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Abstract. Head and neck squamous cell carcinoma (HNSCC) 
is the sixth  most common neoplasm worldwide. Despite 
advances in multimodality treatments involving surgery, 
radiation and chemotherapy, the five‑year survival rate has 
remained at ~50% for the past 35 years. Therefore, the early 
detection of recurrent or persistent disease is extremely impor-
tant. Replication‑incompetent HIV‑1‑based lentiviral vectors 
have emerged as powerful and safe tools for gene delivery. 
Commonly, HNSCC is a locoregional disease that presents 
at or close to the body surface. Thus, HNSCC is amendable 
to intratumoral injections of gene therapy vectors aimed at 
correcting defects associated with tumor suppressor genes 
to induce the direct cytotoxicity of cancer cells or immune 
modulation to promote antitumor immunity. Current investiga-
tions analyzing HNSCC gene mutations and stem cell markers 
and the cancer immunoediting concept are creating exciting 
therapeutic opportunities for lentiviral and other gene transfer 
vectors. The present review reports specific examples of the 
current applications of lentiviral vectors in HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) arises 
in the upper aerodigestive tract and includes mouth, throat, 
larynx and neck lymph node cancer. HNSCC is the sixth 

most common neoplasm worldwide. Despite advances in 
multimodality treatments that involve surgery, radiation and 
chemotherapy, the five‑year survival rate has remained at 
~50% for the past 35 years (1‑3). Therefore, the follow‑up proto-
cols currently in practice do not appear to diagnose treatment 
failure and recurrence early enough. There is a requirement 
for the identification of favorable prognostic biomarkers and 
the development of improved therapy for the treatment of head 
and neck cancer patients.

In the last three  decades, a substantial association, as 
well as a synergistic relationship, has been found between 
alcohol and tobacco use and the development of head and 
neck cancer (4‑6). Although the etiology of alcohol‑associated 
head and neck cancer is not fully understood, genetic changes 
in tumor suppressor genes are likely to attribute to the 
transformation from normal to cancer cells in the formation 
and progression of head and neck cancer (7). p53 is widely 
accepted as a key tumor suppressor gene due to its impor-
tant roles in regulating the cell cycle, apoptosis and DNA 
repair (8). Therefore, mutations in p53 are often associated 
with predisposition to HNSCC (9). Studies by Agrawal et al 
and Stransky et al used next generation sequencing techniques 
to compare exon sequences of all the determined human genes 
in normal and tumor cells of the same individual. The two 
studies revealed that the NOTCH gene underwent mutation in 
10‑15% of HNSCC tumors, thus, representing the second most 
commonly mutated gene in HNSCC following p53. In head and 
neck cancer, insufficient NOTCH1 signaling blocks squamous 
cell differentiation and contributes to the continuous prolif-
eration of these ‘pro‑cancer’ cells (10,11). One of the growth 
factor receptors that is highly upregulated and responsible for 
the growth and survival of HNSCC is the epidermal growth 
factor receptor (EGFR) (12-15). Activation of EGFR with its 
corresponding ligand leads to the activation of downstream 
signaling pathways, including RAS/MAP, ERK, PI3K/AKT, 
Janus kinase and phospholipase protein kinase. The simul-
taneous activation of these pathways attributes to carcinoma 
growth and survival (16,17). Monoclonal antibodies against 
EGFR and EGFR tyrosine kinase inhibitors are two types of 
treatment options currently in use for HNSCC (18). However, 
not all patients exhibit similar responses to these treatments. 
It may be argued that additional growth survival pathways, 
including VEGF, HER2 and HER3 (19,20), may function in an 
EGFR‑independent manner.

Currently, there are two hypotheses that explain the tumor-
igenic potential of cancer cells in HNSCC. The stochastic 
model indicates that all cancer cells acquire equal potential 
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to develop tumors. A cancer cell that initiates tumor forma-
tion is selected randomly or by its growth advantage acquired 
under specific microenvironments (21). By contrast, the cancer 
stem cell model demonstrates that not all cancer cells are 
tumorigenic. Only a rare population of cells in tumors shares 
stem cell traits, including self‑renewal and multipotency, 
which exhibit the potential to form tumors (22). In a number 
of studies, distinctive markers have been reported in head 
and neck cancer as cancer stem cell markers. Prince et al 
reported that CD44 represented a marker for cancer stem cells 
in HNSCC, demonstrating that 5,000 CD44+ cells were suffi-
cient to form tumors. By contrast, CD44‑ cells were unable 
to form tumors (23). Krishnamurthy et al reported another 
ALDH marker associated with stem cell properties in vivo. 
Over 80% of ALDH+ CD44 cells developed into a tumor at 
a dose 10 times lower than that of ALDH-CD44-Lin cells 
when implanted in mice (24). Thus, identification of these cell 
types is advantageous for the early eradication of cancer from 
primary sites and the development of innovative strategies.

2. Immunobiology of head and neck cancer

The immune system is composed of a wide network of cells, 
tissues and organs that protect the host from bacteria, para-
sites, fungi, viruses and the growth of tumor cells. A rich 
immunological environment surrounds the site of the head 
and neck region. Therefore, few tumor cells are successful in 
‘escaping’ from the immunological surveillance covered by 
effector cells, including T cells, natural killer (NK) cells and 
B cells (25). The surviving tumor cells gain resistance against 
the immune response and are capable of establishing tolerance 
to the immune competent environment. Surviving tumor cells 
not only interfere with the host immune system but are also 
able to convert the local microenvironment in their favor to 
evade the host immune system, including T and NK cells, 
via several mechanisms that include manipulation of its 
own immunogenicity and production of immunosuppressive 
molecules (26‑28). T cells are important effector lymphocytes 
that play a vital role in cell‑mediated cytotoxicity and regula-
tion of adaptive immunity (29). A decrease in the absolute cell 
counts of specific T‑cell subsets has been observed in HNSCC 
patients (30,31). Activation of the T‑cell receptor (TCR) of 
cytotoxic T cells requires specific recognition of the MHC 
class  I/peptide complex. Therefore, HNSCC escapes cyto-
toxic T cell recognition via downregulation of MHC class I 
molecules (32,33). The CD3ζ chain is a component of the TCR 
signaling complex and its expression is essential for T and 
NK cell activation. Downregulation of the expression of the 
CD3ζ chain molecule is observed in the negative regulation 
of TCR signaling (34,35). As Th1 responses are favorable for 
controlling head and neck cancer (10,36,37), production of 
the immunosuppressive cytokine, IL‑10, suppresses the Th1 
response and favors the Th2 response, promoting the growth 
of head and neck cancer  (38). The regulatory T cell is an 
additional T cell subset that suppresses the immune response 
of other cells and induces tolerance to self‑antigens to avoid 
autoimmunity (39). In head and neck cancer patients, increases 
in the number of these regulatory cells have been found to 
correlate with the observed immune suppression (40‑42).

The differentiation and functional activities of diverse 
T‑cell subsets are tightly regulated by the maturation and 
activation status of dendritic cells (DCs) (43‑46). Steady state, 
immature DCs are tolerogenic, whereas mature DCs have 
acquired the ability to effectively stimulate specific T‑cell 
subsets, including Th1, Th2 and Th17 (47). Of note, a number 
of defects in DC differentiation and function have been 
reported in HNSCC patients and are as follows: i) defective 
differentiation of mature DCs, where the presence of imma-
ture myeloid cells has been found to reduce the expression 
of MHC class II and costimulatory molecules, resulting in 
the abnormal differentiation of DCs (26,48); ii) impairment 
of chemotaxis, whereby the migration ability of monocytes 
has been found to be defective in HNSCC, which may be 
due to the tumor‑derived factors that suppress the migration 
of monocytes (49); and iii) defects in DC maturation, where 
the immunosuppressive effects of soluble factors released 
by HNSCC have been found to cause the impairment of 
DC function. A number of tumor‑secreted factors have been 
reported, including IL‑10, vascular endothelial growth factor 
and granulocyte macrophage colony stimulating factor (50). 
These factors function at various levels, including blocking 
the differentiation of monocytes, and impairing DC matura-
tion and immune tolerance (51‑53). NK cells are an additional 
subset of lymphocytes that highlight an important innate 
defense against various harmful stimuli, including viruses 
and tumors  (54,55). Recent studies have demonstrated the 
importance of NK‑DC crosstalk in the regulation of antitumor 
immune responses (56). Defects in DC function in HNSCC 
may also contribute to the defects in NK cells and the number 
of NK cells observed in HNSCC malignancies (57).

3. The cancer immunoediting concept

The concept of ‘cancer immunosurveillance’ proposed by 
Thomas highlighted the important role of the immune system 
in fighting against cancer (58). However, over the past two 
decades the ‘cancer immunosurveillance’ hypothesis has been 
challenged by observations that revealed the controversial role 
of the immune system in the promotion of tumor formation (29). 
The concept of ‘cancer immunoediting’ has been proposed 
recently to address antitumor immunity, tumor dormancy and 
escape mechanisms of immune recognition (59). The cancer 
immunoediting model consists of three sequential phases (3E 
phases), elimination, equilibrium and escape. The elimination 
phase is described with regard to the immune surveillance 
hypothesis, where the immune system is dominant compared 
with cancer cells. The immune system recognizes the altered 
cellular activity and tumor antigens and ultimately, eliminates 
cancer cells. During this phase, the host is free from cancer 
and nascent cancer cells are destroyed by the immune system 
before they may transform into tumors. The equilibrium phase 
is the second phase in which the immune system and cancer 
cells equally fight for survival. Tumor growth is maintained 
and prolonged tumor dormancy creates an environment where 
a rare, small fraction of tumor cells acquire novel mutations 
that allow them to resist immune attack and enter the final 
phase. The escape phase is the final phase in which tumor 
cells are no longer recognized by the immune system. The 
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continuous pressure of the immune system against the cancer 
cells switches the cells from the equilibrium phase to the 
escape phase. The cancer cells lose their tumor microenviron-
ment favoring their growth and effectively blocking immune 
recognition. Thus, cells that survive throughout the process 
emerge as tumors and are visible in clinical tests (59,60).

4. Emerging concepts in lentiviral vector use for the 
treatment of HNSCC

The cancer gene therapy approach presents a means to intro-
duce therapeutic/cytotoxic genetic materials into cancer cells 
to correct defects by replacing/suppressing the effects of the 
mutated gene or to destroy the cancer cells without harming the 
surrounding normal cells. Viral gene delivery vector systems, 
primarily retroviral and adenoviral vectors, have been widely 
used in animal studies and clinical trials to date (61). With 
the advances that have been made in the understanding of 
gene mutations/functions in cancer biology and application of 
suitable gene delivery systems, the first successful retroviral 
gene therapy trial for the treatment of melanoma was reported 
in 2006 (62). In this study, adoptive transfer of autologous 
T  lymphocytes, engineered to encode a TCR specific for 
tumor‑associated antigens, successfully regressed metastatic 
melanoma in two out of 15 patients. In addition, the great 
potential of using a gene therapy approach was highlighted 
for the treatment of cancer patients. Commonly, HNSCC is 
a locoregional disease that presents at or close to the body 
surface. Therefore, it is amendable to intratumoral injection 
of gene therapy vectors that aim to correct defects associated 
with tumor suppressor genes, induce the direct cytotoxicity of 
cancer cells (including the suicidal HSV‑Tk gene and onco-
lytic ONYX‑015 adenovirus) or induce immune modulation 
(including MHC‑B7) to promote T‑cell recognition of tumor 
cells (63‑66).

Replication‑incompetent HIV‑1‑based lentiviral vectors 
have emerged as powerful and safe tools for gene delivery 
due to their ability to transduce dividing and non‑dividing 
cells (67‑70). This enables the integration of genes into the 
host genome to sustain stable transgene expression, pseudo-
typing with vesicular stomatitis virus glycoprotein (VSV‑G) 
or other modified envelope proteins to efficiently transduce 
the cells of interest  (71). These vectors are relatively less 
immunogenic when compared with adenoviral vectors. In 
addition, they exhibit a different preference for the sites of 
vector integration in the host genome DNA when compared 
with retroviral vectors (72), thus, rendering them less likely 
to transform specific transduced cells via insertional muta-
genesis of the proto‑oncogene/tumor suppressor gene. To 
date, the application of the lentivirus to the transduction of 
primary immune cells, including hematopoietic stem cells, 
NK cells and DCs (71,73,74), has been successful, providing 
an additional platform for the genetic engineering of host 
immune cells to augment antitumor activities. At present, 
there are a limited number of studies that have analyzed the 
use of lentiviral vectors as a tool for the delivery of genes in 
HNSCC. However, accumulating experimental and preclinical 
data has highlighted the proof of principle for the treatment 
of head and neck cancer using lentiviral vectors. The present 

review focuses on the multiple applications of lentivirus medi-
ated gene therapy for the treatment of head and neck cancer 
in various experimental settings. As the concepts of RNA 
interference, cancer stem cells and cancer immunoediting are 
growing, an exciting opportunity is emerging for the future 
application of lentiviral vectors in cancer gene therapy and 
immunotherapy settings.

Commonly, the primary HNSCC tumor is treated with 
radiation or surgery. Despite intensive local treatment, tumor 
recurrence and metastases to distant sites is inevitable. 
Metastatic tumors may therefore require an alternative 
approach, including chemotherapy and other targeted agent 
therapies (75). As the majority of patients succumb to their 
condition due to these two critical effects, targeting these key 
steps is likely to be important for prolonging the survival of 
cancer patients (76). Degradation of the extracellular matrix 
by matrix metalloproteinases (MMPs) facilitates the migration 
of cancer cells to the surrounding normal cellular environ-
ment (77‑80), and is consistent with the invasion and metastasis 
process. These proteases assist the diffusion of cancer cells 
into the vascular and lymphatic systems via degradation of the 
tissue structure (81). Targeting these MMPs may be useful for 
the successful treatment of cancer patients. Sun et al silenced 
MMP‑2 expression in laryngeal squamous cell carcinoma 
using lentiviral vectors. The authors observed that inhibition 
of these endopeptidases significantly impedes the invasion and 
growth of laryngeal squamous cancer cells (82). Cisplatin is 
commonly offered to patients with advanced stage head and 
neck cancer. However, there are numerous cases where chemo-
therapy treatment has failed due to the expression of resistance 
genes in tumors (83). These gene products expel the drugs 
from the cytoplasm and shorten the duration of chemical expo-
sure to cancer cells. The development of drug‑resistant tumor 
cells accounts for the failure of chemotherapy in the control of 
cancer cell metastasis. The ABC transporter family has been 
identified as an anticancer drug transporter family (84,85) 
and among the transporters, ABCC2 has been shown to be 
involved in resistance to anticancer drugs, including cispl-
atin (86). Xie et al demonstrated that siRNA targeting ABCC2 
mediated by a lentivirus markedly increased the cellular 
concentration of cisplatin, thereby increasing the sensitivity 
of cisplatin against the cancer cells and reducing the growth 
of cancer cells in vivo and in vitro (83). Chemokine receptors 
are likely to be involved in the metastasis of tumors and are 
unregulated in several types of human tumor, including breast, 
melanoma, prostate and colon (87‑89). A study conducted by 
Hong et al demonstrated that the downregulation of CXCR4 
using a lentiviral vector induced the antiproliferative and 
anti‑invasive effects in oral cancer cells. In an in vivo model, 
the authors constructed a lentiviral expression vector targeting 
CXCR‑4 mRNA. Using this model, the expression of CXCR‑4 
was knocked down in two oral squamous cell lines, KB and 
KB0SSC‑25  B. The results showed that the anti‑invasive 
effect was 29.5 and 38.1% in KB and KB0SSC‑25B cell lines, 
respectively, compared with that in control vector‑infected 
cells. In addition, CXCR4 knockdown cells grew significantly 
slower than the vector‑infected cells, confirming the antip-
roliferative effect (90). It is important to investigate whether 
these gene‑silenced cells are likely to inhibit the migration of 
tumor cells to distant sites, and to identify the impact on the 
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induction of antitumor immune responses in vivo. A study by 
Chen et al reported that ALDH1 functions as a putative marker 
for cancer stem cells in HNSCC (91). In addition, the authors 
revealed that BMi‑1, initially identified as a proto‑oncogene, 
is responsible for maintaining the self‑renewal capacity of 
HNSCC‑ALDH1+ cells. Using the lentivirus expression vector 
plVRNAi/sh‑BMi‑1, BMi‑1 expression was knocked down in 
ALDH+ cells. BMi‑1‑silenced ALDH+ cells showed stronger 
chemotherapeutic effects, as well as increased efficacy for 
radiotherapy, in vivo (92).

The dual opposite functions of immune interactions 
with cancer are being increasingly reported. According 
to the 3E phases of the cancer immunoediting model, if 
cancer has progressed beyond the equilibrium phase, the 
immune system may provide support to the cancer progres-
sion process rather than eliminate the cancerous cells. It is 
therefore important to understand the interactions of the 
tumor microenvironment, various immune cell types and 
cancer cells when designing a strategy to augment antitumor 
responses. In head and neck cancer, the immune system is 
often compromised due to the production of various suppres-
sive factors (26,27) or malfunction of key immune cells. Head 
and neck cancer evades the host immune system via specific 
mechanisms, including the downregulation of HLA class I 
molecules (93,94) or CD3ζ in T cells. As the CD3ζ chain is 
a subunit of the TCR complex, essential for signal transduc-
tion  (25), T cells of HNSCC patients show compromised 
cytotoxic ability  (75,95), decreased proliferation when 
stimulated with IL‑2  (25) and decreased production of 
proinflammatory cytokines, including IL‑2 and IFN‑γ (96). 
Thus, restoration of a functional immune system may be 
useful for controlling disease progression and tumor growth 
in HNSCC patients. The design of therapeutic strategies 
that eliminate primary cancer cells (elimination phase) and 
augment the host immune system against cancer cells (equi-
librium phase) are likely to reduce the growth of primary 
tumors and spreading of cancer cells to secondary locations. 
HIV‑1 viral protein (vpr) is an accessory vpr required for 
importing the HIV‑1  vpr‑integrating complex into the 
nucleus of nondividing cells (97). In addition, the vpr protein 
alone induces cell cycle arrest and apoptosis in a variety of 
mammalian cells  (98,99). Our previous study determined 
the antitumor potential of HIV‑1 vpr in an AT‑84 mouse 
model of oral cancer (100). A single intratumoral injection 
of vpr‑expressing lentiviral gene therapy vectors reduced the 
primary tumor volume significantly within 7‑14 days (100) 
and complete regression of the AT‑84 tumor was identified in 
>40% of animals. In addition, the latter were protected from a 
secondary challenge of AT‑84 tumor cells (100). It is possible 
that expression of the vpr protein induced apoptosis in the 
tumor cells and augmented the target recognition by tumor 
cells. The latter may trigger augmented adaptive anti‑AT‑84 
responses in primary and secondary tumor challenges.

5. Concluding remarks

Current investigations analyzing HNSCC gene mutations 
and cancer stem cell markers and the cancer immunoediting 
concept establish exciting therapeutic opportunities for 
lentiviral and other gene transfer vectors. Genetic manipu-

lation of effector immune cell responses at the elimination 
and equilibrium phases may be consistent with the regres-
sion of primary tumors and the restoration/augmentation of 
antitumor responses in HNSCC patients. Strategies aimed 
at the direct elimination of tumor cells and/or augmentation 
of antitumor responses to T cells, including the augmenta-
tion of Th1 and suppression of T‑cell regulation functions 
or DC levels, may be useful for the boosting of the immune 
system to fight HNSCC cancer. The VSV‑G has been widely 
used for pseudotyping lentiviral vector particles due to its 
stability, high titer and broad cell tropism in transduction. 
Development of novel envelope proteins for pseudotyping 
lentiviral vector particles is likely to be consistent with 
cell‑type specific transductions in vivo. A Sindbis virus glyco-
protein, capable of binding DC‑SIGN protein, was created to 
specifically deliver genes of interest into DCs following the 
administration of in vivo viral vectors (101). Further modifi-
cation of the Sindbis virus envelope protein to express either 
a Fc‑binding protein A domain, a biotin‑adaptor peptide or 
arginine‑glycine‑aspartic acid RGD peptide have been shown 
to support targeted cell type‑specific transduction (102‑104). 
The latter may be utilized to target DC or cancer stem cells 
in  vivo. An important feature of lentiviral vectors is the 
ability of the viral integrase protein to integrate the genes of 
interest into the host genome, consistent with the efficient and 
long‑term gene expression of transgenes in transduced cells. 
Although the preferred sites of integration appear to vary 
between the lentiviral and retroviral vectors, concern that the 
vector integrations may pose a risk of insertional mutagenesis 
remains. In applications that do not require long‑term stable 
gene expression, integration‑deficient lentiviral vectors (that 
harbor class I mutations of the HIV‑1 integrase) for transient 
transgene expression may also provide a safer alternative to 
the current lentiviral‑based therapies (105‑108).
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