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Abstract. Curcumin is a non-nutritive yellow pigment found 
in the spice turmeric, which is derived from the rhizome of the 
plant Curcuma longa Linn. Six cyclohexanone analogues of 
curcumin (A1-A6) were investigated for their effects on growth 
and apoptosis in PC-3 human prostate cancer cells. The ability 
of these compounds to inhibit NF-κB activity in PC-3 cells 
was also determined. Five out of the six curcumin analogues 
(A2-A6) had stronger inhibitory effects compared to curcumin 
on the growth of cultured PC-3 cells. Compounds A2-A6 also 
had stronger stimulatory effects on apoptosis in PC-3 cells 
than curcumin, and these curcumin analogues more potently 
inhibited NF-κB activity than curcumin. The inhibitory effects 
of these compounds on NF-κB activity correlated with their 
effects on growth inhibition and apoptosis stimulation in PC-3 
cells. The results of the present study provide a rationale for 
in vivo studies with A2-A6 using suitable animal models of 
prostate cancer.

Introduction

Curcumin is a non-nutritive yellow pigment found in the 
spice turmeric, which is derived from the rhizome of the plant 
Curcuma longa Linn. Curcumin lacks toxicity in humans (1), 
and extensive research over several decades has revealed 
that curcumin possesses anticancer, anti‑inflammatory, anti-
oxidant, antiviral and anti-bacterial activities (2,3). Curcumin 
suppressed cell proliferation or induced apoptosis in cultured 
prostate cancer cells and other types of cancer cells (4-10). 
Curcumin also inhibited prostate carcinogenesis  (11). 
Studies from our laboratory and those of other authors have 
demonstrated enhanced anticancer activities of curcumin 
when combined with other anticancer agents  (12-14). 
Findings of earlier studies showed that curcumin exerts a 
wide range of anticancer effects by modulating a diver-
sity of signaling pathways, including nuclear factor-κB 
(NF-κB) and other pathways (15-20). Curcumin has entered 
clinical trials for certain types of human cancer  (21-23). 
However, the clinical efficacy of curcumin is limited, which 
is likely to be due to its low bioavailability (21-23). It was 
suggested that the β-diketone moiety of curcumin causes 
instability and poor metabolic properties (24-26). Enhanced 
stability was found in curcumin analogues by deleting the 
β-diketone moiety of the molecule  (27). Recently, it was 
demonstrated that the cyclohexanone analogues of curcumin 
have enhanced stability in biological medium compared to 
curcumin  (28). The cyclohexanone-containing curcumin 
analogue 2,6-bisp[(3‑methoxy-4-hydroxyphenyl)methylene)]
cyclohexanone was found to be more potent than curcumin for 
inhibiting NF-κB in human breast cancer cells in vitro (29).

In an earlier study, we synthesized a series of cyclohexa-
none curcumin analogues and determined their inhibitory 
effect on the activity of aldose reductase (30). In the present 
study, we investigated the effects of these curcumin analogues 
on the growth and apoptosis of human prostate cancer PC-3 
cells. We also determined the inhibitory effect of these 
analogues on the activation of NF-κB in PC-3 cells using the 
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luciferase reporter assay. Results of our study demonstrated 
that compounds A2-A6 have stronger effects for inhibiting 
growth and stimulating apoptosis in PC-3 cells compared to 
curcumin. We also found that these curcumin analogues have 
stronger effects than curcumin for inhibiting NF-κB activity 
in PC-3 cells.

Materials and methods

Chemistry. A series of cyclohexanone curcumin analogues 
were synthesized by coupling the appropriate substi-
tuted benzaldehyde with cyclohexanone as previously 
described  (30). Characterization of the compounds, 
2,6 -bis(4-hydroxybenzylidene)-cyclohexanone (A1), 
2,6-bis(3,4-dihydroxybenzylidene)-cyclohexanone (A2), 
2,6-bis(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (A3), 
2,6-bis(3,5-di-tert-butyl-4-hydroxylbenzylidene)-cyclohexa-
none (A4), 2,6-bis(3,4-dimethoxybenzylidene)-cyclohexanone 
(A5) and 2,6-bis(4-hydroxy-3,5-dimethoxybenzylidene)‑cyclo-
hexanone (A6), was previously described in detail (30).

Cell culture and reagents. PC-3 cells were obtained from 
the American Type Culture Collection (ATCC; Rockville, 
MD, USA). Curcumin was obtained from Sigma-Aldrich 
(St. Louis, MO, USA). The RPMI-1640 tissue culture medium, 
penicillin‑streptomycin, L-glutamine and fetal bovine serum 
(FBS) were obtained from Gibco (Grand Island, NY, USA). 
The PC-3 cells were maintained in RPMI-1640 culture 
medium containing 10% FBS supplemented with penicillin  
(100  U/ml)-streptomycin (100  µg/ml) and L-glutamine 
(300 µg/ml). Cultured cells were grown in a humidified atmo-
sphere of 5% CO2 at 37˚C, and were passaged twice a week. 
Curcumin and its analogues were dissolved in DMSO and the 
final concentration of DMSO in all experiments was 0.1%.

MTT assay. PC-3 cells were seeded at a density of  
0.2x105 cells/ml in medium in 96-well plates (0.2 ml/well) 
and incubated for 24  h. The cells were then treated with 
various concentrations (0.5-10 µM) of the different curcumin 
analogues for 72 h. Following treatment, 200 µl 3-[4,5-dimeth-
ylthiazol‑2-yl]-2,5-diphenyl tetrazoliumbromide (0.5 mg/ml in 
PBS) was added to each well of the plate and incubated for 2 h. 
The plate was then centrifuged at 1,000 rpm for 5 min at 4˚C. 
Following removal of the medium, 0.1 ml DMSO was added 
to each well. The absorbance was recorded on a microplate 
reader at 540 nm. The effect of different curcumin analogues 
on cell growth was assessed as the percentage cell growth 
compared to DMSO-treated cells.

Determination of the number of viable cells. The number of 
viable cells following each treatment was determined using 
the trypan blue exclusion assay (31). In brief, 80 µl of cell 
suspension was mixed with 20 µl of 0.4% trypan blue solution 
and incubated for 2 min. The cells were then examined under 
a light microscope (Nikon Optiphot, Japan). Blue cells were 
counted as dead cells and cells that did not absorb dye were 
counted as live cells.

Assessment of apoptotic cells by morphology and activation of 
caspase-3. Apoptotic cells were determined by morphological 

assessment in cells stained with propidium iodide (32,33). 
Cytospin slides were prepared following each experiment 
and cells were fixed with acetone/methanol (1:1) at room 
temperature for 10 min, followed by 10 min of propidium 
iodide staining (1 µg/ml in PBS), and were then analyzed using 
a fluorescence microscope (Nikon Eclipse TE200, Japan). 
Apoptotic cells were identified by classical morphological 
features, including nuclear condensation, cell shrinkage and 
formation of apoptotic bodies (32,33).

Caspase-3 activation was measured using an EnzoLyte 
AMC Caspase-3 Assay Fluorimetric kit (AnaSpec, Fremont, 
CA, USA) according to the manufacturer's instructions (34). A 
total of 1x105 cells were plated in triplicate in a flat-bottomed 
96-well plate. Cells were treated with different curcumin 
analogues for 72 h. Following treatment, caspase-3 substrate 
was added to each well. Plates were incubated at room temper-
ature for 30 min. Fluorescence intensity was measured in a 
Tecan Inifinite M200 plate reader (Tecan US Inc., Durham, 
NC, USA).

NF-κB-dependent reporter gene expression assay. 
NF-κB transcriptional activity was measured using the 
NF-κB‑luciferase reporter gene expression assay  (35). An 
NF-κB luciferase construct was stably transfected into PC-3 
cells and a single stable clone, PC-3 C4 (35), was used. PC-3 
C4 cells were treated with different curcumin analogues for 
24 h, and the NF-κB-luciferase activities were measured using 
luciferase assay kits from Promega (Madison, WI, USA). 
Following treatment, the cells were washed with ice-cold 
phosphate-buffered saline (PBS), and harvested in 1X reporter 
lysis buffer. Following centrifugation, 10 µl aliquots of the 
supernatants were measured for luciferase activity using a 
Luminometer from Turner Designs Inc., (Sunnyvale, CA, 
USA). The luciferase activity was normalized against known 
protein concentrations, and expressed as the percentage of 
luciferase activity in the control cells, which were treated 
with DMSO solvent. The protein level was determined using 
a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA) 
according to the manufacturer's instructions.

Statistical analysis. The analysis of variance (ANOVA) with 
the Tukey-Kramer multiple comparison test was used for the 
comparison of growth inhibition as determined by the trypan 
blue assay and determination of the NF-κB-luciferase activi-
ties in cultured PC-3 cells that were treated with different 
curcumin analogues.

Results

Inhibitory effect of curcumin and its analogues on the 
growth of PC-3 cells. The inhibitory effects of curcumin 
and its analogues A1-A6 on the growth of cultured PC-3 cells 
were determined using the MTT assay. For each experiment, 
curcumin was evaluated as the positive control. The inhibi-
tory effects of curcumin did not significantly vary between 
different experiments. Data from the curcumin incubations 
were averaged (Fig. 1). Curcumin and its analogues A1-A6 
inhibited the growth of PC-3 cells in a concentration‑depen-
dent manner (Fig. 1). A4 was the strongest curcumin analogue 
for inhibiting the growth of PC-3 cells, as determined by the 
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MTT assay, followed by A2, A6, A5, A3 and A1 (Fig. 1A). In 
additional experiments, the effects of different curcumin 
analogues on cell growth were determined by the trypan 
blue exclusion assay. Compounds A2-A6 were more potent for 
decreasing the number of viable PC-3 cells as compared to 
curcumin (Fig. 1B). Statistical analysis using ANOVA with 
the Tukey-Kramer test demonstrated that the differences 
in the number of viable cells between the curcumin-treated 
group and any curcumin analogue-treated group (except the 
A1-treated group) were statistically significant (P<0.001). 
The number of viable cells was significantly lower in the 
A4-treated group than in the curcumin-treated or any other 

curcumin analogue-treated group (P<0.05 compared to the 
A2-treated group; P<0.001 compared to other curcumin 
analogue-treated groups).

Stimulatory effect of curcumin analogues on apoptosis in PC-3 
cells. Effects of the curcumin analogues A1-A6 on apoptosis 
in PC-3 cells were determined by morphological assessment 
of apoptotic cells. Apoptotic cells were identified by classical 
morphological features, including nuclear condensation, cell 
shrinkage and formation of apoptotic bodies. Morphologically 
distinct apoptotic cells from representative samples are shown 
in Fig. 2B. Treatment of PC-3 cells with curcumin resulted 

Figure 1. Effects of curcumin analogues on the growth of human prostate cancer PC-3 cells. PC-3 cells were seeded at a density of 0.2x105 cells/ml of medium 
in 96-well plates (0.2 ml/well) and incubated for 24 h. The cells were then treated with various concentrations (0.5-10 µM) of the different compounds for 72 h. 
(A) Effects of the different compounds on the growth of PC-3 cells were determined by the MTT assay and (B) the trypan blue exclusion assay. Each value is 
the mean ± SD from three experiments. C, control; CUR, curcumin.

Figure 2. Effects of curcumin analogues on apoptosis. PC-3 cells were seeded at a density of 0.2x105 cells/ml of medium in 35-mm tissue culture dishes (2 ml/
dish) and incubated for 24 h. The cells were then treated with various concentrations (0.5-10 µM) of the different compounds for 72 h. (A and B) Representative 
micrographs of propidium iodide-stained controls and A4 (5 µM)-treated PC-3 cells. Arrows indicate apoptotic cells. (C) Percentage of apoptotic cells as 
determined by morphological assessment in PC-3 cells treated with the various compounds. (D) Caspase-3 activities in PC-3 cells treated with curcumin, A2 
and A4. Each value is the mean ± SD from three experiments. C, control; CUR, curcumin.

  A   B

  C   D
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in a small increase in apoptotic cells (Fig. 2C). Treatment 
with compounds A1-A6 stimulated apoptosis in PC-3 cells in 
a concentration-dependent manner (Fig. 2C). Compounds A2 
and A4 demonstrated stronger stimulatory effects on apoptosis 
in PC-3 cells compared to the other compounds. The effect 
of the two strongest compounds A2 and A4 on activation 
of caspase-3 in comparison to curcumin was determined. 
Treatment of PC-3 cells with curcumin caused only a small 
increase in caspase-3 activity, while treatment with A2 and 
A4 caused an 8.2- and 9.3-fold increase in caspase-3 activity, 
respectively (Fig. 2D). Our results identified A2 and A4 as the 
two curcumin analogues that had the greatest effect for stimu-
lating apoptosis in PC-3 cells.

Effect of curcumin analogues on NF-κB activity. To investigate 
the effect of A1-A6 on activation of NF-κB activity, we used an 
NF-κB-luciferase reporter gene expression assay in PC-3 C4 
cells. PC-3 C4 is a cell line derived from the stable transfec-
tion of PC-3 cells with an NF-κB luciferase construct (35). In 
these experiments, PC-3 C4 cells were treated with different 
concentrations of curcumin and its analogues A1-A6 for 24 h. 
Treatment of PC-3 C4 cells with curcumin or A1 (both 5 µM) 
caused only modest decreases in the activity of NF-κB (Fig. 3). 
Treatment with A2-A6 (all at 5 µM) caused a further decrease 
in NF-κB transcriptional activity. Statistical analysis using 
ANOVA with the Tukey-Kramer test demonstrated that NF-κB 
activity was significantly lower in the A4-treated group than in 
any other treated group (P<0.01 compared to the A2-treated 
group; P<0.001 compared to other curcumin analogue-treated 
groups). There were good correlations between inhibition 
of NF-κB activity and cell growth inhibition (r=0.97), and 
between inhibition of NF-κB activity and apoptosis stimulation 
(r=0.96) in the PC-3 cells treated with all compounds at 5 µM. 

Analysis of structure-activity correlation. Six curcumin 
analogues (A1-A6) that contain a five-carbon linker with a 
mono-carbonyl group (cyclohexanone linker) were evalu-
ated for anticancer activities in human prostate cancer PC-3 
cells. All of the curcumin analogues, with the exception 
of A1, had stronger inhibitory effects on cell growth and 
stronger stimulatory effects on the apoptosis of PC-3 cells 
compared to curcumin. Although the structures of A3 and 
curcumin are the same, with the exception of their middle 
linker (Fig. 4), the anticancer activity of A3 was stronger than 
that of curcumin  (Fig. 1) suggesting that a cyclohexanone 
linker increases anticancer activity. A comparison of the six 
curcumin analogues (all with the same mono-carbonyl linker) 
revealed that anticancer activity was significantly influenced by 
substituents on the benzene rings. The presence of a methoxy 
group on both sides of the p-phenol group markedly increased 
activity compared to a compound with a methoxy group on 
only one side (A3 vs. A6). Tert-butyl substituents on both sides 
of the p-phenol group (A4) had the strongest anticancer effect 
among all of the studied compounds. Comparison of A1 and 
A2 suggested that o-dihydroxyl substituents on both benzene 
rings (A2) had stronger activity than an analogue with a single 
hydroxyl group on each side (A1).

Discussion

In the present study, we demonstrated that a series of cyclo-
hexanone curcumin analogues (A2-A6) had stronger anticancer 
activities than curcumin in cultured human prostate cancer 
PC-3 cells. Among the curcumin analogues, A4 demonstrated 
a stronger inhibitory effect on the growth of PC-3 cells than 
any of the other curcumin analogues. Compounds A2 and A4 
were stronger than the other compounds for stimulating apop-
tosis. In addition, we found that all curcumin analogues tested 
(except for A1) were more potent inhibitors of NF-κB in PC-3 
cells than curcumin. A4 was the most potent compound among 
the six curcumin analogues tested for inhibiting the activation 
of NF-κB.

Extensive studies have shown that curcumin exerts a wide 
range of antitumor effects through modulation of significant 

Figure 3. Effects of curcumin and its analogues A1-A6 on NF-κB tran-
scriptional activity in PC-3 cells. PC-3 C4 cells were seeded at a density 
of 0.2x105 cells/ml of medium in 35-mm culture dishes (2 ml/dish) and 
incubated for 24 h. The cells were then treated with different compounds 
(5 µM) for 24 h. The NF-κB transcriptional activity was measured by a 
luciferase activity assay. Each value is the mean ± SD from three experi-
ments. C, control; CUR, curcumin.

Figure 4. Structures of curcumin and its analogues A1-A6.
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signaling pathways, including transcription factor NF-κB and 
other pathways (15-20,36). Of those involved in antitumor 
effects, NF-κB is generally regarded as an important target of 
curcumin (16,37). NF-κB has been linked to cell proliferation, 
invasion, angiogenesis, metastasis, suppression of apoptosis 
and chemoresistance in multiple tumors (38,39). In addition, 
evidence suggests that NF-κB is significant in the growth and 
radio/chemoresistance of prostate cancer (40-44). Curcumin 
is able to suppress NF-κB activation by an Akt-dependent 
or Akt‑independent inhibition of IKK (15,16,45). Certain 
curcumin analogues, including 3,5-bis(2-flurobenzylidene)
piperidin-4-one (EF24) have been found to have a potent 
inhibitory effect on NF-κB (46). In the present study, we 
identified that 5 out of 6 cyclohexanone curcumin analogues 
tested had a more potent inhibitory effect than curcumin 
on activation of NF-κB in PC-3 cells. The effects of these 
curcumin analogues on growth inhibition and apoptosis 
stimulation were associated with their inhibitory effect on 
activation of NF-κB. This result indicates that inhibition of 
NF-κB activation may be involved in growth inhibition and 
apoptosis induction in PC-3 cells treated with these curcumin 
analogues.

Based on the analysis of the correlation between the struc-
tures of curcumin analogues and their effects on the growth 
and apoptosis of human prostate cancer PC-3 cells, analogues 
with a cyclohexanone linker between the two benzene rings 
enhance anticancer effects. Substituents on the benzene rings 
of the analogues also affect their activities. The analogue 
with a tert-butyl substituent on both sides of the p-phenol 
group (A4) demonstrated stronger anticancer activity than 
the other analogues, suggesting that the introduction of more 
hydrophobic groups on both sides of the p-phenol group may 
be an important strategy for the development of more potent 
compounds with anti-prostate cancer activity.
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