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Abstract. Telomerase activation is a critical step in human 
carcinogenesis through the maintenance of telomeres. 
Telomerase activity is primarily regulated by the human telom-
erase reverse transcriptase gene (hTERT), thus, an improved 
understanding of the transcriptional control of hTERT may 
provide potential therapeutic targets for the treatment of 
leukemia and other forms of cancer. Epigenetic modulation, 
a significant regulatory process in cell biology, has recently 
been shown to be involved in the regulation of the hTERT 
gene. Moreover, several epigenetic modifiers, including DNA 
methyltransferase (DNMT) and histone deacetylase (HDAC) 
inhibitors, are now in pre‑ and early clinical trials of leukemia 
as monotherapies or in combination with other drugs, and have 
achieved significant clinical success. In the present review, the 
epigenetic mechanisms associated with telomerase activity in 
leukemia, and the therapeutic potential of an antitelomerase 
strategy that combines epigenetic modifiers with telomerase 
hTR subunit small molecule inhibitors are discussed. 
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1. Introduction 

Telomeres serve as essential structures that protect the ends of 
linear chromosomes from DNA repair and degradation, and 
their maintenance is critical for long‑term cell proliferation 
and survival (1,2). Mammalian telomeres consist of tandem 
TTAGGG repeats that are bound by a specialized six‑protein 
complex known as shelterin and may be replenished by 
telomerase  (3). Telomerase is composed of two essential 
components, a catalytic subunit with reverse transcriptase 
activity, telomerase reverse transcriptase (TERT), and a 
telomerase RNA component (TERC), that acts as a template 
for DNA synthesis (4‑6). Telomerase activity is overexpressed 
in the majority of cancer cells but is barely detectable in the 
predominance of normal somatic cells (7). 

Among the various aspects of gene control, epigenetic 
alterations have gained attention as critical determinants for 
tumor initiation and subsequent cancer progression (8,9). The 
forms of epigenetic control of gene expression include DNA 
methylation and histone modification. DNA methylation 
involves a covalent modification at the fifth carbon position of 
cytosine residues within CpG dinucleotides, resulting in the 
transcriptional silencing of the affiliated gene (10). Promoter 
hypermethylation of tumor suppressor genes has been increas-
ingly considered as a fundamental mechanism for the silencing 
of these genes in cancer cells, resulting in tumor initiation and 
progression (11,12). In addition to DNA methylation, another 
key element in the epigenetic control of gene expression is 
histone modification, including acetylation, methylation, phos-
phorylation and ubiquitination. Aberrant patterns of histone 
modifications have been associated with a large number of 
human malignancies (13,14). DNA methylation and histone 
modifications have been extensively recognized as epigenetic 
mechanisms that regulate gene transcription in carcinogenesis.

Human (h)TERT, a catalytic subunit of telomerase, is a 
key determinant for the control of telomerase activity (15). 
The hTERT promoter contains two E‑box regions and five GC 
boxes (16). Similar to numerous human genes, hTERT also 
contains a CpG island in its promoter region, indicating a role 
for methylation in the regulation of hTERT expression (17). 
Accumulating evidence indicates that hTERT contains an 
increased level of DNA methylation in its promoter region in 
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numerous cancers. Moreover, hTERT hypermethylation has 
been associated with the stable silencing of hTERT promoter 
expression (18,19). Histone deacetylation/methylation has also 
been reported to be responsible for the repressive status of 
the hTERT promoter (20). In the present review, the contribu-
tion of the epigenetic dysregulation of hTERT expression to 
leukemogenesis, and the prospect of this regulation as a basis 
for developing new anticancer therapies for leukemia are 
discussed.

2. Epigenetic regulation of hTERT and telomere length

Telomere length, maintained by telomerase, is a prominent 
mechanism for long‑term cell proliferation and survival, and is 
strongly involved in cancer, cell senescence and aging (21‑23). 
It has been demonstrated that the epigenetic plasticity of the 
hTERT gene promoter is a determinant for the control of 
telomerase activity. Therefore, inhibiting the expression of the 
hTERT gene through epigenetic mechanisms usually results in 
telomeric attrition. The epigenetic changes associated with the 
inhibition of telomerase activity include hypermethylation and 
histone modifications of the hTERT promoter.

The proximal core promoter region of the hTERT gene 
harbors a high GC content and therefore, may be partly 
regulated by DNA methylation. Currently, there are three 
major DNA methyltransferases (DNMTs) identified to be 
responsible for the establishment of DNA methylation in the 
hTERT promoter (24). In the majority of cases, the aberrant 
methylation of CpG islands in promoter regions results in the 
heritable silencing of genes without a change in their coding 
sequence  (25). Recent studies have shown that telomerase 
activity is repressed through the epigenetic silencing of 
hTERT, which is accompanied by telomere shortening (26,27). 
Shin  et  al reported that hypermethylation of the hTERT 
promoter played a critical role in the negative regulation of 
telomerase activity in normal human oral cells (27). Zinn et al 
also showed that the DNA methylation patterns of the hTERT 
promoter decreased hTERT transcription and telomerase 
activity, which was consistent with the normal paradigm of 
methylation‑induced gene silencing (28). Paradoxically, there 
are conflicting studies with regard to the correlation between 

hypermethylation of the hTERT promoter, hTERT gene 
expression and telomerase activity. It is increasingly apparent 
that the hTERT promoter is partially or completely hyper-
methylated in telomerase‑positive tumors, but unmethylated or 
hypomethylated in telomerase‑negative normal tissues (16,29). 
Treatment using 5‑azacytidine (azacitidine) and its deoxy 
analogue 5‑aza‑2'‑deoxycytidine (decitabine; DAC), two 
common demethylating agents, is able to cause a reduction in 
hTERT gene expression and consequently, telomerase activity 
(Fig. 1)  (30‑32). This correlation was in contrast with the 
general model of gene regulation by promoter methylation. 
Taken together, these studies indicate that hTERT may have 
an effect on telomerase activity through epigenetic regulation. 
However, the exact mechanism by which DNA methylation 
affects hTERT gene expression and telomerase activity remains 
to be elucidated (Fig. 2).

 In addition to DNA methylation, another prevalent 
epigenetic mechanism that affects hTERT transcription is 
histone modification, including histone acetylation, meth-
ylation, phosphorylation and ubiquitinization. Histone tails 
carry basic charges and are associated with DNA molecules 
by electrostatic attraction. The acetylation of the histone 
proteins neutralizes the charge status of the histone tails, 
which decreases the attraction force between DNA and the 
histone tails, thus conferring an opened chromatin structure, 
allowing transcription factors, including c‑MYC, MAD1 and 
CTCF, to bind to the DNA. Conversely, the deacetylation 
of histones results in the transcription factors having less 
access to the DNA (33,34). It has been demonstrated that 
Trichostatin A (TSA), a histone deacetylase (HDAC) inhib-
itor, is able to induce hTERT transcription and telomerase 
activity in normal cells and telomerase‑negative immortal 
cell lines through the inhibition of histone deacetylation 
(Fig.  1)  (35,36). Furthermore, FR901288, a novel cyclic 
peptide inhibitor of HDAC, has also been shown to activate 
hTERT mRNA expression in oral cancer cell lines  (37). 
However, there are conflicting studies with regard to hTERT 
transcription and telomerase activity in cancer cells induced 
by HDAC inhibitors. Zhu et al reported that HDAC inhibitors 
prevented cell proliferation and induced apoptosis, but had 
no effect on the expression of hTERC and hTERT mRNA, 

Figure 1. Chemical structures of selected (A) DNMT inhibitors and (B) HDAC inhibitors. DNMT, DNA methyltransferase; HDAC, histone deactylase.
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or on telomerase activity (38). In prostate and brain cancer 
cells, the hTERT gene expression and telomerase activity 
were inhibited by HDAC inhibitors (30,40). Therefore, the 
HDAC inhibitors may exhibit various effects on hTERT tran-
scription and telomerase activity in cancer cells. In addition 
to histone acetylation, hTERT transcription was also reported 
to be associated with histone methylation, of which three 
varying forms, including mono‑, di‑ and trimethylation, may 
emerge in methylation modifications of the histone lysine 
residues. It has been demonstrated that mono‑ and dimeth-
ylated histone3‑lysine9 (H3‑K9) are localized to distinct 
domains of silent chromatin, where they are associated with 
inactive genes, whereas trimethylated H3‑K9 is enriched in 
pericentric heterochromatin (41). Further studies have shown 
that a lack of hTERT expression in telomerase‑negative cell 
lines is associated with histone H3 and H4 hypoacetylation 

and the methylation of H3‑K9. However, hTERT transcrip-
tion in telomerase‑positive cell lines is associated with 
the hyperacetylation of H3 and H4 and the methylation of 
Lys4‑H3 (H3‑K4) (42). Histone methyltransferase (HMTase) 
is considered to be responsible for histone methylation 
at the hTERT promoter. Liu et  al reported that SET and 
MYND domain‑containing protein 3 (SMYD3), a HMTase, 
may directly transactivate hTERT transcription and telom-
erase activity in normal human fibroblasts and cancer cell 
lines through histone H3‑K4 trimethylation  (43). These 
results suggest that the epigenetic regulation of histones 
may contribute to hTERT gene expression and telomerase 
activity (Fig. 2).

3. Targeting telomerase (hTERT) in leukemia cells through 
epigenetic modifiers presents new anticancer therapeutic 
approaches for leukemia

Telomerase activity is a hallmark of the immortal cell 
phenotype and several mechanisms have been reported to be 
involved in its regulation, including transcriptional factors, 
DNA methylation and histone deacetylation. Furthermore, 
it has been shown that cells in numerous types of leukemia 
are able to maintain their telomere length and prevent repli-
cative senescence or apoptosis by the epigenetic regulation 
of hTERT (44‑46). Therefore, telomerase suppression using 
epigenetic modifications should be a promising target for the 
treatment of leukemia.

Studies have linked differentiation therapy to the 
epigenetic regulation of hTERT, and a large number of 
demethylating agents and HDAC inhibitors have achieved 
significant clinical successes in inducing the differentiation 
of human leukemia cells (Table I). Low methylation levels 
of the hTERT promoter core domain have been shown to 
correlate with high telomerase activity in patients with 
B‑cell chronic lymphocytic leukemia (B‑CLL), whereas a 
high degree of methylation indicates low enzyme activity. 
Moreover, patients with a high level of telomerase activity 
show a worse prognosis (47,48). Azacitidine and its deoxy 
analogue, decitabine, which are two DNMT inhibitors, have 
been approved as single agents to treat patients with leukemia 
through the induction of cell differentiation (Fig. 1) (49‑52). 

Table I. Selected drugs with epigenetic targets in the preclinical and clinical development of leukemia.

Drug target	 Drug	 Chemical class	 Study in leukemia	 Clinical trials

DNMT inhibitor	 Azacitidine	 Nucleoside analog	 ALL, AML, CML	 +
DNMT inhibitor	 Decitabine (DAC)	 Nucleoside analog	 ALL, AML, CML	 +
HDAC inhibitor	 Valproic acid (VPA)	 Short-chain fatty acid	 AML, CLL, CML	 +
HDAC inhibitor	 Trichostatin A (TSA)	 Hydroxamic acid	 Preclinical trials	 N/A
HDAC inhibitor	 Panobinostat (LBH589)	 Hydroxamic acid	 ALL, AML	 +
HDAC inhibitor	 Depsipeptide (FR901228/FK228)	 Cyclic tetrapeptide	 AML	 +
HDAC inhibitor	 Entinostat (MS275/SNDX-275)	 Benzamide	 ALL, AML	 +
HDAC inhibitor	 MGCD0103	 Benzamide	 AML, CLL	 +

AML, acute myelogenous leukemia; ALL, acute lymphocytic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous 
leukemia. DNMT, DNA methyltransferase; HDAC, histone deactylase.

Figure 2. Complex molecular mechanisms and biological effects of hTERT. 
Epigenetic modification may affect hTERT expression and will form a 
permissive or inhibitive condition for hTERT transcription, depending on 
the specific cellular context. The suppression of hTERT promotes growth 
inhibition, differentiation, apoptosis and anti-angiogenesis. hTERT, human 
telomerase reverse transcriptase; HDAC, histone deacetylase; HDACI, 
HDAC inhibitor.
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HDAC inhibitors are agents that have attracted interest due 
to their ability to induce the differentiation of leukemic cells, 
and are now in pre‑ and early clinical trials as monothera-
pies and in combination with other drugs (53,54). Previous 
studies have shown that the transcriptional suppression of 
the hTERT gene during all‑trans retinoic acid (ATRA) treat-
ment is associated with the differentiation of leukemia cells, 
partly due to DNA methylation and histone deacetylation 
in the hTERT promoter region (47,55‑56). Recently, it has 
been revealed that hTERT is downregulated 5‑fold through 
epigenetic and protein acetylation mechanisms using a 
combined treatment of aurora kinase inhibitors (AKi) and 
HDAC inhibitors (57,58). Azouz et al identified two distinct 
functional domains of the hTERT promoter, the proximal and 
distal domains, and identified that the epigenetic modifica-
tions of the distal region determined the retinoid capacity 
to repress telomerase in maturation‑resistant acute promy-
elocytic leukemia cells during cellular differentiation (59). 
Love  et  al showed that epigenetic regulation stabilized 
hTERT inhibition and thus maintained telomerase activity in 
a silenced state during the ATRA‑induced differentiation of 
HL60 human leukemia cells (60). Altogether, these data indi-
cate that epigenetic mechanisms may represent a target for 
maintaining the differentiated phenotype of human leukemia 
cells.

In addition to inducing cell differentiation, telomerase 
inhibition through epigenetic mechanisms has been reported 
to promote growth arrest, apoptosis and sensitivity to certain 
chemotherapeutic reagents in human acute leukemia cells. 
Woo et al demonstrated that TSA had an antiproliferative and 
apoptosis‑inducing effect on the human leukemic cell line 
U937, and that these growth‑inhibitory effects were associ-
ated with the inhibition of hTERT expression and telomerase 
activity. Therefore, a loss of telomerase activity may be a 
good surrogate biomarker to assess the antitumor activity of 
TSA in human leukemic cells (61). The resistance to imatinib 
is a major problem in chronic myelogenous leukemia (CML) 
treatment, and recent studies have shown that by targeting 
telomerase expression using a dominant‑negative form of 
the catalytic protein subunit of hTERT, or by the treatment 
with HDAC inhibitors, the risk of imatinib resistance may 
be reduced and the imatinib‑induced apoptosis in leukemia 
cells may be enhanced, suggesting that antitelomerase strate-
gies may be able to prevent, or at least delay the onset of such 
resistance (62,63).

4. Future perspectives

The hTERT gene is usually transcriptionally inactivated 
in differentiated cells, but is reactivated in the majority of 
leukemia cells. As previously discussed, accumulating evidence 
suggests that epigenetic changes in the hTERT promoter may 
be a prominent mechanism of telomerase activity control. 
Therefore, antitelomerase strategies using epigenetic mecha-
nisms may represent a promising target for the treatment of 
leukemia. There are two major approaches in advanced clin-
ical trials to target telomerase‑positive leukemia cells. Firstly, 
the use of direct telomerase hTR subunit small molecule 
inhibitors, such as telomestatin (SOT‑095), several of which 
are currently in preclinical trials for acute leukemia (64,65). 
The second approach involves using epigenetic modification 
drugs against the hTERT protein; these drugs are currently 
being used for, or have completed trials for the treatment of 
leukemia. At present, there is an increasing interest in using 
epigenetic modifiers as candidate chemotherapeutic agents in 
human leukemia.

Epigenetic modifiers that are currently available in 
preclinical and early clinical trials of leukemia target DNMTs 
through DNMT inhibitors, or alter the status of the histones 
using HDAC inhibitors, in order to modulate gene transcrip-
tion. It has been noted that epigenetic modifications contribute 
to hTERT gene expression and telomerase activity, resulting in 
a positive effect in the treatment of leukemia (59,61). In addi-
tion to epigenetic modifiers, the use of several telomerase hTR 
subunit small molecule inhibitors has resulted in the specific 
inhibition of telomerase activity. Therefore, an antitelomerase 
strategy involving a combination of epigenetic modifiers and 
telomerase hTR subunit small molecule inhibitors may exert a 
more potent effect for the treatment of human leukemia (Fig. 3).

Although epigenetic modifiers have shown promise as 
therapies for human leukemia in early clinical trials, certain 
limitations prevent their widespread clinical application. 
Firstly, the exact molecular mechanisms underlying the 
epigenetic regulation and hTERT expression remain to be 
elucidated, as do numerous details with regard to telomerase 
regulation. An improved understanding of the linkage will 
facilitate the identification of more specific and selective 
epigenetic modifiers for leukemia cells  (66). Secondly, a 
broad spectrum of biological and potentially adverse effects 
have been identified following treatment using epigenetic 
modifiers. Further investigation with regard to these effects 

Figure 3. A hypothesis is associated with antitelomerase strategy. The antitelomerase strategy, created by combining epigenetic modifiers with telomerase 
hTR subunit small molecule inhibitors (such as SOT-095), may exert a more potent effect for the treatment of human leukemia, since each approach is able to 
individually inhibit telomerase activity. hTERT, human telomerase reverse transcriptase.
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is required in large‑scale and multicentric populations of 
treated patients (67). Thirdly, further studies will be required 
to identify whether the inhibition of hTERT gene expression is 
causal or consequential to the anticancer effects of epigenetic 
modifiers, and whether the hTERT gene or telomerase activity 
may be an appropriate predictive biomarker for assessing 
the antitumor activity of these agents in human leukemia 
cells (68). Finally, it should be taken into account whether 
the antitelomerase approach using epigenetic modifiers with 
telomerase hTR subunit small molecule inhibitors may be a 
better combinatorial strategy when compared with methods 
that are already used in prospective clinical trials.

Despite the unanswered biological questions, an increased 
understanding of the role of epigenetic regulation in hTERT 
gene expression and the treatment of leukemia may provide a 
prospective anticancer therapeutic approach in the form of the 
antitelomerase strategy.
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