O-palmitoyltransferase 1;
Opal, optic atrophy 1; PHD2, prolyl hydroxylase 2; VEGFA, vascular endothelial growth factor A.

whether both occur through the same mechanism. SGLT2is
have been clinically approved for use in non-diabetic
heart failure, while in diabetic heart disease, their role
may be influenced by SGLT?2 targets. Thus, exploring the
mechanism of action of SGLT2is in non-diabetic cardiac
remodeling may provide a basis for clinical application in
the heart.

The present review emphasizes that SGLT2is are not only
effective in controlling blood sugar in diabetes but can also miti-
gate heart damage, suggesting their dual use in managing both
conditions.
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