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Abstract. Primary ovarian cancer is one of the predominant 
causes of mortality from gynecological cancer. The suppres-
sion of serine/threonine p21‑activated kinases  (PAKs), 
proteins involved in cell morphology and cytoskeletal reor-
ganization, has been hypothesized to improve the survival 
of patients with ovarian cancer. However, the association 
between microRNA-126 (miR‑126) and PAK4 in the inhibi-
tion of ovarian cancer cell invasion remains to be established. 
The present study demonstrated changes in the level of 
PAK4 expression in ovarian cancer SKOV3 cells with altered 
miR-126 compared with normal SKOV3 cells. The SKOV3 
cells that were transfected with LV3‑miR‑126 to increase 
miR-126 expression exhibited significantly downregulated 
expression levels of PAK4 (P<0.05), whilst transfection with 
the LV3‑hsa‑miR‑126 inhibitor increased the expression of 
PAK4 in these cells (P<0.05), as assessed by immunofluores-
cence staining. Furthermore, western blot analysis revealed a 
significant increase in PAK4 expression in the SKOV3 cells 
transfected with the LV3‑hsa‑miR‑126 inhibitor, and a decrease 
in those transfected with LV3‑hsa‑miR‑126. The present study 
provides an experimental foundation for miR‑126 as a poten-
tial tumor suppressor that may decrease PAK4 expression to 
inhibit ovarian cancer cells.

Introduction

Epithelial ovarian cancer is one of the most common causes 
of mortality among females (1). The high mortality rate of 
ovarian cancer patients (9.30 out of every 100,000 patients 
each year) is a consequence of late‑stage diagnosis, and the 
five‑year survival rate (<50% for patients >64 years) for the 
advanced stages is extremely poor in the USA, Europe and 

Japan  (2). A large tumor burden and extensive metastatic 
lesions of the abdominal cavity also contribute to the poor 
prognosis and the high rate of mortality of this disease (3). 
Tumor cell migration/invasion is a complex process involving 
cytoskeletal reorganization and membrane ruffling. The 
suppression of cytoskeletal reorganization and the redistribu-
tion of actin fibers may lead to the formation of non‑adhesive 
membrane protrusions and therefore, dysregulated cellular 
adhesion capacity; this has been hypothesized to improve the 
survival of patients with ovarian cancer (4).

The actin cytoskeleton is essential for cell motility and cell 
invasion (5,6). Serine/threonine p21-activated kinases (PAKs) 
are effector proteins for the Rho GTPases Cdc42 and Rac, 
which are important for cell morphology and cytoskeletal 
reorganization (7,8). PAK4 was initially identified due to its 
regulation of cytoskeletal reorganization (9,10). Subsequent 
studies indicated that PAK4 is a key integrator of cell migra-
tion, invasion and apoptosis (11,12). Furthermore, PAK4 is 
upregulated in the majority of cancer cell lines, while previous 
studies have revealed that PAK4 is strongly linked to the 
progression of ovarian tumors and breast cancer. Additionally, 
overexpression of PAK4 in mammary epithelial cells leads to 
tumorigenesis in mice. Therefore, this protein may be a valu-
able molecular prognostic marker and therapeutic target in a 
number of cancers (13‑16).

microRNAs  (miRNA/miR), are non‑coding RNAs of 
~22 nucleotides, and are involved in various cellular processes, 
including proliferation, differentiation, apoptosis and inva-
sion (17‑19). miR‑126 originates from a common precursor 
structure located within the EGFL7 gene, and its expression 
levels have been reported to vary in a number of human cancers; 
patients with low miR‑126 expression exhibit poor survival 
compared with patients with high miR‑126 levels (20‑23). It 
has been proposed that miR‑126 is essential in the inhibition 
of the invasive growth of cancer cells. Thus, the current study 
investigated whether the up‑ or downregulation of miR‑126 
modulates PAK4 expression in human ovarian cancer cells.

Materials and methods

Cell culture. SKOV3 cells (American Type Culture Collec-
tion, Rockville, MD, USA) were used as the ovarian cancer 
cells in the present study. The cells were maintained and 
propagated in vitro by serial passage in Dulbecco's modified 
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Eagle's medium (DMEM; Gibco, Life Technologies Corpo-
ration, Carlsbad, CA, USA) supplemented with 10%  fetal 
bovine serum (FBS; Gibco, Life Technologies Corporation), 
100 IU/ml penicillin and 100 µg/ml streptomycin in a humidi-
fied atmosphere of 5% CO2 at 37˚C. All procedures were 
performed according to the internationally accepted ethical 
guidelines and approved by the Institutional Review Board of 
the Second Affiliated Hospital, School of Medicine, Zhejiang 
University (Hangzhou, China).

Plasmid construction, lentivirus packaging and cell infec‑
tion. pGLV3/H1/green fluorescent protein (GFP)+Puro 
(pGLV3; Shanghai GenePhama Co., Ltd., Shanghai, 
China), a lentiviral vector, was used to construct the 
pGLV3‑miR‑126 plasmid. The miR‑126 mimic, miR‑126 
inhibitor and negative control (NC) oligonucleotides were 
chemosynthesized by Shanghai GenePhama Co., Ltd. The 
oligonucleotide sequences were as follows: miR‑126, 5'‑TCG 
TACCGTGAGTAATAATGCG‑3'; hsa‑miR‑126 inhibitor, 
5'‑CGCATTATTACTCACGGTACGA‑3'; and microRNA 
NC, 5'‑TTCTCCGAACGTGTCACGT‑3'. The miR‑126 
small hairpin (sh)DNA double chain template sequence was 
synthesized artificially, and inserted into the pGLV3‑miRNA 
lentivirus plasmid. The miR‑126 mimic sequence was 
constructed as follows: (Forward) hsa‑miR‑126‑BamHI, 
GATCCGTCGTACCGTGAGTAATAATGCGTTCAAGAG 
ACGCATTATTACTCACGGTACGACTTTTTTG; (reverse) 
hsa‑miR‑126‑EcoRⅠ, AATTCAAAAAAGTCGTACCGT 
GAGTAATAATGCGTCTCTTGAACGCATTATTACTCA 
CGGTACGACG. The miRNA‑126 inhibitor sequence was 
constructed as follows: (Forward) hsa‑miR‑126‑BamHI, 
GATCCGAGCATGGCACTCATTATTACGCTTCAAGAG 
AGCGTAATAATGAGTGCCATGCTCTTTTTTG; (reverse) 
hsa‑miR‑126‑EcoRⅠ, AATTCAAAAAAGAGCATGGCA 
CTCATTATTACGCTCTCTTGAAGCGTAATAATGAGTGCC 
ATGCTCG. pGLV3‑shDNA‑NC was used as a negative 
control, with the following sequence: (Forward) NC‑BamHI, 
GATCCGTCGTACCGTGAGTAATAATGCGTTCAAGAG 
ACGCATTATTACTCACGGTACGACTTTTTTG; (reverse) 
shNC‑EcoRⅠ, AATTCAAAAAAGTCGTACCGTGAGTAA 
TAATGCGTCTCTTGAACGCATTATTACTCACGGTACG 
ACG. 

The 293T producer cell line (Cell Bank of Chinese Academy 
of Science, Beijing, China) was maintained in DMEM, with 
10% FBS, 4.0 mM L‑glutamine, 100 U/ml penicillin and 
100 µg/ml streptomycin. One day prior to transfection, the 
cells were seeded into a 15‑cm dish. pGLV3‑miR‑126 or 
pGLV3 vectors and packing plasmids, including pGag/Pol, 
pRev and pVSV‑G (Shanghai GenePhama Co., Ltd.) were 
co‑transfected using RNAi‑mate (Shanghai GenePhama Co., 
Ltd.), according to the manufacturer's instruction. At 72 h 
post‑transfection, the supernatant was harvested, cleared by 
centrifugation (2,200 x g at 4˚C for 4 min), passed through 
a 0.45‑µm syringe filter, and cleared by centrifugation 
again (20,000 rpm at 4˚C for 2 h). The titer of the virus was 
measured according to the expression level of GFP, following 
the manufacturer's instructions. The packaged lentiviruses 
were designated LV3‑hsa‑miR‑126, LV3‑hsa‑miR‑126 inhib-
itor and LV3‑NC. The sequences of the resulting vectors 
were verified by sequence analysis.

The SKOV3 cells were infected with LV3‑hsa‑miR‑126, 
LV3‑has‑miR‑126 inhibitor or LV3‑NC, at a multiplicity of infec-
tion ratio of 15, in the presence of 5 µg/ml polybrene (Shanghai 
GenePhama Co., Ltd.); the infection efficiency was 80‑90%, as 
assessed by microscopic analysis of GFP fluorescence.

Immunofluorescence staining and western blot analysis. At 48 h 
post‑transfection, the cells were fixed in 4% paraformaldehyde, 
washed three times with phosphate‑buffered saline (PBS), and 
incubated for 5 min at ‑20˚C in 95% ethanol (vol/vol in PBS). The 
cells were subsequently washed three times with PBS, blocked 
for 1 h in 5% normal goat serum in PBS with 0.1X Triton X‑100, 
and incubated overnight with polyclonal rabbit anti‑human PAK4 
antibodies (Abcam, Cambridge, MA, USA; dilution, 1:200) at 
4˚C. The following day, the cells were washed three times with 
PBS and incubated for 40 min at 37˚C with the corresponding 
secondary antibody  [polyclonal goat anti‑rabbit immuno-
globulin (Ig)G (H+L)‑tetramethylrhodamine (TRITC); dilution 
1:200; SouthernBiotech, Birmingham, AL, USA], then washed 
and mounted. Immunostained SKOV3 cultures were examined 
under a laser scanning confocal microscope (LSM 510 Meta; 
Carl Zeiss Microscopy GmbH, Jena, Germany) for detection 
of the TRITC‑fluorophore. Each group was photographed at 
x400 magnification with the aid of a digital camera attached 
to the microscope, and the expression of PAK4 was assessed 
by calculating the percentage of positive cells and the optical 
density, subsequent to defining a threshold for background 
correction.

For the western blot analysis, proteins were extracted from 
the SKOV3 cells, solubilized in radioimmunoprecipitation 
assay buffer, separated on 10% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (Wuhan Boster Ltd., Wuhan, 
China) and electro‑transferred onto polyvinylidene difluoride 
membranes (Invitrogen Life Technologies, Carlsbad, CA, USA). 
The membranes were blocked in 5% skimmed milk powder 
prepared in Tris‑buffered saline with Triton X‑100 (TBS‑T) 
for 30 min. For PAK4 detection, the membranes were incu-
bated at 4˚C overnight with anti‑PAK4 antibodies (Abcam; 
dilution 1:500). The membranes were washed three times for 
10 min in TBS‑T and incubated with a 1:5,000 dilution of 
horseradish peroxidase‑conjugated goat anti‑rabbit IgG for 
2 h. Finally, the membranes were washed six times for 20 min 
each in TBS‑T, prior to development with a standard enhanced 
chemiluminescence kit (KeyGEN Biotech, Nanjing, China). 
The densitometric analysis of the PAK4 and β‑actin bands 
was assayed by Quantity One software (Bio‑Rad Laboratories, 
Inc., Hercules, CA, USA). 

Statistical analysis. All data are presented as the mean ± stan-
dard deviation (SD). Statistical analysis was performed using 
SPSS statistical software, version 17.0 (SPSS, Inc., Chicago, 
IL, USA) for Windows. The significance of any differences 
between groups was evaluated using one‑way analysis of 
variance. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Immunofluorescence double staining and semi‑quantitative 
confocal laser scanning analysis detected the expression of 
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the miRNA vectors and PAK4 in the following four groups of 
SKOV3 cells: Untransfected cells, LV3-NC-transfected cells, 
LV3-hsa-miR-126-transfected cells and LV3-hsa-miR-126 
inhibitor-transfected cells. The expression of PAK4 was indicated 
by red immunofluorescence staining, and the GFP expressed by 
the miRNA vectors (green fluorescence) highlighted success-
fully transfected cells; green fluorescence was detected in all of 
the nuclei, but only in certain cytoplasmic regions of the SKOV3 
cells in the NC, miR‑126 inhibitor and miR‑126 mimic groups. 
The mean immunofluorescence intensity of PAK4 in the miR‑126 

inhibitor group was significantly higher (Fig. 1, C2) compared 
with that of the untransfected SKOV3 cells (Fig. 1, A2). Further-
more, the expression level of PAK4 was effectively decreased by 
the overexpression of miR‑126 in the LV3‑hsa‑miR‑126-trans-
fected cells (Fig. 1, D2) compared with that of the untransfected 
SKOV3 cells (Fig. 1, A2), and particularly compared with that 
of LV3‑hsa‑miR‑126 inhibitor-transfected cells (Fig. 1, C2). 
Furthermore, as shown in Fig.  1  C3, the cells transfected 
with LV3‑hsa‑miR‑126 inhibitor  (green) exhibited greater 
expression of PAK4  (red), whilst cells transfected with 

Figure 1. Immunofluorescence staining of PAK4 in four groups (magnification, x400): (A) Untransfected SKOV3 cells; (B) SKOV3 cells transfected by LV3 
negative control; (C) SKOV3 cells transfected by LV3‑hsa‑miR‑126 inhibitor; and (D) SKOV3 cells transfected by LV3‑hsa‑miR‑126. (1) Green fluorescent 
protein-positive cells are indicated by green signals; (2) PAK4-positively stained cells are indicated by red signals; (3) merged images. The mean immunofluo-
rescence intensities of PAK4 in the miR‑126 inhibitor group were significantly higher (C2) than that of control group cells (A2), while the expression of PAK4 
in the miR-126 upregulated group (D2) was significantly lower compared with that in the control group cells (P<0.05). PAK, serine/threonine p21‑activated 
kinase.
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LV3‑hsa‑miR‑126  (green) exhibited reduced expression of 
PAK4 (red) (Fig. 1 D3).

PAK4 protein expression in the four groups of cells was 
also evaluated by western blotting. PAK4 was visible as bands 
of ~64 kDa. A densitometric analysis of the PAK4/β‑actin 
bands revealed a significant increase in PAK4 expression in 
the SKOV3 cells transfected with LV3‑hsa‑miR‑126 inhibitor 
(mean  ±  SD, 215.1±10.5  vs.  128.6±8.2%; P=0.001) and a 
decrease in PAK4 expression in the SKOV3 cells transfected 
with LV3‑hsa‑miR‑126 (mean ± SD, 91.6±7.7 vs. 128.6±8.2%; 
P=0.002), compared with the untransfected SKOV3 cells 
(Fig. 2). No significant difference was observed between the 
expression in the SKOV3 cells in the NC group and those that 
were untransfected (mean ± SD, 130.9±9.1 vs. 128.6±8.2%; 
P=0.706; Fig. 2). Therefore, it is proposed that LV3‑has‑miR‑126 
inhibitor increases the expression of PAK4, whereas 
LV3‑hsa‑miR‑126 attenuates this expression.

Discussion

In the present study, changes in PAK4 expression were 
demonstrated in ovarian cancer cells with up‑ or downregu-
lated miR‑126 (induced by the transfection of LV‑miR‑126 
or LV‑has‑miR‑126 inhibitor) when compared with normal 
ovarian cancer cells. The SKOV3 cells transfected with 
LV‑hsa‑miR‑126 exhibited reduced expression of PAK4, while 
the cells transfected with LV‑hsa‑miR‑126 inhibitor exhibited 
increased expression. These findings suggest that miR‑126 is 
a potential tumor suppressor, with the ability to decrease the 
level of PAK4 in ovarian cancer SKOV3 cells. 

The invasive ability of malignant cancer cells depends 
upon the altered regulation of cell migration by the membrane 
protrusion formation in response to chemotactic and migratory 
stimuli (6). Membrane protrusions are formed by polymer-
ization of submembrane actin filaments. The PAK family 
comprises important signaling proteins that are indicated to be 
involved in a variety of cellular functions, including cell prolif-
eration, migration and cytoskeletal organization (7,24). The 

family consists of six members, categorized into two groups: 
Group A, PAKs 1, 2 and 3; and group B, PAKs 4, 5 and 6 (7,25). 
PAK4 has been indicated to be involved in several types of cancer, 
and strong links have been observed between PAK4 and ovarian 
cancer (26). Analysis of cell migration and invasion in in vitro and 
in vivo studies has highlighted the contribution of PAK4 to the 
progression and metastasis of ovarian cancer; this is consistent 
with the role of PAK4 in the reorganization of the cytoskeleton 
and the migration of cells, which is at least in part executed in 
the cytoplasm (26). PAK4 expression and activation are important 
in cancer progression, and increased PAK4 expression has been 
shown to be associated with metastasis, progression to late stages 
of the disease, reduced patient survival and increased resistance 
to chemotherapy (13,14,27). The mechanisms by which PAK4 
affects ovarian cancer cell progression include the control of 
cell migration, invasion and proliferation. PAK4 may act via the 
regulation of c‑Src, mitogen-activated protein kinase kinase/extra-
cellular signal-regulated kinases 1/2, matrix metalloproteinase-2, 
and c‑Src/epidermal growth factor receptor. Inhibition of PAK4 
may therefore be a potentially valuable therapeutic target (16,28).

miR‑126 is a non‑coding RNA that is involved in various 
cellular processes, including proliferation, differentiation, 
apoptosis and invasion (17,21,29). miRNAs that are upregulated 
in cancer may function as oncogenes through the negative 
regulation of tumor suppressor genes, whilst miRNAs that are 
downregulated may function as tumor suppressor genes and 
inhibit cancer by regulating oncogenes (30,31). miR‑126 acts as 
a metastatic suppressor in a number of human cancers (21,23). 
However, the expression and function of miR‑126 in ovarian 
cancer remains unclear. In the present study, the associa-
tion between miR‑126 and PAK4 was investigated in ovarian 
cancer cells. The results demonstrated that transfection with 
LV3‑miR‑126 may efficiently reduce the expression of PAK4 
in SKOV3 cells. Furthermore, the LV‑miR‑126 inhibitor was 
observed to upregulate the expression of PAK4 in these cells.

In conclusion, as PAK4 is essential for ovarian cancer cell 
invasion, the present study provides an experimental founda-
tion for the use of miR‑126 as a potential tumor suppressor; 

Figure 2. Western blot analysis of PAK4 expression in four groups. Data are presented as the mean ± standard deviation. Normal, the group of untransfected 
SKOV3 cells; negative control, the group of SKOV3 cells transfected by LV3 negative control; miR‑126 inhibitor, the group of SKOV3 cells transfected with 
LV3‑hsa‑miR‑126 inhibitor; miR‑126, the group of SKOV3 cells transfected by LV3‑hsa‑miR‑126. *P>0.05, vs. normal group, #P<0.05, vs. normal group. 
miR/miRNA, microRNA; PAK, serine/threonine p21‑activated kinase.
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this miRNA may potentially be used to decrease expression 
levels of PAK4, leading to the inhibition of ovarian cancer cell 
invasion. However, further studies are required to elucidate the 
mechanisms involved in the suppression of PAK4 by miR‑126.
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