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Abstract. Autophagy is a lysosomal degradation process 
which is key for the regulation of the turnover of long-lived 
or damaged proteins and organelles and which promotes cell 
survival during nutrient deprivation or other microenviron-
mental stresses. Current evidence supports the hypothesis that 
autophagy suppresses tumorigenesis, particularly during the 
early stages of tumor initiation. However, in established tumors, 
autophagy promotes survival under stressful conditions during 
cancer progression and in response to chemotherapy; however, 
the mechanism by which autophagy influences cancer metas-
tasis remains unknown. In this review, we discuss the capacity 
of an abnormal tumor environment to induce autophagy and 
consider how this relates to tumor metastasis and the attractive 
prospect of manipulating autophagic signaling pathways as 
potential targets for the treatment of cancer metastasis.
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1. Introduction

Autophagy is an evolutionarily conserved catabolic process 
in which intracellular membrane structures sequester proteins 
and organelles to degrade and turn over these cytoplasmic 
constituents; thus, it is essential for growth regulation and the 
maintenance of homeostasis (1-3). Autophagy is a multi-step 
process characterized by nucleation, elongation and autophago-
some and autolysosome formation, and is tightly regulated by 
a limited number of highly conserved genes called autophagy 
regulators (ATGs) (4,5). Defective autophagy is correlated with 
diverse pathologies, including neurodegeneration, liver, heart 
and muscle diseases, ageing, inflammation and cancer (6).

Autophagy is activated in response to multiple stresses 
during cancer progression, including hypoxia, nutrient 
deprivation, extracellular matrix (ECM) detachment, endo-
plasmic reticulum (ER) stress and other diverse stresses (7,8). 
Autonomous proliferating cancer cells are often exposed to 
conditions such as hypoxia or/and nutrient deprivation, so 
there must be an alternative metabolic pathway to protect 
tumor cells from these environmental stresses (9). Moreover, 
in order to metastasize, tumor cells must adapt to a stressful 
microenvironment as they disseminate into the systemic 
circulation and colonize distant organ sites (10). Therefore, 
when environmental stresses emerge, tumor cells are able to 
catabolize existing cytoplasmic components to provide essen-
tial ingredients to maintain survival by autophagy (11).

Autophagy facilitates cellular survival by enabling cancer 
cells to grow under stressful conditions. The enhancement of 
autophagy leads to degradation of proteins and organelles to 
provide amino acids, fatty acids and nucleotides for reuse (12). 
It is increasingly appreciated that autophagy provides cancer 
cells with certain selective advantages in response to various 
stresses in the primary tumor microenvironment as well as the 

Active autophagy in the tumor microenvironment:  
A novel mechanism for cancer metastasis (Review)

YINGHUA XU1*,  XIAOPING XIA2*  and  HONGMING PAN1

Departments of 1Oncology and 2Clinical Laboratory, Sir Run Run Shaw Hospital, 
School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China

Received June 15, 2012;  Accepted October 9, 2012

DOI: 10.3892/ol.2012.1015

Correspondence to: Professor Hongming Pan, Department of 
Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang 
University, 3 Qingchun East Road, Hangzhou, Zhejiang  310016, 
P.R. China
E-mail: hongmingpan2002@163.com

*Contributed equally

Abbreviations: ATGs, autophagy regulators; AMPK, 
AMP-responsive protein kinase; ATF4, activating transcription 
factor 4; BNIP3, Bcl-2/adenovirus E1B 19 kDa-interacting protein; 
BNIP3L, BNIP3-like protein; ECM, extracellular matrix; HIFs, 
hypoxia-inducible factors; mTOR, mammalian target of rapamycin; 
SLS, ‘stone-like’ intracellular structures; UPR, unfolded protein 
response

Key words: autophagy, microenvironment, metastasis, pathway, 
cancer



XU et al:  ACTIVE AUTOPHAGY IN TUMOR MICROENVIRONMENT412

microenvironment during dissemination and metastasis (13). 
Paradoxically, however, in certain cases autophagy also 
contributes to the death of cancer cells by scavenging damaged 
oxidative organelles (14). In this review, we argue that under-
standing the net effect of autophagy on enabling cells to cope 
with diverse stresses of the microenvironment, and thereby 
controlling the fate of cancer cells and metastasis, may develop 
new therapeutic strategies based on the regulation of autophagy.

2. Active autophagy in tumor microenvironment and 
cancer cell fate

Microenvironmental stresses, as a result of either insufficient 
oxygen/nutrient supply or increased energetic demands of 
rapidly dividing tumor cells, induce autophagy as an alterna-
tive source of energy and metabolites to ensure that cell growth 
is appropriate to the environmental conditions (15). Increasing 
evidence suggests that autophagy constitutes a major protec-
tive mechanism that allows cells to survive in response to 
multiple stresses, including hypoxia, nutrient deprivation, 
ECM detachment and ER and other stresses (15-17). However, 
if microenvironmental stresses persist, excessive autophagy 
may ultimately lead to autophagic cell death, termed 
type II-programmed cell death (Fig. 1).

3. Hypoxia and anoxia

Hypoxia and anoxia (with oxygen concentrations <3% and 
<0.1%, respectively) induce autophagy through a variety of 
different mechanisms (18). Enhanced autophagy is frequently 
observed in hypoxic regions of solid tumors caused by inade-
quate vascularization and contributes to cell survival (19). These 
hypoxic regions are considered to be associated with altered 
cellular metabolism and poor prognosis. The main transcription 
factors mediating the hypoxic response are hypoxia-inducible 
factors (HIFs), which modulate tumor cell metabolism, angio-
genesis, growth and metastasis  (20). Bcl-2/adenovirus E1B 
19 kDa-interacting protein (BNIP3), a BH3-only protein, is a 
downstream target of HIF-1α and has been shown to induce 
autophagy by disrupting the Beclin  1-Bcl-2 complex and 
releasing Beclin 1 in response to a hypoxic microenviron-
ment  (21,22). BNIP3L (BNIP3-like protein, also known as 
NIX), another HIF-1-induced target, is also important for 
targeting the mitochondria to autophagosomes for clear-
ance (23). Further study has revealed hypoxia- and oxidative 
stress-mediated activation of the HIF-1α and NFκB pathway 
in fibroblasts, thereby driving the autophagic flux to promote 
tumor cell survival (24). HIF-2 is also a potent regulator of 
chondrocyte autophagy and this protein acts as a brake to the 
stimulatory function of HIF-1 (25). Recently, the epidermal 
growth factor receptor antibody cetuximab was found to 
induce autophagy in cancer cells by downregulating HIF-1α 
and Bcl-2 and activating the Beclin 1/hVps34 complex (26). In 
addition, several distinct oxygen sensing pathways that regulate 
the cellular response to hypoxia have been defined, including 
activation of the unfolded protein response (UPR), inhibi-
tion of the mammalian target of rapamycin (mTOR) kinase 
signaling pathway and activation of AMP-responsive protein 
kinase (AMPK), which are all associated with the induction 
of autophagy (Fig. 2) (27,28). Although hypoxia-driven tumor 

metabolism and autophagy have been demonstrated, a more 
detailed mechanism of the interaction between autophagy and 
a hypoxic tumor microenvironment remains to be determined.

4. Nutrient deprivation

Proliferating cancer cells require continuous access to 
resources that sustain intracellular energy and nutrient levels, 
but the tumor microenvironment is not sufficient to supply 
these essential ingredients for cancer cell survival (29). Under 
these conditions, cancer cells are likely to encounter a shortage 
of nutrients; therefore, cancer cells must seek alternative 
metabolic processes to cope with this stress and maintain 
their survival. Studies have shown that autophagy plays a 
critical role in protecting cells against a shortage of nutrients 
by removing damaged substrates for recycling, but the exact 
mechanism by which cancer cells obtain energy sources under 
conditions in which their external nutrient supply is extremely 
limited remains unclear (30,31).

Nutrient (including amino acids and glucose) deple-
tion is the most potent known physiological inducer of 
autophagy. Ammonia, generated from glutamine deamination 
in mitochondria, was found to function as an autocrine- 
and/or paracrine-acting stimulator of autophagic flux (32). 
Autophagosomes were actively induced and promptly 
consumed in colorectal cancer cells under amino acid- and 
glucose-deprived conditions, which may contribute to the 
survival of the cancer cells in their microenvironment (29). 
Glucose deprivation may cause oxidative stress and stimulate 
autophagy (33). mTOR and AMPK have been best charac-
terized as critical signaling pathways regulating nutrient 
deprivation-induced autophagy (Fig. 2) (25,34). Autophagy is 
also triggered to protect cancer cells from nutrient deprivation 
by activation of AMPK (35). A previous study has suggested 
that ubiquilins also accelerate autophagosome maturation 
and promote cell survival during nutrient starvation (36). The 
cellular amino acids, especially branched chain amino acids, 
are a crucial upstream component for the functional activation 
of mTORC1. The absence of amino acids induces autophagy 
through the regulation of mTOR activity (Fig. 2) (37). In addi-
tion to amino acids, cells must also be supplied with glucose 
to maintain a constant supply of ATP; during a lack of glucose, 
autophagy is often activated to maintain intracellular energy 
homeostasis (38,39). Moreover, it has been reported that the 
receptor for advanced glycation end products (RAGE) sustains 
autophagy and limits apoptosis by inhibiting mTOR, resulting 
in the promotion of pancreatic tumor cell survival  (40). 
Overall, autophagy constitutes a major protective mechanism 
that allows cells to survive nutrient deprivation.

5. ECM detachment

Integrin-mediated attachment of epithelial cells to the ECM 
is vital for cell growth and survival (41). The loss of ECM 
attachment leads to apoptosis, termed anoikis (42). However, 
previous studies have shown that a lack of appropriate matrix 
contact also robustly induces autophagy to promote cell 
survival, either during early carcinoma formation or in the 
later stages of dissemination and metastasis (43,44). Moreover, 
ECM components modulate autophagy and mitigate its role 
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in cell survival. In HeLa cells, the mechanism by which this 
occurs has been shown to be dependent on the adhesion of 
the cells to collagen I or IV (45). In a three-dimensional (3D) 
culture system using MCF10A mammary epithelial cells 
grown in low ECM attachment conditions, autophagy was 

rapidly induced to enhance cell survival during anoikis (46). 
Although the intracellular signals linking ECM detachment to 
autophagy remain unclear, the results suggest that autophagy 
may be a previously unrecognized mechanism which enhances 
the survival of tumor cells lacking proper ECM contact.

Figure 1. Tumor microenvironmental stresses induce autophagy and affect cancer cell growth and metastasis. Autophagy is activated in response to multiple 
stresses during cancer progression, including hypoxia, nutrient deprivation, extracellular matrix detachment, endoplasmic reticulum stress and other stresses. 
Under these stressful conditions, autophagy constitutes a major protective mechanism that allows cells to survive in the primary tumor and migrate into 
adjacent connective tissue, leading to metastasis in carcinomas. However, if microenvironmental stresses persist, excessive autophagy may ultimately lead to 
autophagic cell death.

Figure 2. Regulation of autophagy in response to stress. Autophagy is activated in response to multiple stresses during cancer progression, including nutrient 
deprivation, ER stress, hypoxia, glucose/energy depletion and other diverse stresses. ER stress stimulates autophagy through the PERK-eIF2α pathway, 
IRE1-JNK1 pathway and Ca2+ release. Growth factors, through AKT-dependent and ERK-dependent phosphorylation, suppress autophagy. Depletion of 
nutrients or energy (amino acids, glucose, energy or serum) induces autophagy by activating the AMPK pathway or promoting upregulate transcription of 
certain autophagy genes. Autophagy is also induced by hypoxia that signals via AMPK to inhibit mTOR activity or disrupt the Bcl-2-Beclin 1 interaction and 
activate Beclin 1. Conversely, autophagy is inhibited by increased growth factor signaling through the activation of the Class I group of PI3-kinases and Akt 
to promote mTOR activity. ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; AMPK, AMP-responsive protein kinase; ATF4, activating 
transcription factor 4; mTOR, mammalian target of rapamycin; BNIP3, Bcl-2/adenovirus E1B 19 kDa-interacting protein; ATG, autophagy regulator.
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6. ER stress

The ER is an organelle responsible for crucial biosynthetic and 
signaling functions in eukaryotic cells (47). Dysfunction of ER 
or ER stress may result from various disturbances, including 
hypoxia and oxidative stress, which elicit a cellular stress 
response known as the UPR (48). The UPR initially serves as 
an adaptive mechanism to maintain ER homeostasis. However, 
severe or prolonged ER stress also switches the cytoprotective 
functions of UPR and autophagy into cell death, usually by 
activating intrinsic apoptosis (49).

It has been recognized that in order to clear the accumula-
tion of terminally misfolded protein aggregates that cannot 
be degraded by the proteasome, the UPR may upregulate the 
autophagy machinery (50). Activating transcription factor 4 
(ATF4) has been shown to facilitate autophagy through direct 
binding to a cyclic AMP response element binding site in 
response to ER stress (51). Activation of AMPK by atorvastatin 
enhances p21 expression and ER stress response, leading to 
autophagy, which promotes the survival of cancer cells (52). 
Autophagy may also eliminate a specific type of misfolded 
procollagen and play a protective role in cell survival against 
ER stress (53). By contrast, persistent ER stress also induces 
cell death by activating apoptosis. Cannabinoid action induces 
autophagy-mediated cell death through stimulation of ER stress 
in human glioma cells (54). Moreover, the ER stress activates 
radiation-induced autophagy by PERK-eIF2α in caspase-
3/7-deficient cells, which promotes radiosensitivity in vitro and 
in vivo (55). It has been demonstrated that ER stress-induced 
cell death was mediated by autophagy (56), which was partly 
attributed to the inactivation of AKT/TSC/mTOR (Fig. 2). 
As discussed above, it is clear that ER stress and autophagy 
are capable of activating prosurvival mechanisms as well as 
lethal programs, but the specific mechanisms linking UPR to 
autophagy during ER stress remain poorly understood.

7. Autophagy induced by tumor microenvironmental 
stresses and tumor metastasis

Tumor microenvironmental stresses have recently gained 
much attention as a critical determinant of tumor progression 
since autophagy is often induced as a major protective mecha-
nism that allows cells to survive in response to these stresses. 
In addition, some clinical evidence suggests that autophagy is 
used as a survival strategy by established tumors to promote 
tumor progression.

Autophagy may promote metastasis by enhancing tumor 
cell fitness in response to microenvironmental stresses. 
Pancreatic cancer remains a devastating and poorly under-
stood malignant cancer and hypoxia in pancreatic cancers 
is known to increase malignant potential. In the peripheral 
area of pancreatic cancer tissue, high expression of LC3, a 
key component of autophagy, is correlated with poor overall 
survival and a shorter disease-free period (57). Recent study 
has also suggested that high expression of the autophagy-
related Beclin  1 protein predicts poorer overall survival, 
progression-free survival and distant metastasis-free survival 
for nasopharyngeal carcinoma patients (58). The microtubule-
associated protein 1 light chain  3 (LC3A) is an essential 
component of the autophagic vacuoles and LC3A immunohis-

tochemistry renders three patterns of autophagic expression 
in breast carcinomas: diffuse cytoplasmic, perinuclear and 
‘stone-like’ intracellular structures (SLS). Perinuclear LC3A 
accumulation in colorectal tumour cells is a marker of good 
prognosis, while high SLS counts were associated with metas-
tases and poor prognosis (59). Phospho-enriched protein in 
astrocytes (PEA‑15) is a 15-kDa phosphoprotein that induces 
autophagy in human ovarian cancer cells and is associated 
with prolonged overall survival  (60). γ-aminobutyric acid 
type A (GABAA) receptor-associated protein (GABARAP), 
the mammalian homolog of yeast Atg8, is involved in autopha-
gosome formation during autophagy and is a new independent 
prognostic marker for colorectal carcinoma and the overex-
pression of this protein is associated with poor differentiation 
as well as shortened overall survival in colorectal cancers (61).

Conversely, autophagy may also inhibit metastasis. Beclin 1 
and LC3, crucial genes for autophagy, are altered in several 
types of human cancer. A higher level of Beclin 1 expression is 
strongly associated with longer survival of colon cancer patients 
with stage IIIB disease (62). Autophagy-active Beclin 1 has also 
been shown to be significantly correlated with the survival of 
non-Hodgkin lymphoma patients (63). Moreover, Beclin 1 and 
LC3 significantly decrease with melanoma progression (64). 
Beclin 1 may play a role in the inhibition of the development 
of breast cancer and this inhibition may be due to an interac-
tion with Bcl-2 protein and inactivation of PI3K/PKB signaling 
pathway (65,66). The high expression level of Beclin 1 protein 
has been demonstrated to be positively correlated with apop-
tosis and negatively with cell proliferation in gliomas (67). 
Beclin 1 defects caused by the overexpression of Bcl-xL may 
facilitate tumor malignant differentiation, which results in 
a more aggressive cancer cell phenotype and poor prognosis 
of hepatocellular carcinoma (68). Low Beclin 1 expression is 
associated with worse overall survival and progression-free 
survival in extranodal natural killer T-cell lymphoma (69). 

Although these proteins have been used to detect and 
measure levels of autophagy in human tumor samples, few 
may be universally and accurately applied for autophagy 
detection in clinical samples. Consequently, there is a rapidly 
growing need for exploiting ‘gold standard’ for methods and 
better markers to monitor autophagic activity (70).

8. Manipulating autophagy induced by tumor 
microenvironmental stresses for cancer therapy

As discussed above, cancer cells gain survival and 
proliferation advantages by autophagy to cope with micro-
environmental stresses. Despite the determination of the 
survival-promoting role of autophagy, it is also well recog-
nized that elevated and/or prolonged autophagy may result 
in cell death. Therefore, inhibiting autophagy induced by 
tumor microenvironmental stresses or enhancing excessive 
microenvironmental stresses to give rise to autophagic cell 
death may be a promising strategy for cancer therapy. Based 
on the correlation between microenvironmental stresses and 
autophagy, certain chemotherapeutic agents and antineoplastic 
therapies have been reported as an adjuvant therapy for cancer, 
including acid sphingomyelinase (71), thiazolidinediones (72), 
tetraspanin  (73), bortezomib  (74), ∆(9)-tetrahydrocannab-
inol (54), etformin (75), 2-deoxyglucose (76) and the arginine 
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deiminase ADI-PEG20 (77). However, this therapy has not 
been further explored for clinical application. In order to 
accelerate this clinical application, large-scale and multicenter 
collaboration are necessary.

9. Conclusions/perspectives

Autophagy is a catabolic adaptive process usually activated in 
response to adverse microenvironmental stresses which may 
have either a beneficial or detrimental cellular effect, depending 
on the response to environmental stresses (78,79). Currently, it 
is becoming clear that autophagy is a survival pathway that 
enables tumor cells to survive under stressful conditions, 
including hypoxia, nutrient deprivation, ECM detachment and 
ER stress. By contrast, prolonged activation of autophagy may 
lead to cell death by cellular self-degradation (80-82). 

The tumor environment is a complex and highly dynamic 
environment, playing a central role in controlling tumor cell 
behavior and metastasis formation  (83). Reduced levels of 
oxygen and nutrients and malfunction of ECM and ER are 
critical parameters modulating the tumor microenvironment. 
As discussed above, abnormality in the tumor microenviron-
ment induces autophagy to aid the maintenance of cancer 
cell viability and promote cancer cell metastasis under these 
stressful conditions. However, in certain cases autophagy also 
contributes to cancer cell death and inhibits metastasis. Based 
on the functional correlation between microenvironmental 
stresses and autophagy, a number of new cancer therapeutics 
have been exploited, but certain limitations prevent widespread 
clinical application. First, the question of whether we should 
try to enhance or inhibit autophagy in cancer treatment is 
not straightforward since it is unclear how autophagic cell 
death is distinguished from autophagy during cell survival. 
The engulfment receptor Draper was found to be the first 
factor that distinguishes autophagy associated with cell death 
from that associated with cell survival (84). This finding is 
especially critical since numerous current cancer therapeutics 
activate or inhibit autophagy, although Draper has not been 
applied to cancer research. Second, to maximize the potential 
to be applied for more stringent clinical study, characteristics 
of methods and better markers to monitor autophagic activity 
may need to be examined. Third, published studies concerning 
antineoplastic therapies based on the correlation between the 
autophagy and tumor microenvironment are short of high-level 
clinical evidence. Large-scale and multicenter collaborations are 
necessary in the future. Finally, the molecular mechanisms that 
underlie autophagy induced by multiple tumor microenviron-
mental stresses and cancer metastasis remain to be determined.
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