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Abstract. Aberrant DNA methylation leads to altered gene 
expression, resulting in cancerous features. Numerous tumor 
suppressor genes are silenced by DNA methylation during 
hepatocarcinogenesis. Promoter CpG island hypermethylation 
is an important mechanism for inactivating tumor suppressor 
genes in hepatocellular carcinoma (HCC). Hypermethylation 
of CpG islands in the p16 (INK4a) and p15 (INK4b) promoters 
may increase the risk of developing HCC, particularly hepa-
titis B virus‑related HCC. Environmental factors can lead 
to geographic variations in the methylation status of CpG 
islands. Aberrant DNA methylation of CpG islands is cata-
lyzed by DNA methyltransferases (DNMTs). Thus, abnormal 
variations of DNMTs can contribute to hepatocarcinogenesis. 
In hepatitis‑related HCC, microRNAs participate in hepato-
carcinogenesis by directly targeting DNMTs, during which 
hepatitis B virus X acts as a regulator. DNA methylation may 
also contribute to HCC tumorigenesis by regulating the cell 
cycle. Based on the importance of DNA methylation in tumor 
suppression of HCC, certain DNA methylations may predict 
the risk of tumor development, tumor staging, patient survival 
and HCC recurrence.
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1. Introduction

Epigenetic mechanisms are important for human carcinogen-
esis. Epigenetic abnormalities are involved in the early stages 
of tumorigenesis and may trigger genetic events leading to 
tumor development (1). Epigenetic alterations result in aber-
rant gene expression profiles that do not result from changes in 
the primary nucleic acid sequence, but rather involve covalent 
modification of nucleotide bases in normal DNA sequences. 
DNA methylation is the most commonly studied epigenetic 
mechanism and is crucial in the development of nearly all 
types of cancer  (2). Aberrant DNA methylation can result 
in altered patterns of gene expression leading to cancerous 
features. During carcinogenesis, numerous tumor suppressor 
genes are silenced by DNA methylation. DNA methylation 
does not change genetic information, however, alters the read-
ability of the DNA and results in the inactivation of genes by 
subsequent repression of transcription. Tumors often possess 
decreased genomic DNA methylation levels and hypermethyl-
ated CpG islands (3).

Hepatocellular carcinoma (HCC) is the primary malignant 
tumor of the liver and the third leading cause of cancer‑related 
mortality worldwide (4,5) Rising incidence and mortality rates 
from HCC have been observed in the majority of countries, 
particularly in Asia (6). During human HCC development and 
progression, DNA hypomethylation and regional CpG hyper-
methylation are dominant events (7). DNA methylation can 
occur as part of normal development, however, can also occur 
as a result of age or exposure to risk factors, potentially resulting 
in carcinogenesis in tissues with normal DNA sequences. HCC 
typically occurs in the setting of chronic inflammation that is 
secondary to the hepatitis B virus (HBV) or hepatitis C virus 
(HCV) infection, or alcoholism; each increases the risk for 
hepatocarcinogenesis. Furthermore, the HCV infection has 
been found to accelerate the methylation process in HCC (8).

Microarray analysis of HCC tissues has identified novel 
genes with cancer‑specific methylation and 221 novel DNA 
methylation markers for HCC (9,10). TNFRSF10C, HOXA9, 
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NPY and IRF5 were found to be frequently hypermethylated in 
HCC tissues and their methylation was identified to be closely 
associated with the inactivation of gene expression (9). In HCC 
cell lines, regional DNA methylation in tumor suppressor 
genes has been reported (11,12). The frequency of hypermeth-
ylation of tumor suppressor genes is relatively high in HCC, 
indicating that regional DNA hypermethylation is involved 
in hepatocarcinogenesis (13). In the present review, aberrant 
DNA methylation in tumor suppression of HCC is discussed.

2. Methylation hot spots on different chromosomes associ-
ated with early stage hepatocarcinogenesis

The epigenetic alteration of promoters by methylation is an 
alternative mechanism for the inactivation of tumor suppressor 
genes. Methylation hot spots on different chromosomes have 
been reported during early stage hepatocarcinogenesis. On 
chromosome 16, aberrant DNA methylation participates in 
the precancerous stage of hepatocarcinogenesis by preceding 
or causing loss of heterozygosity (14). At the D17S5 locus, 
aberrant DNA hypermethylation may participate in hepa-
tocarcinogenesis during the early developmental stages and 
malignant progression of HCC (15). On chromosome 3, hyper-
methylation of multiple tumor suppressor genes, including 
Ras‑association domain family 1, isoform A (RASSF1A), 
BLU and fragile histidine triad (FHIT), is a common and early 
event in hepatocarcinogenesis, as observed in human HCC 
tissues. Furthermore, CRBP1 methylation may be involved in 
later‑stage carcinogenesis (16).

3. Methylation status of CpG islands

A CpG island is an ~1‑kb DNA sequence with a high density 
of CpG dinucleotides and ~70% of human genes harbor 
CpG islands in their promoters (17,18). Promoter CpG island 
hypermethylation is an important mechanism for inactivation 
of tumor suppressor genes or tumor‑related genes in human 
cancers and occurs in virtually all human cancer types (19). 
In a HCC rat model, the stages of multistage carcinogenesis 
following initiation are driven primarily by carcinogen‑induced 
epigenetic alterations, including altered global histone lysine 
methylation patterns; increased histone H3 lysine 9 and histone 
H3 lysine 27 trimethylation in the promoter regions of the 
tumor suppressor genes RASSF1A, p16 (INK4a), suppressor 
of cytokine signaling (SOCS)1, E‑cadherin  1 (CDH1)and 
Cx26, and early RASSF1A; and p16 (INK4a) promoter CpG 
island hypermethylation. These changes are accompanied by 
dysregulation of the balance between cell proliferation and 
apoptosis, a fundamental protumorigenic event in hepatocar-
cinogenesis (20).

Among the gene mutations mentioned above, p16 (INK4a) 
is important in regulating the cell cycle and mutations in p16 
(INK4a) increase the risk of developing a variety of cancers. 
Adjacent to p16 (INK4a) is p15 (INK4b), which is also 
frequently mutated and deleted in numerous types of tumor; 
thus, p16 (INK4a) and p15 (INK4b) are candidates for putative 
tumor suppressor genes. In tumors of HCC patients from Japan, 
p16 (INK4a) was identified to be inactivated by extensive CpG 
methylation  (21). However, tumors of HCC patients from 
Taiwan showed no aberrant 5'‑CpG island hypermethylation 

of p16 (INK4a) or p15 (INK4b) in any primary tumors (22). 
The findings from different geographic regions vary. 
Environmental factors may affect the frequency and concor-
dance of the degree of hypermethylation in multiple genes in 
HCC tumors, leading to the observed geographic variations 
in CpG island methylation status (23). CpG island methyla-
tion phenotype may be caused or facilitated by proliferative 
stimuli that are associated with environmental exposures. The 
precise mechanism of generating the CpG island phenotype 
requires investigation; however, the phenotype may contribute 
to screening, prevention or treatment of HCC in different 
geographic regions.

The HBV infection has a strong correlation with HCC 
occurrence (24‑27) and aberrant CpG island methylation of 
genes has been recognized in hepatitis virus‑related HCC. In 
studies regarding hepatitis virus‑related HCC, Kiran et al (28) 
investigated promoter region methylation of a panel of six 
tumor suppressor genes: p16 (INK4a), p15 (INK4b), CDH1, 
glutathione S‑transferase P (GSTP)1, SOCS1 and adenoma-
tous polyposis coli (APC). The authors identified that the p15 
(INK4b) methylation frequency and methylation allele density 
were higher in HCC than that in hepatitis (28). Furthermore, in 
HBV‑associated HCC, the intensive hypermethylation of the 
CpG island of the tumor suppressor gene RASSF1A may be 
pathologically important in this tumor type, based on studies 
of human HBV‑associated HCC tissues and HCC cell lines 
(Hep3B, HepG2, SK‑HEP‑1 and Huh‑7) (29). In two HCC cell 
lines (HepG2 and Hep3B) RASSF1A can be inactivated and 
treatment of the cell lines with a DNA methylation inhibitor 
reactivates RASSF1A transcription (30).

A series of CpG island methylation alterations have 
been observed in the HCC cell lines Hep3B, HepG2, 
PLC/RPF/5/RPF/5, SMMC‑7721, BEL‑7402, MHCC97‑H, 
MHCC97‑L, HCCLM3 and HCCLM6. CpG island hyper-
methylation of tumor suppressor genes leads to a decrease in 
their expression (31,32).

4. DNA methyltransferases (DNMTs)

Aberrant DNA methylation on CpG islands is one of the 
most consistent epigenetic changes in human cancers and the 
methylation process is catalyzed by DNMTs. In mammals, five 
members of the DNMT family have been reported, DNMT1, 
DNMT2, DNMT3a, DNMT3b and DNMT3l. Among these 
proteins, only DNMT1, DNMT3a and DNMT3b exhibit 
methyltransferase activity. DNMT3a and DNMT3b establish 
methylation patterns at specific sequences, while DNMT1 
maintains DNA methylation during replication by copying the 
methylation pattern of the parent DNA strand onto the newly 
synthesized strand (33,34). Abnormal variations of DNMTs 
participate in hepatocarcinogenesis. 

In human hepatocarcinogenesis, DNMT1, DNMT3a and 
DNMT3b show a progressively increasing expression from 
normal liver, to chronic hepatitis/cirrhosis, to HCC (35). In 
the early and late stages of HCC development, global DNA 
hypomethylation and aberrant expression of DNMT1 and 
DNMT3b were identified in a glycine N‑methyltransferase 
gene knockout mouse model for HCC (36). In a human HCC 
cell line, the depletion of DNMT3a suppressed cell prolif-
eration and restored phosphatase and tensin homolog (PTEN), 
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which is a crucial tumor suppressor in HCC. This indicated 
that PTEN may be the target of DNMT3a (37). Fan et al (38) 
observed a novel target of DNMT3b, metastasis suppressor 1 
(MTSS1), which acts as a tumor suppressor in HCC. MTSS1 
was repressed by DNMT3b via a DNA methylation‑indepen-
dent mechanism (38).

Hepatitis‑related HCC in the DNMT mechanism. The 
hepatitis B virus X (HBx) protein is involved in epigenetic modi-
fications during hepatocarcinogenesis. Park et al (39) found 
that HBx repressed insulin‑like growth factor‑3 expression 
through de novo methylation via DNMT3a1 and DNMT3a2. 
Furthermore, HBx inhibited SP1 binding by recruiting methyl 
CpG binding protein 2 to a newly methylated SP1 binding 
element. HBx also induced global hypomethylation of satel-
lite 2 repeat sequences by downregulating DNMT3b (39). 
In addition, the prevalence of these specific methylation 
abnormalities that are induced by HBx was identified to be 
significantly correlated with HBx expression in HBV‑infected 
HCC patients (39). These findings indicated a potential asso-
ciation between DNMTs and HBV‑infected HCC.

MicroRNAs (miRs) have also been identified to partici-
pate in the regulation of abnormal DNA methylation status 
in HBV‑related HCC. By combining with the 3'‑noncoding 
region of corresponding target mRNAs, miRs act as potent 
negative regulators of protein translation by disrupting mRNA 
stability, which affects the post‑transcriptional regulation 
of genetic expression and is physiologically important (40). 
Zhang et al  (41) identified that the expression of miR‑152 
was downregulated in the livers of HBx transgenic mice 
compared with the livers of wild‑type mice. The authors also 
investigated the function of miR‑152 as a tumor suppressor in 
epigenetic aberrations of HBV‑related HCC (42). In HCC cell 
lines, the forced expression of miR‑152 resulted in a marked 
reduction in the expression of DNMT1 by directly targeting 
the 3'‑untranslated regions of DNMT1, which in turn led to a 
decrease in global DNA methylation. Inhibition of miR‑152 
resulted in global DNA hypermethylation and increased the 
methylation levels of two tumor suppressor genes, GSTP1 and 
CDH1 (42). miR‑101 was also reported to be downregulated 
by HBx and to induce aberrant DNA methylation by targeting 
DNMT3a (43). Thus, miRs may participate in hepatocarcino-
genesis by directly targeting DNMTs, during which HBx may 
act as a regulator (Fig. 1). miRs with key roles in regulation 
may be potential targets for inhibiting the development of 
HBV‑related HCC.

Reactive oxygen species (ROS) and the DNMT mechanism. 
In addition to being involved in inflammatory stimuli and 
associated proliferative changes associated with HBV, oxida-
tive damage, which is associated with chronic inflammation 
directly affects the methylation status of DNA via DNMTs in 
HCC. ROS increase Snail expression, which recruits histone 
deacetylase 1 and DNMT1, and induces hypermethylation of 
the CDH1 promoter (44). Since CDH1 is a regulator of the 
epithelial‑to‑mesenchymal transition, this result is potentially 
relevant to understanding the activity of ROS in silencing 
tumor suppressor genes, and in subsequent tumor progres-
sion and metastasis. ROS accumulation mediates signal 
transduction cascades, and the activation of stress kinases and 

phosphorylation of substrates (45‑47). Various studies have 
shown reduced histone deacetylases (HDAC) activity during 
oxidative stress (47‑49) and in HCC, the expression of HDACs 
is associated with the HCC grade (50). In HCC cell lines, 
deacetylase inhibitors exert a dual effect on DNMT activity 
and expression, with rapid inhibition of enzyme activity from 
interference with post‑translational acetylation and a delayed 
effect on transcriptional control of DNMT genes by HDACs or 
miR mechanisms (51).

5. DNA methylation in the cell cycle

DNA methylation contributes to HCC tumorigenesis by regu-
lating cell proliferation. For example, DNA methylation of the 
promoter region of a candidate SRY box‑containing gene 17 
is found in 82% of HCC tissues and is associated with nuclear 
accumulation of β‑catenin (52). β‑catenin is an indispensable 
component of the canonical WNT signaling pathway (53) and 
is involved in cell differentiation, migration and proliferation 
during embryonic development and adult homeostasis  (5). 
In HCC cell lines, the expression of family with sequence 
similarity 43, a novel tumor suppressor gene, reduced cell 
growth and colony formation in vitro, delayed the cell cycle 
and regulated DNA methylation (54). These findings indicated 
the involvement of DNA methylation in HCC by regulating 
cell proliferation.

The cell cycle consists of four distinct phases, G1, S, G2 
and M. In HCC cell lines, the tumor suppressor gene, deleted in 
lung and esophageal cancer 1 (DLEC1) decreases cell growth 
and cell size, and induces G1 arrest in the cell cycle, whereas 
DNA methylation silences DLEC1 (55). A comparable effect of 
DNA methylation on ubiquitin carboxyl‑terminal hydrolase L1 
(UCHL1) and fructose‑1,6‑bisphosphatase‑1 (FBP1) indicates 
that they are tumor suppressors. UCHL1 silencing is reversed 
by genetic demethylation of the promoter, indicating direct 
epigenetic silencing. Restoring UCHL1 expression in silenced 
cell lines significantly inhibits their growth and colony forma-
tion ability, by inhibiting cell proliferation through cell cycle 
arrest in the G2/M phase and inducing apoptosis through 
the intrinsic caspase‑dependent pathway  (56). In addition, 
promoter hypermethylation mediates downregulation of 
FBP1 in human HCC, whereas restoring the FBP1 expression 
in the cells in which FBP1 expression is low significantly 
inhibits cell growth through the induction of G2‑M cell cycle 
arrest (57) (Fig. 2).

In addition to the tumor suppressor genes mentioned 
above, DNA methylation is involved in silencing the expres-
sion and function of mac25/insulin‑like growth factor binding 
protein‑7, methylthioadenosine phosphorylase and TMEM7 in 
HCC (58‑60).

6. Clinical applications

Patient prognosis. The accumulating evidence for DNA 
methylation of tumor suppressor genes in HCC presents a 
potential clinical benefit. First, DNA methylation of tumor 
suppressor genes may aid in predicting the individual patient 
risk of tumor development. In chronic HCV patients, the 
methylation frequency of tumor suppressor genes, such as 
HIC1, GSTP1, SOCS1, RASSF1, CDKN2A, APC, RUNX3 
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and PRDM2 are associated with shorter time‑to‑HCC, and the 
number of methylated genes is an independent risk factor for 
HCC (61). These results indicate that characteristic patterns 
of altered DNA methylation are critical for the earliest steps 
of hepatocarcinogenesis and may predict the emergence of 
human HCC in HCV patients (61). Second, DNA methylation 
of tumor suppressor genes is associated with tumor biological 
features. For example, DLEC1 methylation is associated with 
the American Joint Committee on Cancer tumor staging (55).

Third, the DNA methylation status of tumor suppressor 
genes is valuable as a prognostic indicator in HCC patients. 
Calvisi et al (7) analyzed the global levels of DNA methylation 
and the methylation status of 105 putative tumor suppressor 
genes and identified that the extent of genome‑wide hypometh-
ylation and CpG hypermethylation correlated with the clinical 
outcome of HCC patients. The promoter DNA methylation 
of the Klotho gene was a predictive factor for poor HCC 
prognosis (62). Univariate and multivariate survival analysis 
revealed that HIST1H2AE methylation status is closely corre-
lated with overall survival (10). The increased expression of 

DNMT3a and DNMT3b is suggested to be a predictor of poor 
HCC survival (35). MGMT methylation is considered to predict 
a shorter disease‑free survival time (63), however, the sample 
sizes of these studies were small. Further studies with larger 
samples may aid in selecting the predictors of HCC survival.

The retinoblastoma protein‑interacting zinc finger (RIZ1) 
gene performs tumor suppressor activity and is frequently 
silenced in numerous human cancers, including HCC (64‑67). 
Promoter methylation of RIZ1 and H3K9 modifications act 
together in HCC to silence the RIZ1 gene, which is involved 
in HCC tumorigenesis, particularly in the early stage of the 
disease (68,69). Comparative analysis of promoter methylation 
and gene expression endpoints between tumor and non‑tumor 
tissues from HCV‑positive patients with HCC showed that 
RIZ1 methylation and increased levels of LINE‑1 hypo-
methylation in non‑tumor tissues are associated with time to 
recurrence. This underscores the importance of assessing the 
epigenetic state of liver remnants (70). In addition to RIZ1, 
methylation of CpG sites of the potential tumor suppressors, 
CFH and MYRIP, is associated with HCC recurrence (71).

Figure 1. miR in HBV‑related HCC. In HBV‑related HCC, the inhibition of miR‑152 resulted in global DNA hypermethylation and increased the methylation 
levels of two tumor suppressor genes, GSTP1 and CDH1. miR‑101 was also downregulated and induced aberrant DNA methylation by targeting DNMT3a. miR, 
microRNA; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; GSTP, glutathione S‑transferase P; CDH1, E‑cadherin 1; DNMT, DNA methyltransferase.

Figure 2. DNA methylation in the cell cycle. In hepatocellular carcinoma, the tumor suppressor gene, DLEC1 induces a G1 arrest in the cell cycle, while tumor 
suppressors, UCHL1 and FBP1 result in cell cycle arrest in the G2/M phase. When these genes are silenced by DNA methylation, their functions are inhibited. 
DLEC1, deleted in lung and esophageal cancer 1; UCHL1, ubiquitin carboxyl‑terminal hydrolase L1; FBP1, fructose‑1,6‑bisphosphatase‑1.
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Clinical testing. Methods that are based upon DNA methylation 
patterns are useful in clinical testing for HCC. Iyer et al (72) 
compared tumor methylation profiles for the tumor suppressor 
genes APC, FHIT, p15, p16 and CDH1 in tumor tissues and 
plasma, and found that plasma DNA can be used for the reli-
able assessment of methylation profiles in HCC patients in an 
Egyptian population (72). To assess the medical applicability of 
CpG methylation as a molecular marker for cancer diagnosis, 
Kimura et al  (73) established a novel system to determine 
DNA methylation based on TaqMan polymerase chain reaction 
combined with a methyl‑binding‑domain polypeptide 2. The 
availability of DNA methylation profiles for cancer diagnosis 
enable clinical predictions to be made from pre‑therapy biop-
sies, paraffin‑embedded samples or plasma DNA.

7. Conclusion

Aberrant DNA methylation results in altered gene expression, 
leading to cancerous features. During hepatocarcinogenesis, 
numerous tumor suppressor genes are silenced by DNA 
methylation. Hypermethylation of promoter CpG islands is 
an important mechanism for inactivating tumor suppressor 
genes in HCC. Although promoter CpG island hypermethyl-
ation of p16 (INK4a) and p15 (INK4b) may increase the risk 
of developing HCC, individuals from different geographic 
regions exhibit different methylation statuses for CpG islands. 
Aberrant DNA methylation of CpG islands are catalyzed by 
DNMTs, thus, abnormal variations of DNMTs may participate 
in hepatocarcinogenesis. Aberrant CpG island methylation 
of genes and DNMTs is involved in hepatitis‑related HCC. 
miRs and ROS may participate in hepatocarcinogenesis by 
directly targeting DNMTs. Furthermore, DNA methylation 
may contribute to HCC tumorigenesis by regulating the cell 
cycle. Based on the importance of DNA methylation in tumor 
suppression in HCC, particularly the patterns of DNA meth-
ylation, it may predict the risk of tumor development, tumor 
staging, patient survival and HCC recurrence.
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