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Abstract. Salinomycin is a monocarboxylic polyether iono-
phore isolated from Streptomyces albus that has been used 
for more than 30 years as an agricultural antibiotic to prevent 
coccidiosis in poultry and to improve nutrient absorption 
and feed efficiency in ruminants and swine. As a inonophore 
with strict selectivety for alkali ions and a strong preference 
for potassium, salinomycin interferes with transmembrane 
potassium potential and promotes the efflux of K+ ions from 
mitochondria and cytoplasm. Salinomycin has recently been 
shown to kill human cancer stem cells and to inhibit breast 
cancer growth and metastasis in mice. Salinomycin is also 
able to induce massive apoptosis in human cancer cells of 
different origins that display multiple mechanisms of drug 
and apoptosis resistance. Salinomycin activates an unconven-
tional pathway of apoptosis in human cancer cells that may 
contribute to the breakdown of apoptosis resistance. The 
ability of salinomycin to effectively kill both cancer stem cells 
and apoptosis-resistant cancer cells may define the compound 
as a novel and effective anticancer agent. 
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1. Introduction 

During the course of a screening program for new antibiotics 
in 1974, Miyazaki et al (1) isolated a new biologically active 
substance from the culture broth of Streptomyces albus (strain 

No. 80614) that was termed salinomycin. Salinomycin is a 
751 Da monocarboxylic polyether antibiotic that constitutes a 
large pentacyclic molecule with a unique tricyclic spiroketal 
ring system and an unsaturated six-membered ring (Fig. 1). 
It is a lipophilic, anionic and weakly acidic compound with 
the molecular formula C42H70O11 (1,2). Salinomycin acts in 
different biological membranes, including cytoplasmic and 
mitochondrial membranes, as a ionophore with strict selec-
tivity for alkali ions and a strong preference for potassium, 
thereby promoting mitochondrial and cellular potassium 
efflux and inhibiting mitochondrial oxidative phosphoryla-
tion (3-5). 

Salinomycin has been shown to exhibit antimicrobial 
activity against gram-positive bacteria including mycobacteria 
and Staphylococcus aureus, some filamentous fungi, 
Plasmodium falciparum, and Eimeria spp., protozoan 
parasites responsible for the poultry disease coccidiosis (1,6,7). 
Therefore, salinomycin has been used for more than 30 years 
as an effective anticoccidial drug in poultry (8) and is also fed 
to ruminants and pigs to improve nutrient absorption and feed 
efficiency (9-11). 

In addition to its versatile antimicrobial activitiy, salino-
mycin is a positive ionotropic and chronotropic agent that 
increases cardiac output, left ventricular systolic pressure, 
heart rate, mean arterial pressure, coronary artery vasodilata-
tion and blood flow, and plasma catecholamine concentrations 
as demonstrated in dogs receiving an intravenous injection of 
150 µg•kg-1 salinomycin (12). However, salinomycin has never 
been used as a drug in humans, probably due to the consider-
able toxicity observed in mammals (13-16). 

2. Effects of salinomycin on human cancer stem cells

Cancer stem cells comprise a unique subpopulation of tumor 
cells that possess tumor initiation and self-renewal capacity 
and the ability to give rise to the heterogeneous lineages 
of cancer cells that make up the bulk of the tumor (17-19). 
Cancer stem cells have been identified in a variety of human 
neoplasias, including cancers of the blood, breast, brain, bone, 
skin, liver, bladder, ovary, prostate, colon and pancreas (19,20). 
Cancer stem cells display numerous mechanisms of resistance 
to chemotherapeutic drugs and irradiation therapy, allowing 
them to survive current cancer therapies and to initiate long-
term tumor recurrence and metastasis (21,22).

Of note, Gupta et al (23) demonstrated that salinomycin 
selectively kills human breast cancer stem cells in vitro. In 
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a complex experimental system, the authors used oncogenic 
transformed immortalized human mammary epithelial cells 
(HMLER), in which knockdown of E-cadherin by RNA 
interference resulted in the generation of cells undergoing 
epithelial-mesenchymal transition (EMT) and displaying 
characteristic properties of cancer stem cells (24-26). These 
human breast cancer stem-like cells, termed HMLER-shEcad, 
are capable of forming tumorspheres in suspension cultures, 
show high and low expression of CD44 and CD24, respec-
tively, and exhibit resistance to chemotherapeutic drugs and 
cytotoxic agents such as paclitaxel, doxorubicin, actino-
mycin D, campthotecin and staurosporine (23). 

In a robotic high-throughput screening approach, about 
16,000 compounds from chemical libraries, including biolog-
ical molecules and natural extracts, were tested for activity 
against HMLER-shEcad cells and control cells that had not 
undergone EMT (23). Only one compound markedly and 
selectively reduced the viabililty of stem-like HMLER-shEcad 
cells: salinomycin. In subsequent experiments, it was demon-
strated that salinomycin, in contrast to the chemotherapeutic 
drug paclitaxel, selectively reduces the proportion of CD44high/
CD24low stem-like cells in cultures of mixed populations of 
HMLER-shEcad cells and control cells that had not under-
gone EMT. Moreover, pre-treatment of HMLER-shEcad cells 
with salinomycin resulted in inhibition of HMLER-shEcad-
induced tumorsphere formation, which was not observed after 
pre-treatment of the cells with paclitaxel (23). 

Global gene expression profiling was employed to show 
that, in CD44high/CD24low HMLER cells, salinomycin, but not 
paclitaxel, was capable of changing a gene expression signa-
ture characteristic of breast cancer stem cells and mammary 
epithelial progenitor cells isolated from human tumors. 
For example, expression of genes that inversely correlates 
with metastasis-free survival and overall survival of breast 
cancer patients (27,28) was down-regulated by salinomycin 
(23). Expression of a set of genes that promote the expan-
sion of mammary epithelial stem cells and the formation of 
mammospheres (29) was also markedly down-regulated by 
salinomycin (23). By contrast, genes probably involved in 
mammary epithelial differentiation that encode membrane-as-
sociated or secreted proteins as components of the extracellular 
matrix were up-regulated by salinomycin (23). 

As a proof of principle, it was demonstrated that salino-
mycin inhibits the ability of breast cancer stem-like cells 
to form tumors in mice. Pre-treatment of HMLER cells for 
seven days with salinomycin and subsequent injection of the 
cells into NOD/SCID mice resulted in a >100-fold decrease 
in tumor-seeding ability, relative to pre-treatment of the cells 
with paclitaxel. Finally, salinomycin treatment of NOD/SCID 
mice with breast cancer tumors established by injection of 
human breast cancer cells resulted in a reduction of the tumor 
mass and metastasis, and explanted tumors showed a reduced 
number of breast cancer stem cells (Fig. 2) as well as an 
increased epithelial differentiation (23).

In addition, a recent study demonstrated that salinomycin 
was capable of overcoming ATP-binding cassette (ABC) 
transporter-mediated multidrug and apoptosis resistance in 
human leukemia stem cell-like cells (30). One of the most 
important mechanisms of drug resistance in leukemia stem 
cells and other cancer stem cells is the expression of ABC 
transporters belonging to a highly conserved superfamily of 
transmembrane proteins capable of exporting a wide variety 
of molecules and structurally unrelated chemotherapeutic 
drugs from the cytosol, thereby conferring multidrug resis-
tance, which is a major obstacle to the success of cancer 
chemotherapy (31-33). As shown in the study, expression of 
functional ABC transporters such as P-glycoprtein, BCRP 
and MRP8 confers resistance of human KG-1a leukemia stem 
cell-like cells to a broad spectrum of chemotherapeutic drugs 
including the proteasome inhibitor bortezomib, but not to 
salinomycin (Fig. 3). Moreover, salinomycin does not permit 
long-term adaptation of KG-1a cells to apoptosis-inducing 
concentrations, whereas the cells can be adapted to prolif-
erate in the presence of apoptosis-inducing concentrations of 
bortezomib and doxorubicin (30). 

 All these findings strongly suggest that salinomycin is a 
selective killer of human cancer stem cells and a new prom-
ising agent for the elimination of cancer stem cells.

3. Effects of salinomycin on human cancer cells

A recent study revealed that salinomycin induces apoptosis 
and overcomes apoptosis resistance in human cancer cells of 
different origins (34). First, it was demonstrated that salino-
mycin at doses lower than those used by Gupta et al induced 
massive apoptosis in CD4+ T-cell leukemia cells isolated 
from patients with acute T-cell leukemia (Fig. 4). Notably, 
salinomycin failed to induce apoptosis in normal CD4+ T 

Figure 1. Structural formula of salinomycin. The pentacyclic molecule with a 
unique tricyclic spiroketal ring system has a mass of 751 Da, a molecular for-
mula of C42H70O11, a melting point of 113˚C and a UV absortion at 285 nm (1).

Figure 2. Salinomycin, but not paclitaxel, reduces the number of cancer stem 
cells in breast cancer tumors as demonstrated in a tumorsphere formation 
assay with tumor cells from explanted breast cancer tumors of mice treated 
daily with 5 mg•kg-1 salinomycin for five weeks. Adapted with permission 
from Elsevier B.V. (23).  
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cells isolated from healthy humans (Fig. 4), suggesting that 
salinomycin selectively kills malignant cells. Secondly, 
various human leukemia and lymphoma cells were shown to 
undergo apoptosis in response to treatment with salinomycin. 
Since the induction of p53-mediated apoptosis is a central 
mechanism of the cytotoxicity of many anticancer drugs 
(35,36), lymphoblastic leukemia cell types expressing a func-
tional (wild-type) tumor suppressor protein p53 or lacking 
p53 expression due to a homozygous nonsense mutation in 
the p53 gene were investigated. It was shown that salino-
mycin is capable of inducing apoptosis in both wild-type p53 
cells and p53-lacking cells, indicating that the induction of 
apoptosis by salinomycin is independent of the p53 status 

of the cell (34). Next, p53-lacking lymphoblastic leukemia 
cells were transfected with a plasmid encoding the human 
anti-apoptotic protein Bcl-2, leading to stable overexpression 
of Bcl-2 and resistance of the cells to apoptosis induced by 
chemotherapeutic drugs (37). In these cells, salinomycin was 
able to markedly induce apoptosis even at the low concentra-
tions used for the induction of apoptosis in non-resistant cells 
(34). Other types of human cancer cells displaying multidrug 
resistance and general resistance to apoptosis induced by 
chemotherapeutic drugs, cytotoxic agents and γ-irradiation 
were investigated for their ability to undergo apoptosis in 
response to salinomycin treatment. For example, human 
Burkitt lymphoma cells, which exhibit apoptosis resistance 
and hyperproliferation due to the increased expression and 
proteolytic activity of 26S proteasomes in response to adap-
tation to lethal concentrations of the proteasome inhibitor 
bortezomib (38), undergo massive apoptosis in response to 
treatment with salinomycin at low doses effective in non-
resistant cells (34). Moreover, human uterine sarcoma cells, 
which display resistance to a large panel of chemotherapeutic 
drugs by virtue of the expression of P-glycoprotein, a trans-
membrane efflux pump that eliminates various drugs and 
small molecules from the cytosol (39-41), undergo apoptosis 
in response to salinomycin treatment (34).

Salinomycin activates a distinct and unconventional 
pathway of apoptosis in cancer cells that is not accompanied by 
cell cycle arrest, and that is independent of tumor suppressor 
protein p53, caspase activation, the CD95/DC95 ligand system 
and the 26S proteasome (34). This might be one reason why 
salinomycin can overcome multiple mechanisms of drug and 
apoptosis resistance in human cancer cells. Many cancer cells 
harbor or acquire multiple mechanisms of apoptosis resis-
tance mediated by the loss of p53 and overexpression of Bcl-2, 
P-glycoprotein or 26S proteasomes with enhanced proteolytic 
activity (42-44). Salinomycin, however, appears to be capable 
of overcoming these mechanisms of drug and apoptosis resis-
tance, suggesting a possible future use of salinomycin in the 
treatment of drug-resistant and aggressive cancers. 

Figure 3. Salinomycin induces apoptosis in a dose-dependent manner in human leukemia stem cell-like KG-1a cells expressing high (●) and low (◼) levels 
of the ABC transporters P-glycoprotein, MCRP and MRP8. More differentiated myeloblastic KG-1 cells (▲) which lack expression of ABC transporters are 
also sensitive to apoptosis induction by salinomycin. Insert: proteasome inhibitor bortezomib induces dose-dependent apoptosis in KG-1 cells (▲), but not in 
leukemia stem cell-like KG-1a cells (● and ◼). Data adapted from ref. 30. 

Figure 4. (A) Salinomycin induces massive apoptosis in CD4+ T-cell leu-
kemia cells isolated from the peripheral blood of patients with acute CD4+ 
T-cell leukemia. (B) Salinomycin fails to induce marked apoptosis in normal 
CD4+ T-cells isolated from the peripheral blood of healthy humans. Adapted 
with permission from Elsevier B.V. (34).

  A

  B
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4. Conclusion and perspective

Salinomycin is a well defined agricultural antibiotic that has 
been used for more than 30 years in the prevention of coccidi-
osis in poultry and for improving nutrient absorption and feed 
efficiency in ruminants and swine. A notable recent discovery 
was that salinomycin selectively kills human cancer stem 
cells, inhibits breast cancer growth and metastasis in mice 
and induces massive apoptosis in various apoptosis-resistant 
human cancer cells. Cancer stem cells are known to exhibit 
resistance to a broad spectrum of chemotherapeutic drugs, 
thereby surviving current cancer therapies and initiating 
long-term tumor recurrence, relapse and metastasis (21,22). 
Development of multiple mechanisms of drug and apoptosis 
resistance is a hallmark of aggressive, advanced and recur-
rent cancer (45,46). It is intriguing that both cancer stem cells 
and apoptosis-resistant cancer cells are effectively killed 
by salinomycin, although at present only in vitro. The exact 
mechanism of salinomycin-induced apoptosis remains unclear, 
but it appears that salinomycin activates an unconventional 
pathway of apoptosis that may contribute to the breakdown of 
apoptosis resistance in cancer cells. Salinomycin is a potas-
sium ionophore that interferes with transmembrane potassium 
potential and promotes the efflux of K+ ions from mitochon-
dria and cytoplasm. A decrease in intracellular potassium 
concentration has previously been shown to be essential for 
the induction of apoptosis in human lymphoma cells (47), 
suggesting that salinomycin-induced apoptosis is mediated, 
at least in part, by the ability of salinomycin to deplete cyto-
plasmic and mitochondrial potassium and/or to interfere with 
potassium membrane potential. Potassium channels of the 
mitochondrial and cytoplasmic membrane are overexpressed 
in many human cancer cells, play pivotal roles in the regu-
lation of tumorigenesis, tumor cell proliferation, cell cycle 
progression and apoptosis (48-50), and may constitute novel 
and promising molecular targets for cancer therapy (51). Now 
that the potassium ionophore antibiotic salinomycin has been 
shown to kill human breast cancer stem cells and apoptosis-
resistant cancer cells in vitro, the investigation of its safety, 
toxicity, pharmacology and anticancer activity in humans is a 
challenge for the coming years. 
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