Alterations of immune cell subsets in relapsed, thymoma-associated minimal change disease: A case report HELEN GHARWAN 1* , YUSUKE TOMITA 2* , MIN-JUNG LEE 2 , ANISH THOMAS 1 , ARLENE BERMAN 1 , GIUSEPPE GIACCONE 3 , JANE TREPEL 2 and ARUN RAJAN 1 ¹Thoracic and Gastrointestinal Oncology Branch, and ²Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1906; ³Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA Received November 7, 2014; Accepted May 20, 2015 DOI: 10.3892/ol.2015.3325 Abstract. The most frequently described glomerulopathy in patients with thymoma is minimal change disease (MCD). The present study reports the case of a 63-year-old female with recurrent thymoma and poorly-controlled paraneoplastic MCD, who was enrolled on a phase I/II clinical trial (no. NCT01100944) and treated with the histone deacetylase inhibitor, belinostat, in combination with cisplatin, doxorubicin and cyclophosphamide. Treatment resulted in a complete radiological response, a dramatic reduction in proteinuria and changes in immune cell subset composition, consisting of a reduction in the number of T helper (Th)1, Th2, Th17 and regulatory T cells. Changes in T-cell polarization were also observed with an increase in the Th1/Th2 ratio. To the best of our knowledge, the current study is the first to provide a detailed description of changes in immune cell subset composition in thymoma-associated MCD. Early administration of effective antitumor therapy should be considered in these cases, particularly when proteinuria is poorly controlled despite the use of steroids and other immunosuppressive therapies. ### Introduction Minimal change disease (MCD) is a well-described glomerulopathy that accounts for 10-15% of primary nephrotic syndrome cases in adults (1). It is characterized by nephrotic-range proteinuria, edema, hypoalbuminemia, and hyperlipidemia. Biopsy findings include an absence of glomerular lesions Correspondence to: Dr Arun Rajan, Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 12N226, Bethesda, MD 20892-1906, USA E-mail: rajana@mail.nih.gov *Contributed equally *Key words:* thymoma, proteinuria, nephrotic syndrome, minimal change disease, T-cells on light microscopy and effacement of foot processes on electron microscopy. Steroids are used for first-line therapy of MCD. Immunomodulatory drugs such as cyclosporine, tacrolimus and mycophenolate mofetil are used for treatment of relapsed disease or in cases of steroid-resistance or steroid-dependence (2,3). MCD is also the most common cause of paraneoplastic glomerulonephritis in patients with thymoma, and T-cell dysfunction is considered to play an important role in its pathogenesis (4). However, the impact of antitumor or immunosuppressive therapy on the immune system in patients with thymoma-associated MCD is poorly understood. The present study describes changes in immune cell subset composition in response to tumor-directed therapy in a patient with relapsed, thymoma-associated MCD, who achieved a complete radiological tumor response and durable reduction in proteinuria. ## Case report A 63-year-old female with Masaoka stage IVA, World Health Organization type B2 thymoma (5,6) was referred for treatment of recurrent thymoma 3 years after the initial diagnosis. Initial treatment consisted of surgical resection. The patient had developed anasarca and acute kidney injury 7 months before presentation with recurrent thymoma. A renal biopsy showed no global sclerosis on light microscopy and diffuse foot process effacement on electron microscopy. These changes were consistent with MCD. Oral prednisone was administered at a dose of 80 mg/day, which was decreased to 20 mg/day after 1 month due to steroid-induced myopathy. Despite an initial reduction in proteinuria, MCD relapse was observed within 4 months (Fig. 1). Cyclosporine was then administered; however, the patient remained symptomatic with fatigue and dyspnea on exertion. Upon presentation, medications included prednisone (5 mg/day) and cyclosporine (100 mg, orally, twice daily). Physical examination revealed pitting pedal edema up to the knees. Laboratory tests demonstrated hypoalbuminemia (serum albumin level, 2.3 g/dl; normal range, 3.5-5.2 g/dl), normal serum creatinine levels (0.8 mg/dl), proteinuria (urine protein excretion, 2.7 g in 24 h; normal range, 30-150 mg in 24 h) and an elevated urine protein-creatinine ratio of 5.9 mg/mg (normal range, 0.001-0.16 mg/mg). A computed tomography (CT) scan of the chest revealed a right paracardiac mass and multiple Figure 1. Trends in urine protein creatinine ratio (logarithmic 10 scale) following treatment with oral steroids, cyclosporine and tumor-directed therapy. MCD, minimal change disease; ULN, upper limit of normal. Figure 2. Representative axial computed tomography images of recurrent thymoma (A and C) prior to and (B and D) following treatment. Complete disappearance of (A) a right paracardiac mass and (C) a right lung nodule (indicated by arrowheads) was observed after six cycles of systemic antitumor therapy. pulmonary nodules (Fig. 2). After obtaining written informed consent, the patient was enrolled in a phase I/II clinical trial (no. NCT01100944) that was approved by the Institutional Review Board of the National Cancer Institute (Bethesda, MD, USA). The patient was treated with 6 cycles of the histone deacetylase inhibitor, belinostat [250 mg/m² administered as four consecutive 12-h continuous intravenous infusions (CIVI), starting on day 1 of a 21-day cycle], in combination with cisplatin $[50 \text{ mg/m}^2 \text{ intravenous (i.v.)}$ on day 2], doxorubicin $(25 \text{ mg/m}^2 \text{ i.v.})$ once daily on days 2 and 3) and cyclophosphamide $(500 \text{ mg/m}^2 \text{ i.v.})$ on day 3) (7). Immune cell subsets, including regulatory T (Treg) and T helper (Th) cells, were evaluated using multiparameter flow cytometry on whole blood samples collected prior to treatment (C1D1pre), on days 2 and 3 of cycle 1 (C1D2 and Figure 3. Changes in the population of Th1, Th2, Th17 and regulatory T cells in peripheral blood following systemic antitumor treatment. IFN-γ, IL-4 and IL-17 single-positive cells among CD3+CD4+ T-cells were defined as Th1, Th2 and Th17, respectively. CD4+CD25highFoxp3+ cells were defined as regulatory T cells. Blood samples were collected at baseline (C1D1pre) and after 1 cycle of treatment (C2D1pre). Th, T helper; IFN, interferon; IL, interleukin. C1D3, respectively) and prior to treatment on day 1 of cycle 2 (C2D1pre). The population of Th1, Th2, Th17 and Treg cells decreased on C2D1pre when compared with the population on C1D1pre, with fold-changes of 0.55, 0.43, 0.49 and 0.69, respectively (Fig. 3). A reduction in the Th17/Treg ratio was also observed, whereas the Th1/Th2 ratio increased (C2D1pre fold-change, 0.71 and 1.29, respectively). Proteinuria resolved following one cycle, and the urine protein-creatinine ratio was 0.15 mg/mg. Cyclosporine and prednisone were discontinued within 4 months and a complete radiological response was observed within 6 months (Fig. 2). The reduction in proteinuria was durable as demonstrated by a urine protein-creatinine ratio of 0.19 mg/mg 30 months after completion of the treatment (Fig. 1). #### Discussion To the best of our knowledge, the present study is the first comprehensive analysis of changes in T-cell subsets in response to tumor-directed treatment in thymoma-associated MCD. An improvement in proteinuria coincided with a reduction in the Th17/Treg ratio and an increase in the Th1/Th2 ratio. A high Th17/Treg ratio has been previously observed in association with increased proteinuria and decreased serum albumin levels in primary MCD (8). Corticosteroid therapy has been demonstrated to result in a reduction in proteinuria and normalization of the Th17/Treg ratio due to a decrease in the Th17 cell population and an increase in the Treg cell population (8). In the current study, a reduction in the Th17/Treg ratio and a significant decline in proteinuria were observed following antitumor treatment, thus suggesting that a high Th17/Treg state may also play a role in the development of thymoma-associated MCD. However, in contrast to primary MCD, a decline in Treg cells accompanied by a sharper decline in Th17 cells, resulting in a reduction of the Th17/Treg ratio, was observed. These changes were also accompanied by a reduction in the tumor size. The population of Treg cells is frequently increased in the presence of a tumor and these cells play a critical role in the suppression of antitumor immune responses (9). In idiopathic nephrotic syndrome, induction of Treg cells is considered to represent a potential novel therapeutic strategy (10); however, in the present study, we hypothesize that a reduction in Treg cells by effective antitumor therapy plays an important role in the restoration of antitumor immune responses and results in an indirect improvement in thymoma-associated MCD. Previous studies using the Buffalo/Mna rat model of spontaneous thymoma and nephrotic syndrome have demonstrated that polarization of the immune response toward a Th2 profile is associated with the development of glomerulonephritis (11,12). To the best of our knowledge, the current study is the first to demonstrate a shift away from Th2 cells and an increase in the Th1/Th2 ratio with an associated reduction in proteinuria in a patient with thymoma-associated MCD. These observations are suggestive of an improvement in underlying T-cell dysfunction following administration of systemic antitumor therapy. Although these results require further validation, they may help in understanding the pathophysiologic mechanisms underlying thymoma-associated glomerulonephritis, and provide a rationale for rapid initiation of tumor-directed therapy. The benefits of this approach in controlling thymoma-associated paraneoplastic syndromes have been described previously (13). In conclusion, the present study describes a case of relapsed, thymoma-associated MCD with a durable reduction in proteinuria following successful treatment of thymoma, accompanied by changes in immune cell subsets in peripheral blood. Early administration of antitumor therapy should be considered in such cases. #### Acknowledgements The authors would like to acknowledge the Intramural Research Program of the NIH, the National Cancer Institute and the Center for Cancer Research for their support of this study. #### References - Nachman PH, Jennette JC and Falk R: Primary glomerular disease. In: The Kidney. Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL and Brenner BM (eds). Elsevier, Philadelphia, PA, pp1100-1191, 2012. - Hogan J and Radhakrishnan J: The treatment of minimal change disease in adults. J Am Soc Nephrol 24: 702-711, 2013. - Chugh SS, Clement LC and Macé C: New insights into human minimal change disease: Lessons from animal models. Am J Kidney Dis 59: 284-292, 2012. - 4. Lien YH and Lai LW: Pathogenesis, diagnosis and management of paraneoplastic glomerulonephritis. Nat Rev Nephrol 7: 85-95, 2011. - Koga K, Matsuno Y, Noguchi M, Mukai K, Asamura H, Goya T, and Shimosato Y: A review of 79 thymomas: Modification of the staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int 44: 359-367, 1994. - Travis WD, Brambilla E, Müller-Hermelink HK and Harris CC (eds): Tumors of the thymus. In: World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of the Lung, Pleura, Thymus and Heart. IARC Press, Lyon, France pp146-248, 2004. - pp146-248, 2004. 7. Thomas A, Rajan A, Szabo E, Tomita Y, *et al*: A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: A clinical and translational study. Clin Cancer Res 20: 5392-5402, 2014. - 8. Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, Chen LM, Li MX, Li XM and Li XW: Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol 139: 314-320, 2011. - Nishikawa H and Sakaguchi S: Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27: 1-7, 2014. - Le Berre L, Bruneau S, Naulet J, Renaudin K, Buzelin F, Usal C, Smit H, Condamine T, Soulillou JP and Dantal J: Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J Am Soc Nephrol 20: 57-67, 2009. - 11. Lien YH and Lai LW: Pathogenesis, diagnosis and management of paraneoplastic glomerulonephritis. Nat Rev Nephrol 7: 85-95, 2011. - Le Berre L, Hervé C, Buzelin F, Usal C, Soulillou JP and Dantal J: Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int 68: 2079-2090, 2005. - Rajan A, Kotlyar D and Giaccone G: Acute autoimmune hepatitis, myositis, and myasthenic crisis in a patient with thymoma. J Thorac Oncol 8: e87-e88, 2013.