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Abstract. Curcumin, a non‑nutritive yellow pigment derived 
from the rhizome of Curcuma longa (turmeric), is considered 
to be an established nutraceutical with anticancer activity. 
Turmeric contains three principal components, curcumin, 
demethoxycurcumin and bisdemethoxycurcumin, of which 
curcumin is most abundant and potent. The concurrence 
of a high consumption of turmeric and a low incidence of 
prostate cancer in Asian countries may suggest a role for 
curcumin in chemoprevention. Curcumin has been identified 
to exhibit anti‑inflammatory, anti‑oxidative and anticarcino-
genic properties. Since the compound does not exhibit side 
effects, curcumin has been designated for several clinical 
trials as a treatment for human cancers. The pro‑apototic, 
antioxidant and anti‑inflammatory characteristics of curcumin 
are implicated in its anticancer activity, yet the mechanism of 
action of curcumin remains unknown. To achieve an effective 
pharmacological outcome, curcumin must reach and sustain 
appropriate levels at the site of action. However, the main 
disadvantage of curcumin is its high metabolic instability and 
poor aqueous solubility that limits its systemic bioavailability. 
To overcome this difficulty, the present study tested the anti-
cancer activity of new curcumin‑like compounds (E21cH and 
Q012095H). Also, the use of new medicaments requires an 
understanding of their pharmacokinetic profiles and targets. 
Thus, molecular modeling methods were used to identify the 
targets of curcumin and curcumin‑like compounds compared 
with other anticancer drugs (Q012138 and Q012169AT), which 
were used as the controls. The present study identified several 
enzymes that are targeted by curcumin, aldo‑keto reductase 
family 1 member B10 (AKR1B10), serine/threonine‑protein 
kinase, protein kinase C, matrix metalloproteinase (MMP), 

cyclooxygenase and epidermal growth factor receptor, which 
were tested as targets for these anticancer chemicals. All the 
examined small compounds demonstrated anticancer activity 
in the in vitro experiments and may impact cancer cells by 
acting on AKR1B10, MMP‑9 and their targets.

Introduction

According to the American Cancer Society, prostate cancer 
is currently the second most common cause of cancer‑related 
mortality among males. An estimated >235,000 new cases 
of prostate cancer are expected in the US during 2013 (1). 
Furthermore, in a recent study by Arcangeli  et  al, it is 
predicted that the increase in birth rate may correlate with an 
increased prevalence of prostate cancer in the United States 
by 2020 (2). However, with the establishment of diagnostic 
markers, including prostate‑specific antigen screening, and 
recent advances in molecular imaging, clinicians are able to 
detect early cancer proliferation prior to the development of 
apparent clinical manifestations and, more significantly, prior 
to the occurrence of metastasis. This affords clinicians more 
time to design the appropriate and effective treatment proce-
dures. The current treatment methods for prostate cancer 
include the administration of steroidal and non‑steroidal 
anti‑androgens, radiation therapy, chemotherapy, surgery or 
a combination of these modalities. Although these options 
may be successful in controlling the progression of prostate 
cancer, they are often associated with comorbidities that 
affect urinary and sexual function. Therefore the aim of 
prostate cancer research is to develop innovative treatment 
options to avoid such complications. Several characteristics 
of prostate cancer make it useful to serve as a model for 
developing new chemopreventive techniques, including its 
high prevalence, heterogeneous presentation, long latency, 
slow progression, preneoplastic lesions and tumor marker 
availability (2,3). 

Males have an equal rate of histological prostate cancer 
worldwide, as assessed by volume, grade and number of 
malignant foci (4). However, disease incidence varies widely 
according to the geographic location. Western nations have 
higher rates of mortality compared with Asian countries, 
including India, China and Japan. More notably, migrating 
populations from low‑risk areas (Asian countries) to high‑risk 
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areas (Western countries) also have an increased risk of devel-
oping prostate cancer. Since genetic predisposition accounts 
for only 5‑10% of cases, as cited by the American Cancer 
Society (1), the uniting theme in the literature has become 
identifying the environmental factors that promote or inhibit 
the development of prostate cancer. 

Foods or part of foods with medicinal value, termed nutra-
ceuticals, which are prepared and consumed variably across 
cultures, may be active in the prevention and treatment of 
diseases, including prostate cancer. Curcumin, a non‑nutritive 
yellow pigment derived from the rhizome of Curcumin longa 
(turmeric), has received attention as an established nutraceutical 
that is capable of anticancer activity (5). Turmeric contains three 
principal components, curcumin, demethoxycurcumin and 
bisdemethoxycurcumin, of which curcumin is the most abun-
dant and potent (6‑9). The concurrence of a high consumption 
of turmeric in Asian countries and a low incidence of prostate 
cancer suggest its role in chemoprevention (10). Curcumin 
and a number of its derivatives have been identified to exhibit 
anti‑inflammatory, antioxidative and anticarcinogenic proper-
ties (11). As the compound does not exhibit toxic, genotoxic or 
teratogenic properties, curcumin has been selected for several 
clinical trials to be used as a possible treatment for human 
cancers (3,5,11). Curcumin has been shown to diminish the 
proliferation of androgen‑dependent and androgen‑indepen-
dent prostate cancer cell lines (12). Furthermore, studies have 
revealed a wide array of therapeutic activities against multiple 
myeloma, pancreatic cancer, myelodysplastic syndromes, 
colon cancer, psoriasis, Alzheimer's disease and others (13). 
The pro‑apototic, antioxidant and anti‑inflammatory proper-
ties of curcumin are implicated in its anticancer activity, yet 
the mechanism of action of curcumin remains unknown (8). 
Curcumin is a highly pleiotropic molecule with multiple 
mechanisms by which it may mediate chemotherapy and 
chemopreventive effects on cancer, while remaining safe with 
little or no side effects. This dietary compound has been shown 
to inhibit several cell signaling pathways, including nuclear 
factor (NF)‑κB, activating protein‑1, tumor necrosis factor 
and metastatic and angiogenic pathways. The compound also 
inhibits certain enzymes, including cyclooxygenase (COX)‑2 
and matrix metalloproteinases (MMPs) (9,13,14). The present 
study randomly identified several enzymes that are essential 
in carcinogenesis and are also targeted by curcumin, aldo‑keto 
reductase family 1 member B10 (AKR1B10), serine/threo-
nine‑protein kinase (mTOR), protein kinase C (PKC), MMP‑9, 
COX‑1 and epidermal growth factor receptor (EGFR), to gain 
further insight into the mechanism of action (5,7,13,15‑17).

Curcumin has a poor systemic bioavailability as it is not 
able to reach and sustain the appropriate levels at the site of 
action due to its high metabolic instability and poor aqueous 
solubility (18,19). The present study aimed to identify the anti-
cancer activity of curcumin‑like compounds with potentially 
greater bioavailability, and speculate the protein targets of these 
compounds that are implicated in the mechanism of action. 
Novel curcumin‑like compounds, E21cH and Q012095H, 
with greater water solubility were tested. Molecular modeling 
methods were used to identify the targets of curcumin and 
curcumin‑like compounds by comparing them with other 
anticancer drugs (Q012138 and Q012169AT), which were used 
as a controls.

Materials and methods

Compounds. The small molecular chemicals with anticancer 
activities were obtained from PharmaIP, LLC (Greenwich 
CT, USA). Curcumin [(1E,4Z,6E)‑5‑hydroxy‑1,7‑bis(4‑hyd
roxy‑3‑methoxy‑phenyl)hepta‑1,4,6‑trien‑3‑one]; Q0121138 
[4‑[[(1S)‑1‑(benzothiophen‑2‑ylmethyl)‑2‑ethoxy‑2‑oxo‑
ethyl]carbamoyl]phenyl] methylammonium; Q012095H 
(1E,4Z,6E)‑1,7‑bis[5‑(2‑dimethylaminoethyl sulfanyl)‑2‑thie
nyl]‑5‑hydroxy‑hepta‑1,4,6‑trien‑3‑one; Q012138 [4‑[[(1S)‑1
‑(benzothiophen‑2‑ylmethyl)‑2‑ethoxy‑2‑oxo‑ethyl]
carbamoyl] phenyl] methylammonium; and Q012169AT 
(N‑ethyl‑5‑hydroxy‑2‑phenoxy‑benzamide; Fig. 1). All the 
compounds were dissolved in dimethyl sulfoxide (DMSO) 
2.5 mg/ml and stored at ‑20˚C until they were used.

Cell culture and clonal assay. The DU‑145 human prostate 
cancer cell line was grown in RPMI‑1640 medium supple-
mented with 10% fetal bovine serum (Atlanta Biologicals, 
Lawrenceville, GA, USA) and 100 U/ml penicillin, 100 µg/ml 
streptomycin (Sigma‑Aldrich, St. Louis, MO, USA). A total of 
~50 or ~100 viable DU‑145 cells (Trypan blue viability assay, 
two separate trials) were plated in 0.5 or 1 ml of complete 
medium onto 12 or 24‑well tissue culture dishes. The cells were 
allowed to attach for 48 h. The cells were then treated for 4 h 
with 1.2‑, 2.5‑, 5.0‑ or 10‑µl allotments of DMSO, curcumin, 
E21cH, Q0121138, Q012095H or Q012169AT dissolved in 
1 mg/ml DMSO. The surviving cells were incubated for nine 
days to allow colony formation and then rinsed with 10% 
saline, fixed with 100% methanol and stained using Giemsa 
stain. The colony counts were performed under x10 magnifica-
tion (Stereomaster, Thermo Fisher Scientific Inc., Waltham, 
MA, USA). The experiments were repeated in triplicate to 
determine the anticancer activity.

Molecular modeling. Two‑dimensional structures (2D) of 
small molecular chemicals were created by AccelrysDraw 
v. 4.0 (Accelrys, Inc., San Diego, CA, USA) in an SKC format. 
The 2D structures were converted into three dimensional and 
PDB format files using a web‑based program (http://www.
molecular‑networks.com/products). Docking of the poten-
tial inhibitors to the proteins was performed using VINA 
Autodock (Molecular Graphics Lab, The Scripps Research 
Institute, La Jolla, CA, USA) (20). The protein structures were 
downloaded from http://www.rcsb.org/pdb/home/home.do as: 
1zua, AKR1B10 (21); 3oaw, mTOR (22); 1yrk, PKC (23); 2ovx, 
MMP‑9 (24); 3ln1, COX‑2 (25) and 2itx, EGFR (26). A search 
box was set up with following parameters: AKR1B10 human 
NADPH‑dependent aldo‑keto reductase (center: x, ‑29; y, 22; 
z, 0.1; size: x, 50; y, 50; z, 50), mTOR (center: x, ‑17.5; y, ‑11; 
z, ‑12; size: x, 50; y, 40; z, 46). PKC (center: x, 25; y, 40; z, 
31; size: x,40; y, 44; z, 74), MMP‑9 (center: x, 27; y, 6; z, 51; 
size: x, 40; y, 56; z, 40), COX‑2 (center: x, 32; y, ‑22; z, ‑16; 
size: x, 40; y, 40; z, 40) and EGFR (center: x, ‑47; y, ‑2; z, ‑22; 
size: x, 50; y, 40; z, 50). The inhibitors that were present in 
the PDB structures were used to determine the center of the 
search and later removed from structure. The small molecules 
were kept flexible by allowing rotation around the single 
bonds. By default, VINA Autodock analyzes eight various 
protein/inhibitor complexes (conformers) and the one with the 
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lowest free energy is considered the most probable. Free energy 
is converted to Ki using the following formula  (20,27‑30): 
Ki = exp [ΔG / (R x T)], where ΔG is Gibbs free energy change, 
R is the gas constant and T is the absolute temperature. The 
final analyses of structures that were generated by Autodock 
and the generation of the figures was performed using PyMOL 
v. 1.4 (Schrödinger, München, Germany) (31,32).

Results

In vitro anticancer activity. The present study tested the anti-
cancer activities of >30 curcuminoids, thiotryptophanes and 
4‑phenoxyphenol derivatives. In the clonal assay, Q012095H 
demonstrated the strongest anticancer activity, followed by 
Q012138 and Q012165H. E21cH and curcumin activity were 
comparable with each other but lower than the three others 
(Fig. 2). The highest concentrations of Q012095H and Q012138 
showed a complete inhibition of cancer cell growth.

Molecular modeling. The results of the docking are illustrated 
in Fig. 3 and the calculated Ki values are provided in Table I. 
All the compounds that were tested contained an aldo‑keto 
moiety. One of the human enzymes that was tested in the 
in silico experiment was AKR1B10, an NADPH‑dependent 
aldo‑keto reductase that reduces a variety of aldehydes and 
ketones. AKR1B10 has been reported to be upregulated in 
number of cancers. Additionally, AKR1B10‑gene silencing 
results in the inhibition of colorectal cancer cell growth, 
suggesting that AKR1B10 regulates cell proliferation (33). 
It has been proposed that AKR1B10 controls retinoic acid 
signaling and impacts the carcinogenesis process. Also, 
tolrestat, which efficiently inhibits AKR1B10, is suggested to 
have a potential application in cancer control (34,35). Thus, 
the investigated chemicals were tested for the capacity to bind 

to the active site of this enzyme. All the investigated chemi-
cals were found to bind near the active site and functionally 
block its access. The calculated Ki was in µM levels for all the 
tested chemicals, indicating their relative strength of affinity 
(Table I).

Discussion

mTOR, a serine/threonine protein kinase, regulates cell growth, 
cell proliferation, cell motility, cell survival, protein synthesis 
and transcription (36). The inhibition of mTOR mediates the 
antiproliferative effects of curcumin in numerous human and 
non‑human cell lines (15,37,38). In addition, curcumin has been 
reported to be able to dissociate the raptor subunit from mTOR 
as well as inhibit mTORC1 activity (15). Liu et al designed 
several idopyrimidinone (1) 4‑methylpteridinones that bind to 
a small pocket within the mTOR binding site. This inhibitor 
in the protein structure was used as a center of search (22). In 
the present study, the molecular modeling revealed that all the 
compounds that were tested had a relatively low affinity and 
bound in various locations outside the active site of mTOR. 
Only E21cH and Q012095H were able to bind in proximity to 
where the inhibitor was localized. mTOR may be an unlikely 
target of the chemicals that were tested. By contrast, Lin et al 
stated that PKC and mTOR were the major upstream molecular 
targets for curcumin (39). A possible explanation is that the 
products of curcumin degradation act on mTOR instead of 
curcumin itself (7,8,13,14,18,19,40).

Curcumin is an inhibitor of PKC. Consequently, curcumin 
inhibits the activation of NF‑κB and the expression of onco-
genes, including c‑jun, c‑fos, c‑myc, NF‑κB‑inducing kinase 
(NIK), mitogen‑activated protein kinases, ERK, ELK, phos-
phoinositide 3‑kinase, Akt, cyclin‑dependent kinases and 
inducible nitric oxide synthase (39). Conboy et al performed 
molecular modeling and identified that curcumin was able to 
dock effectively on PKC. However, curcumin did not directly 
inhibit PKC activity, but rather increased its degradation (41). 
The calculations in the present study revealed all tested 
compounds bind to PKC in essentially the same place, but with 
low affinity.

Traditionally, MMP‑9 was associated with tumor angio-
genesis and metastasis by lysing proteins of connective 
tissue  (42,43). However, curcumin has been reported to 
protect MMP‑9 from proteolytic degradation (44). MMP‑9 
plays a critical function in normal and pathological angio-
genesis and/or controlling the biological activity of growth 
factors, cytokines and chemokines (45). Proteolytic enzymes 
that stimulate angiogenesis and metastasis frequently 
show other functions in carcinogenesis in addition to their 
traditional roles (46‑48). Ravindranath et al reported that 
blocking the activity of MMP‑9 may arrest cell growth and 
proliferation in addition to the inhibition of invasion and 
angiogenesis (49). All the chemicals that were tested were 
observed to bind to the active site of MMP‑9 in the proximity 
of the MMP‑9 inhibitor (5‑(4‑phenoxy phenyl)‑5‑(4‑pyrim-
idin‑2‑ylpiperazin‑1‑yl)pyrimidine‑2,4,6(2H,3H)‑trione) 
with high affinity.

Curcumin possesses anti‑inflammatory activity and is 
a potent inhibitor of reactive oxygen generating enzymes, 
including COX (15,37). Curcumin itself is a potent scavenger 

Figure 1. Structure of compounds with anticancer activities. Curcumin and 
curcumin‑like compounds are presented in the enol form, which is more 
thermodynamically stable (60).
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Table I. Calculated Ki for the various protein and inhibitor complexes.

	 AKR1B10	 mTOR	 PKC	 MMP‑9	 COX‑2	 EGFR
Compound	 (kcal/M)/Ki(M)	 (kcal/M)/Ki(M)	 (kcal/M)/Ki(M)	 (kcal/M)/Ki(M)	 (kcal/M)/Ki(M)	 (kcal/M)/Ki(M)

Curcumin	‑ 7.6/2.8x10‑6	‑ 6.9/9.0x10‑6 NA	‑ 6.2/2.9x10‑5	‑ 9.1/2.2x10‑7	‑ 7.3/4.6x10‑6 NA	‑ 6.7/1.3x10‑5

E21cH	‑ 7.4/3.9x10‑6	‑ 5.8/5.7x10‑5	‑ 4.9/2.6x10‑4	‑ 7.9/1.7x10‑6	‑ 7.6/2.8x10‑6	‑ 6.3/2.5x10‑5

Q012095H	‑ 5.8/5.7x10‑5	‑ 4.6/4.3x10‑4	‑ 4.5/5.1x10‑4	‑ 6.2/2.9x10‑5	‑ 6.1/3.5x10‑5 NA	‑ 5.2/1.6x10‑4

Q012138	‑ 7.1/6.5x10‑6	‑ 6.2/2.9x10‑5 NA	‑ 5.8/5.7x10‑5	‑ 8.9/3.1x10‑7	‑ 9.2/1.9x10‑7	‑ 6.2/2.9x10‑5

Q012169AT	‑ 6.2/2.9x10‑5	‑ 6.9/9.0x10‑6 NA	‑ 4.9/2.6x10‑4	‑ 7.8/2.0x10‑6	‑ 8.8/3.7x10‑7	‑ 6.6/1.5x10‑5

AKR1B10, aldo‑keto reductase family‑1 member B10; mTOR, serine/threonine kinase; PKC, protein kinase C; MMP, matrix metallopro-
teinase; COX‑2, cyclooxygenase‑2; EGFR, epidermal growth factor receptor; NA, not applicable.

Figure 2. Survival of cancer cells treated with the chemicals that were tested depends on the concentration of the delivered compound in the cell media. 
DMSO, dimethyl sulfoxide.

Figure 3. Surface model of the active sites of the enzymes that were tested. All the potential inhibitors are shown as stick models. Curcumin (yellow), E21cH 
(orange), Q012095H (blue), Q012138 (green) and Q012169AT (magenta). The inhibitor from the PDB structure is shown in red. AKR1B10, aldo‑keto reductase 
family‑1 member B10; mTOR, serine/threonine kinase; PKC, protein kinase C; MMP, matrix metalloproteinase; COX‑2, cyclooxygenase‑2; EGFR, epidermal 
growth factor receptor.
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of free radicals and the inhibition of COX potentiates its 
anticancer activity (50‑52). Although the specific regulation 
of COX‑2 by curcumin is not fully understood, the evidence 
suggests that curcumin regulates COX‑2 at the transcriptional 
and the post‑translational levels (17,53). In the present study, 
molecular modeling revealed that E21cH, Q012138 and 
Q012169AT bind to COX‑2 with a high affinity, deep in the 
tunnel of the active site where celecoxib (4‑[5‑(4‑methylpheny
l)‑3‑(trifluoromethyl)‑1h‑pyrazol‑1‑yl]benzenesulfonamide) is 
bound (25). However, Q012095H and curcumin were observed 
to bind outside of this site. This is in contrast with studies 
that state that curcumin inhibits COX (16,54‑56). A possible 
explanation is that the non‑enzymatic degradation of curcumin 
occurs, resulting in degradation products that are formed 
through cleavage of the heptadienone chain that connects the 
phenolic rings (57). Dong et al have shown that COX acts as 
a dimer, where one monomer with a heme moiety is active 
and the other is apo, which acts as the allosteric site, control-
ling activity of the active monomer (58). Thus, the docking 
scenario in its simplification in silico may not reflect the true 
situation in vivo, which may be more complex.

Xu  et  al reported that cyclohexanone analogs that are 
designed based on the curcumin structure are potential EGFR 
inhibitors and exhibit antiproliferative activity in human 
tumor cell lines. Cyclohexanone analogs fit in the active site 
of EGFR, as shown by molecular docking  (59). This was 
confirmed by the experimental modeling in the present study. 
All the investigated compounds also bound the EGFR active 
site, but with low affinities.

Based on the results of the present study, AKR1B10 and 
MMP‑9 have been shown to be the most likely targets of 
curcumin and curcumin‑like derivatives. Curcumin and the 
investigated curcumin‑like compounds bound the other proteins 
that were tested outside of the active site or with low affinities. 
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