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Abstract. Ryanodine-sensitive Ca2+ release channels 
(ryanodine receptors, RyRs) play a crucial role in the 
mobilization of Ca2+ from the sarcoplasmic reticulum (SR) 
during the excitation-contraction coupling of muscle cells. 
In skeletal muscle, depolarization of transverse tubules 
activates the RyR, whereas in cardiac muscle, a Ca2+ influx 
through an L-type Ca2+ channel activates the RyR. The RyR 
is also activated by caffeine, a low concentration (<10 µM) 
of ryanodine or cyclic ADP-ribose. RyR activity is inhibited 
by Mg2+, ruthenium red, or higher concentrations (≥100 µM) 
of ryanodine. The activity of RyR channels is modulated 
by phosphorylation and by associated proteins, including 
calmodulin (CaM), calsequestrin (CSQ) and FK506-binding 
proteins (FKBPs). In muscle cells, apoCaM (Ca2+-free CaM) 
activates the RyR channel, and Ca2+ CaM (Ca2+-bound CaM) 
inhibits the channel. CSQ can bind approximately 40 moles 
of Ca2+/mole of CSQ in the SR lumen of muscle cells, and 
interacts functionally with RyR protein. When the RyR is 
stimulated, Ca2+ released from the lumen is dissociated from 
the CSQ-Ca2+ complex. A 12-kDa or 12.6-kDa FK506-binding 
protein (FKBP12 or FKBP12.6, respectively) is associated 
with RyR protein. When FKBP12 or FKBP12.6 is dissociated 
from the FKBP-RyR complex, the RyR is modulated 
(activated). Phosphorylation of the RyR by cAMP-dependent 
protein kinase (PKA) and Ca2+/calmodulin-dependent protein 
kinase II  modulates the channel. PKA phosphorylation of 
the RyR on the skeletal and cardiac muscle SR dissociates 
FKBP12 or FKBP12.6 from the RyR complex. This review 

deals with the modulation mechanisms of RyR proteins by 
associated proteins and phosphorylation. 
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1. Introduction

In many cell types, intracellular Ca2+ stores play an essential 
role in the regulation of cytosolic Ca2+ concentration ([Ca2+]i), 
the elevation of which triggers various cellular events, including 
muscle contraction, enzyme secretion, cell proliferation and egg 
fertilization. Two distinct classes of Ca2+ release channels, 
which induce release of Ca2+ from the stores into the cytosole, 
have been identified. One is sensitive to the ubiquitous second 
messenger inositol 1,4,5-trisphosphate (IP3), which is formed 
by stimulation of a cell surface receptor with hormones or 
neurotransmitters (1). Ca2+ channels (receptors) sensitive to IP3 
are widely distributed on the endoplasmic reticulum (ER) of 
many tissues. The other is sensitive to the plant alkaloid 
ryanodine. Ca2+ channels (receptors) sensitive to ryanodine are 
activated by caffeine, ryanodine, Ca2+ and an NAD+ metabolite 
cyclic ADP-ribose (cADPR). Ryanodine receptors (RyRs) were 
first identified in the skeletal and cardiac muscle sarcoplasmic 
reticulum (SR) (2,3), and were found to play a major role in 
Ca2+ mobilization during excitation-contraction (E-C) coupling. 
The channel protein has been purified (4,5) and cloned (6,7) in 
the skeletal and cardiac muscle SR. RyRs have also been 
identified in the ER of non-muscle cells, including brain (8,9), 
liver (10) and exocrine (11) cells. At present, the RyR is thought 
to play a role in the regulation of [Ca2+]i in many cell types. The 
RyR has been shown to be a high molecular weight 
homotetramer (12). Each subunit of the receptor is a compound 
with a molecular mass of ~565 kDa (6). Three RyR isoforms 
(RyR1, 2 and 3) have been found to be expressed (13-15), RyR1 
and 2 in skeletal and cardiac muscle, respectively, and RyR3 in 
the brain and smooth muscle.

In the skeletal muscle SR, RyR proteins have several 
binding sites to calmodulin (CaM) (16,17), which is a ubiq-
uitous Ca2+-binding protein within cells. CaM is known to 
modulate Ca2+ release through the RyR (18-20). RyR proteins 

Modulation of ryanodine receptor Ca2+ channels (Review)
TERUTAKA OZAWA

Department of Physiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan

Received October 9, 2009;  Accepted December 28, 2009

DOI: 10.3892/mmr_00000240

Correspondence to: Dr Terutaka Ozawa, Department of Physiology, 
Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, 
Aoba-ku, Sendai 980-8575, Japan
E-mail: teozawa@mail.tains.tohoku.ac.jp

Abbreviations: cADPR, cyclic ADP-ribose; CaM, calmodulin; 
CaMKII, Ca2+/calmodulin-dependent protein kinase II; CSQ, 
calsequestrin; E-C, excitation-contraction; ER, endoplasmic 
reticulum; FKBP, FK506-binding protein; IP3, D-myo-inositol 
1,4,5-trisphosphate; PKA, cAMP-dependent protein kinase; PKG, 
cGMP-dependent protein kinase; RyR, ryanodine receptor; SR, 
sarcoplasmic reticulum

Key words: ryanodine receptor, calmodulin, calsequestrin, FK506-
binding protein, phosphorylation



Ozawa:  modulation of ryanodine receptor200

have been shown to be linked to the Ca2+-binding protein calse-
questrin (CSQ), located inside the SR, via the action of anchor 
proteins on the junctional region of the SR membrane (21-23). 
CSQ is known to activate or inhibit RyR channel activity 
(24-26). The immunosuppressant drug FK506 is known to 
modulate RyR proteins. A 12- or 12.6-kDa FK506-binding 
protein (FKBP12 or FKBP12.6, respectively) has been shown 
to be associated with RyR proteins on the skeletal or cardiac 
muscle SR, respectively (27-30). FK506 modulates (activates) 
the RyR by dissociating FKBP12 or FKBP12.6 from the RyR 
complex (31-33). RyR proteins on the skeletal and cardiac 
muscle SR are phosphorylated by cAMP-dependent protein 
kinase (PKA), cGMP-dependent protein kinase (PKG) or Ca2+/
calmodulin-dependent protein kinase II (CaMKII) (34-38). 
Phosphorylation of the RyR in skeletal and cardiac muscle cells 
by PKA or CaMKII modulates the channel activity (38-41).

In this review, the activation mechanisms of the RyR are 
described in brief, and the modulation mechanisms of RyR 
proteins by associated proteins and by phosphorylation are 
described in detail.

2. Activation of the ryanodine receptor

The activation mechanism of the RyR in E-C coupling of skel-
etal muscle is different from that of cardiac muscle. In skeletal 
muscle, RyR1 channels interact with voltage-dependent Ca2+ 
channels (dihydropyridine receptors; DHPRs) located on the 
transverse tubule (t-tubule) membrane. DHPRs act as voltage 
sensors for E-C coupling (42). Depolarization of the t-tubule 
membrane activates RyR1 via a direct physical DHPR-RyR1 
linkage (43-45). The activation of RyR1 induces Ca2+ release 
from the SR lumen into the cytosol. In cardiac muscle, depo-
larization-induced Ca2+ influx through DHPR (an L-type Ca2+ 
channel) activates RyR2 and induces Ca2+ release from the 
SR (46-48). This process is referred to as ‘Ca2+-induced Ca2+ 
release’. The Ca2+ dependence of Ca2+-induced Ca2+ release 
forms a bell-shaped curve with a maximum at 2-20  µM of 
cytosolic-free Ca2+ concentration (49,50). The activation mech-
anism of RyRs in Ca2+ mobilization in non-muscle cells has 
not been elucidated. Recently, the endogenous ligand cADPR 
has been shown to be capable of inducing Ca2+ release from 
the RyR in sea urchin eggs (51,52), and cADPR-induced Ca2+ 
release from RyRs has also been reported in various tissues, 
including cardiac muscle cells (53), brain cells (54), pancreatic 
β-cells (55) and pancreatic acinar cells (56,57). This compound 
is thought to be an intracellular messenger in addition to IP3 
(58,59). Caffeine and ryanodine are known to be pharmaco-
logical agents for RyRs. Caffeine increases the Ca2+ sensitivity 
of Ca2+-induced Ca2+ release (60). Ryanodine locks the RyR 
channel to an ‘open state’ at low concentrations (<10 µM) and 
to a ‘closed state’ at higher concentrations (≥100 µM) (61,62). 
Not only higher concentrations of ryanodine but also millimolar 
concentrations of Mg2+ (49,50,63,64) and micromolar concen-
trations of ruthenium red (65-67) inhibit the activity of RyRs.

3. Modulation of the ryanodine receptor

Calmodulin. CaM is a ubiquitous Ca2+-binding protein of 16.7 
kDa. Early sequence analysis of RyR proteins in the skeletal 
muscle SR showed that the receptor has several binding sites 

for CaM (16,17). A study using 125I (18) or fluorescently (68) 
labeled CaM in skeletal muscle has indicated that RyR1 has 
4-6 binding sites per subunit of the receptor for apoCaM (Ca2+-
free CaM), and 1 binding site per subunit of the receptor for 
Ca2+ CaM (Ca2+-bound CaM). However, recent studies using 
35S-labeled CaM in both skeletal and cardiac muscle have shown 
that RyRs have only one binding site per subunit of the receptor 
for both apoCaM and Ca2+ CaM (20,69,70), and that the binding 
sites for apoCaM and Ca2+ CaM are in the same region (amino 
acid residues 3630‑3637) (69). It has been suggested that the 
larger number of binding sites for apoCaM previously reported 
may be due to an artificial effect (69). Studies on both Ca2+ 
efflux and single channel activity using lipid bilayer membranes 
have demonstrated that apoCaM, the concentration of which is 
increased at nanomolar Ca2+ concentrations, activates the RyR1 
channels (18-20,71), but not the RyR2 channels (20,72). Ca2+ 
CaM, the concentration of which is increased at micromolar 
to millimolar Ca2+ concentrations, inhibits both the RyR1 
(18-20,71-73) and RyR2 (20,50,72) channels. It has also been 
shown that apoCaM activates the RyR1 channels by increasing 
the Ca2+ sensitivity of Ca2+-induced Ca2+ release (19,20). 
The effect of CaM on RyR3 from rabbit uterus expressed in 
HEK293 cells has also been reported. Similar to RyR1, RyR3 
was activated by apoCaM and inhibited by Ca2+ CaM (74). It 
has been shown in sea urchin eggs that caffeine-, ryanodine- 
or cADPR-induced Ca2+ release from microsomal vesicles is 
enhanced by the presence of exogenously added CaM (75,76), 
and that CaM can bind to the microsomes (76). This suggests 
that CaM bound to the RyR of sea uchin eggs can modulate 
the Ca2+ release through the receptor. It has been found in rat 
pancreatic acinar cells that caffeine-, ryanodine- or cADPR-
induced 45Ca2+ release from microsomal vesicles is stimulated 
by exogenously added CaM, and is inhibited by the CaM 
antagonist W-7 (56). It is possible that CaM bound to the RyR 
of rat pancreatic acinar cells modulates the Ca2+ release, since 
KN-62, a CaMKII inhibitor, was not observed to inhibit the 
caffeine-induced 45Ca2+ release from the vesicles (56).

Calsequestrin. CSQ is the major Ca2+-binding protein located 
in the terminal cisternae of the skeletal and cardiac muscle 
SR. The molecular mass of the CSQ monomer is 41-46 kDa 
(77). The protein has been purified (78-80) and cloned (81,82) 
in the skeletal and cadiac muscle SR. The protein is acidic 
and can bind 40-50 moles of Ca2+/mole of CSQ for skeletal 
muscle (78,79,83-85) and 18-40 moles of Ca2+/mole of CSQ 
for cardiac muscle (86,87). CSQ acts as a Ca2+ buffer in the 
lumen of SR Ca2+ storage pools to lower free Ca2+ concen-
trations. The conformation of CSQ changes with an increase 
in the free Ca2+ concentration of the lumen (22,23). CSQ 
monomer polymerizes at Ca2+ concentrations over 10  µM. 
The polymer is stable at a Ca2+ concentration of ~1 mM and 
is anchored to the SR membrane by binding to the intrinsic 
membrane proteins triadin and junctin, which have binding 
sites for RyR protein (21-23). CSQ can interact functionally 
with the RyR protein via the anchoring proteins or by direct 
binding (23). Evidence suggests that Ca2+ released from the 
SR lumen is dissociated from the CSQ-Ca2+ complex after 
stimulation of the RyR (24,88,89). Thus, CSQ functions as 
a regulator of the RyR during muscle contraction. Studies 
using lipid bilayer membranes have shown that the addition of 
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CSQ activates (24,25,90) or inhibits (26) the RyR1 channels, 
whereas CSQ just inhibits the RyR2 channels (91).

FK506-binding protein. FKBPs, intracellular receptors for 
the immunosuppressant drug FK506, are abundant within 
cells and comprise a family of proteins (92). A 12-kDa FKBP 
(FKBP12) has been shown to be tightly associated with RyR1 
on the SR of skeletal muscle (27,28). One mole of FKBP12 is 
associated with each protomer of homotetrameric RyR1 (31). In 
association with RyR1, FKBP12 has been shown to stabilize the 
closed conformation of the Ca2+ channel (31). FK506 has been 
shown to promote the dissociation of FKBP12 from the RyR1 
complex (31). The EC50 value for dissociation of FKBP12 from 
the RyR1 complex in skeletal muscle has been reported to be 
in the concentration range of 0.12-0.5 µM FK506 (31). By the 
removal of FKBP12, RyR1 exhibits subconductance states (93), 
and the Ca2+ or caffeine sensitivity of the channel is enhanced 
(31,94). Compared with control SR vesicles, FKBP12-deficient 
SR vesicles in skeletal muscle have been shown to increase 
open probability and mean open times for single channel 
recordings of the RyR1 (94-96). Recently, in the skeletal 
muscle SR, FKBP12 has been found to be dissociated from 
the RyR1 complex by PKA phosphorylation of the receptor 
(97) (see Phosphorylation). In cardiac type RyR (RyR2), one 
mole of FKBP12.6 is associated with each protomer of RyR2 
(29,30). Activation of RyR2 by dissociation of FKBP12.6 
from the RyR2 complex in cardiac muscle is controversial. In 
some cases, dissociation of FKBP12.6 from the RyR2 complex 
increased the open probability for single channel recordings 
of RyR2 (98,99). However, in other cases, dissociation of 
FKBP12.6 from the RyR2 complex did not activate the RyR2 
channel (30,96). Activation of RyR by dissociation of FKBP12.6 
from the RyR complex has also been reported in tissues other 
than cardiac muscle. It has been shown in pancreatic islets 
that FK506 induces Ca2+ release from RyR2 by dissociating 
FKBP12.6 from the RyR2 complex (32). Although the type of 
RyR is unclear, FK506 has been shown to increase the open 
probability of reconstituted RyRs (Ca2+ channels) in coronary 
arterial smooth muscle cells, in which FKBP12.6 has been 
detected (33). This suggests that FK506 activates the RyR in 
this tissue by dissociating FKBP12.6 from the receptor. FK506 
has been shown to shift the dose-response curve of ryanodine- 
or caffeine-induced 45Ca2+ release from the microsomal 
vesicles of rat pancreatic acinar cells to the left (57). Since an 
RyR2 isoform has been identified in rat pancreatic acinar cells 
(100,101), FKBP12.6 may be involved in the modulation of 
Ca2+ release through the RyR by FK506. It has been found that 
cADPR as well as FK506 can bind to FKBP12.6, and dissociate 
FKBP12.6 from pancreatic islet microsomes to release Ca2+ 
(32). An antibody against FKBP12.6 has been shown to inhibit 
the activation of the RyR induced not only by FK506 but also 
by cADPR in coronary arterial smooth muscle cells (33). These 
findings suggest that cADPR dissociates FKBP12.6 from the 
RyR-FKBP12.6 complex to activate the Ca2+ channel. It has 
been found in rat pancreatic acinar cells that cADPR shifts 
the dose-response curve of ryanodine- or caffeine-induced 
45Ca2+ release to the left by the same extent as that in the case 
of FK506, and that the stimulatory effects on ryanodine- or 
caffeine-induced 45Ca2+ release by cADPR and by FK506 are 
not additive (57). This suggests that cADPR modulates the 

RyR in pancreatic acinar cells by the same mechanism as that 
by which FK506 modulates the RyR. The endogenous ligand 
cADPR might induce the activation or modulation of the 
RyR by dissociating FKBP12.6 from the RyR complex under 
physiological conditions. Recently, it has been shown in the 
cardiac muscle SR that FKBP12.6 is dissociated from the RyR2 
complex by PKA phosphorylation of the receptor (102) (see 
Phosphorylation).

Phosphorylation. RyR proteins have many phosphorylation 
sites (6,103). In the skeletal muscle SR, RyR1 has been 
found to be phosphorylated by PKA, PKG and CaMKII 
(34,36,37,104). The phosphorylation site of RyR1 is serine 
2843 (36,105). The channel activity of RyR1 incorporated into 
planar lipid bilayers has been shown to be enhanced by PKA 
or CaMKII phosphorylation (39,106,107). It has also been 
demonstrated that depolarization-induced Ca2+ release from the 
skeletal muscle SR is stimulated by cAMP (108). This suggests 
that endogenous PKA modulates the Ca2+ release via the 
phosphorylation of RyR1 during the E-C coupling of skeletal 
muscle. Recently, it has been shown that PKA phosphorylation 
of RyR1 at serine 2843 dissociates FKBP12 (see FK506-
binding protein) from the receptor (97), and increases the 
open probability of the channel (97). In the cardiac muscle SR, 
RyR2 has been shown to be phosphorylated by PKA, PKG 
and CaMKII (34,35,37,38,109). Witcher et al reported that 
the phosphorylation site of RyR2 is serine 2809 (38). It is well 
known that the PKA activity of cardiac muscle cells is increased 
via the elevation of intracellular cAMP after β-adrenergic 
stimulation (110). The β-adrenergic agonist isoproterenol and 
cAMP have been shown to stimulate the ATP-induced PKA 
phosphorylation of RyR2 in cardiac myocytes (111). It has 
also been shown that PKA activates the RyR2 Ca2+ channel 
on planar lipid bilayers (40,112). The activation of RyR2 via 
PKA phosphorylation may induce a positive inotropic action 
during β-adrenergic stimulation of cardiac muscle cells. It 
has been shown that PKA phosphorylation of RyR2 at serine 
2809 dissociates FKBP12.6 (see FK506-binding protein) from 
the receptor (102), and increases the open probability of the 
channel (102,113). In heart failure, the β-adrenergic receptor is 
chronically stimulated. The phosphorylation of RyR2 by PKA 
in failing hearts is increased by ~4-fold compared with that in 
non-failing hearts (102). The hyperphosphorylation of RyR2 
by PKA in failing hearts induces a depletion of FKBP12.6 from 
the RyR2 complex (102,114) and an abnormal Ca2+ leak from 
RyR2 (115,116). In cardiac muscle, CaMKII has been shown 
to activate (38,40) or inhibit (41) the RyR2 Ca2+ channel on 
planar lipid bilayers. A recent study in cardiac muscle cells has 
indicated that the CaMKII phosphorylation site on RyR2 is 
serine 2815, not serine 2809 (117). Phosphorylation of RyR2 
by CaMKII at serine 2815 activates the Ca2+ channel without 
dissociating FKBP12.6 from the receptor (117). In addition, 
the CaMKII phosphorylation of RyR2 showed a positive 
correlation with heart rate (117). The time-averaged [Ca2+]i is 
increased at higher heart rates. The increased [Ca2+]i enhances 
the activity of CaMKII in cardiac muscle cells and induces the 
phosphorylation of RyR2. The phosphorylation of RyR2 by 
CaMKII increases the open probability of the channel (117), 
and also increases Ca2+ release from RyR2 (118). Thereby, the 
‘positive force-frequency relationship’ (119) may be explained. 
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Phosphorylation of RyR by CaMKII has also been observed in 
brain cells (120). It has been shown in rat parotid acinar cells 
that cAMP induces Ca2+ release from microsomal vesicles, 
and that the release is inhibited by a high concentration of 
ryanodine and the potent PKA inhibitor, H-89 (121). These 
results suggest that endogenous PKA phosphorylates the RyR 
of rat parotid acinar cells to activate Ca2+ release from the 
receptor. In rat pancreatic islets, cADPR-induced Ca2+ release 
from the microsomes has been shown to be enhanced by 
exogenously added CaM and inhibited by the CaMKII inhibitor 
KN-62 (122). These results suggest that endogenous CaMKII 
phosphorylates the RyR of pancreatic islets and mediates the 
cADPR-induced Ca2+ release from the receptor.

4. Conclusion

Depolarization of the t-tubule membrane triggers Ca2+ release 
from RyRs in muscle cells. In addition to depolarization, RyRs 
are activated by Ca2+, caffeine, ryanodine and cADPR. The 
Ca2+ release through RyRs is modulated by phosphorylation of 
the receptors and by the proteins bound to the receptors. As for 
the associated proteins, CaM and CSQ had been considered 
important modulators of RyRs. It is thought that CSQ functions 
as a regulator of the RyR inside the SR of muscle cells. Recent 
studies on the modulation of RyRs have focused on the presence 
of FKBPs. The activity of the RyR channel is enhanced by 
the dissociation of FKBP from the RyR complex, and the 
Ca2+ release through the channel is modulated (activated). 
Modulation of RyRs by PKA phosphorylation in muscle cells 
can be explained by the dissociation of FKBP from the RyR 
complex. Further studies are required to elucidate the role and 
function of FKBPs in Ca2+ mobilization from RyRs.
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