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Abstract. The recognition of the biological relevance of long 
non‑coding RNA (lncRNA) molecules has only recently 
been recognized as one of the most significant advances in 
contemporary molecular biology. A growing body of evidence 
indicates that lncRNAs act not only as the intermediary 
between DNA and protein but also as significant protago-
nists of cellular functions. The dysregulation of lncRNAs 
has increasingly been linked to numerous human diseases, 
particularly cancers. Recent studies have demonstrated that 
the lncRNA growth arrest-specific transcript 5 (GAS5) was 
pervasively downexpressed in most human cancers compared 
with non‑cancerous adjacent tissues including gastric, breast, 
lung and prostate cancer. In addition, patients with decreased 
GAS5 expression have a significantly poorer prognosis than 
those with higher expression. Furthermore, GAS5 is involved 
in the control of cell apoptosis, proliferation, metastasis, angio-
genesis, DNA repair and tumor cell metabolism. This review 
provides an overview of the current knowledge concerning the 
role of GAS5 in tumor expression and biology function.
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1. Introduction

A tumor suppressor gene is defined as a gene whose product 
normally inhibits tumor development (1,2). Tumor suppressor 
gene mutation may predispose animals to cancer, which plays 
a critical role in tumorigenesis (3). Previously, protein‑coding 
genes were considered to be the main compartment of tumor 
suppressors (4). However, more recent studies have revealed 
that non‑coding RNAs, including microRNA and long 
non‑coding RNA (lncRNA) may also play a significant role in 
tumor suppression (5,6).

LncRNA is defined as a non‑protein‑coding RNA molecule 
longer than 200 nucleotides in length (7,8). In past decades, 
these long non‑coding transcripts were simply considered as 
transcriptional ‘noise’ or cloning artifacts (9). However, accu-
mulating evidence has revealed that lncRNAs play key roles 
in a number of biological and pathological processes (10). In 
particular, the role of lncRNAs in human cancers has been 
thoroughly researched and multiple lines of study have demon-
strated that lncRNAs act as oncogenes or tumor suppressors 
during tumorigenisis (11).

LncRNA growth arrest-specific transcript 5 (GAS5) was 
originally identified in 1988 (12‑14). GAS5 was named due 
to its increased expression upon cell growth arrest (12). Since 
its identification, a number of studies have demonstrated that 
the expression of GAS5 is decreased in various malignancies, 
including breast, gastric, lung and prostate cancer  (15‑17). 
In this review, we discuss the current knowledge on GAS5 
lncRNA, with a focus on its status in human tumors, mecha-
nism in tumorigenesis, clinical implication, and regulation of 
gene expression in carcinogenesis.

2. Structural characterization and biological functions of 
GAS5

GAS5 was originally isolated in a study aimed at screening 
potential tumor suppressor genes that were highly expressed 
during growth arrest (14). GAS5, located on chromosome 1q25, 
is approximately 630 nt in length (18). GAS5 is classified as a 
5'‑terminal oligopyrimidine (5'TOP) gene since it possesses 
an oligopyrimidine tract characteristic of the 5'TOP class of 
genes (19). 5'TOP genes are defined as a class of genes that 
have a uncommon pyrimidine‑rich 5'‑terminal sequence (20). 
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The mRNAs of 5'TOP genes accumulate in messenger ribonu-
cleoprotein particles (mRNPs) during cell growth arrest. GAS5 
comprises 12 exons, which are not conserved between human 
and mouse homologs. GAS5 introns encode 10 small nucleolar 
RNAs (snoRNAs) and 2 mature lncRNA isoforms: GAS5a and 
GAS5b. GAS5a is the main isoform at 77 nt in length whereas 
GAS5b has only 45 nt, missing 32 nt. However, the putative 
open reading frame is small and poorly conserved (13,21).

GAS5 is non‑protein coding but its RNA is spliced, poly-
adenylated, and associated with ribosomes (22). The essential 
biological activity of GAS5 is mediated through the introns, 
which encode multiple snoRNAs (12). The functions of GAS5 
are not well known as yet; however, it expresses multiple 
snoRNAs that regulate the biosynthesis of ribosomal RNA. 
GAS5 transcript is ubiquitously expressed in tissues, but 
it is unstable in proliferating cells (23). Its spliced RNA is 
low in growing cells, but is highly expressed during growth 
arrest (serum starvation, density arrest) or under inhibition of 
translation by cycloheximide, pactamycin or rapamycin (12). 
The increased the transcript level of GAS5 was considered to 
be caused by prolonged decay rates. GAS5 has also proven to 
be necessary for normal growth arrest in human T lympho-
cytes (24,25). A number of studies have been conducted to 
elucidate the functions of GAS5 in humans. GAS5 is proven 
to be associated with the cell cycle and cell progression, 
and critical to normal growth arrest (26). GAS5 overexpres-
sion inhibits cell cycle progression while GAS5 inhibition 
decreases cell apoptosis and contributes to faster cell cycle 
progression (27,28). 

3. GAS5 status in cancers 

Several lines of evidence have revealed aberrant expression of 
GAS5 in numerous human cancers (15‑17). GAS expression is 
decreased in a number of cancer types, suggesting that GAS5 
may function as a tumor suppressor. In addition, overexpres-
sion of GAS5 contributed to growth arrest in vitro in numerous 
cancer lines. In this section, we discuss the current findings of 
the expression of GAS5 in various human cancer types (Table I).

Breast cancer. GAS5 transcript levels were markedly decreased 
in cancerous tissues compared with adjacent non‑cancerous 
tissue, using reverse transcription-quantitative polymerase 
chain reaction analysis (15). The reduced expression of GAS5 
suggested its potential role in oncogenesis. Certain GAS5 
transcripts (GAS52B, GAS53A and GAS5O1) were proven to 
induce growth arrest and apoptosis in human breast cancer 
cell lines  (29). GAS5 lncRNA promoted the apoptosis of 
triple‑negative and estrogen receptor‑positive breast cancer 
cells. Reduced GAS5 expression attenuated the cellular 
responses to apoptotic stimuli in breast cancer. In addition, the 
extent of breast cancer cell death was directly proportional to 
cellular GAS5 levels, indicating a correlation between GAS5 
expression and prognosis of breast cancer patients. There were 
a negative correlation between miR‑21 and GAS5 expression 
in breast tumor specimens (30). It was considered that miR‑21 
and GAS5 might regulate each other in a similar way to the 
microRNA‑mediated silencing of target mRNAs. Neverthe-
less, the target genes of lncRNAs vary between specific tissues 
and cell types. As a result, the target gene of GAS5 in different 

cancer types differs. Further studies are needed to identify the 
target genes of GAS5 in different cancers.

Lung cancer. GAS5 expression has also been associated 
with carcinogenesis and metastasis in non‑small cell lung 
cancer (NSCLC) patients. In 72 specimens of NSCLC, GAS5 
expression was reduced in cancer samples compared with 
adjacent unaffected normal lung tissues (P<0.05). The GAS5 
expression level was correlated with tumor size and tumor-
node-metastasis stage (P<0.05). Furthermore, a functional 
role of GAS5 in NSCLC was also determined. GAS5 overex-
pression was demonstrated to promote cell growth arrest and 
induce apoptosis in NSCLC in vitro and in vivo (23).

Gastric cancer. A previous study compared HOX transcript 
antisense RNA (HOTAIR) expression levels in 89 gastric cancer 
tissues with expression levels in corresponding non‑cancerous 
gastric tissue (16). GAS5 expression was significantly decreased 
in gastric cancer tissues. In addition, GAS5 expression levels 
correlated with larger tumor size and advanced pathological 
stage. Low GAS5 expression levels indicated poorer prognosis, 
with shorter disease‑free survival and overall survival times, 
serving as an independent prognostic indicator for gastric 
cancer. Functional analysis demonstrated that GAS5 inhib-
ited gastric cancer cell proliferation and induced apoptosis 
in vitro and in vivo. GAS5 overexpression decreased E2F1 
and cyclin D1 expression while it increased P21 expression 
in gastric cells. In addition, GAS5 downexpression increased 
E2F1 and cyclin D1 expression while it decreased P21 expres-
sion levels. These results indicated that by regulating E2F1 and 
P21, GAS5 inhibited gastric cancer development through a 
mechanism of post‑transcriptional regulation (16).

Pancreatic cancer. Similar to the findings of GAS5 in gastric 
cancer, studies of pancreatic cancer have demonstrated that 
GAS5 expression was markedly decreased in pancreatic 
cancer tissues compared with normal pancreatic ductal cells. 
GAS5 inhibited pancreatic cancer cell proliferation. Further-
more, cyclin‑dependent kinase  6 (CDK6) expression was 
negatively regulated by GAS5 in vitro and in vivo. Knockdown 
of CDK6 partially abrogates GAS5‑siRNA‑induced cancer 
cell proliferation (28).

Renal cell carcinoma. The expression of GAS5 was signifi-
cantly downregulated in renal cell carcinoma cells compared 
with normal control cells. Overexpression of GAS5 inhibited 
cell proliferation, migration and invasion potential and induced 
cell apoptosis in renal carcinoma cell lines (31,32).

Bladder cancer. GAS5 expression was lower in both bladder 
cancer cell lines and human specimens. Overexpression 
of GAS5 inhibited bladder cancer cell proliferation. GAS5 
exerted its effect in bladder cancer partly by regulating CDK6, 
since knockdown of GAS5 increased CDK6 mRNA and 
protein levels in bladder cancer cells. GAS5 inhibition induces 
a significant decrease in the G0/G1  phase and a notable 
increase in the S phase (27).

Prostate cancer. GAS5 gene expression was significantly 
downregulated in prostate cell lines derived from metastases 
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(LNCaP and PC‑3) compared with those derived from normal 
prostate tissue or primary prostate cancer (17,33,34). In addi-
tion, the cellular GAS5 levels decreased as prostate cancer 
cells acquired castration resistance. GAS5 promoted the 
apoptosis of prostate cells. GAS5 overexpression promoted 
cancer cell death induced by UV‑C irradiation and chemo-
therapeutic drugs, and downregulation of GAS5 expression 
attenuated it. LncRNA GAS5 binds to the corresponding 
domain on the androgen receptor and inhibits transcriptional 
stimulation (35). Considering that the androgen receptor plays 
a crucial role in the survival of prostate cancer cells (36), this 
is of potential significance, since downregulation of GAS5 
levels may permit increased pro‑survival signaling through 
the androgen receptor pathway.

Malignant pleura mesothelioma. GAS5 expression was 
significantly decreased in malignant pleura mesothelioma 
(MPM) cell lines compared with normal controls. GAS5 was 
largely expressed in quiescent cancerous cells. MPM cell 
growth arrest induced by drugs was accompanied with GAS5 
accumulation in the nuclei. In addition, GAS5 expression was 
highly expressed in podoplanin-positive MPM. Silencing 
of GAS5 shortened the cell cycle length and increased the 
expression of glucocorticoid responsive genes, glucocorticoid 
inducible leucine‑zipper and serum/glucocorticoid‑regulated 
kinase‑1 (22).

B‑cell lymphoma. Nakamura et al reported a chromosomal 
translocation of t  (1;3) (q25;q27) in a case of diffuse large 
B‑cell lymphoma  (19). The chromosomal translocation 
of t  (1;3) (q25;q27) led to the expression of GAS5‑B‑cell 
lymphoma 6 (BCL6) chimeric transcripts. In this case, the 
breakpoint in chromosome 1 was located within GAS5 and 
the breakpoint in chromosome 3 at 4 kb upstream of BCL6 
exon  1a. Promoter substitution leads to the inappropriate 
expression of BCL6, which normally acts as a transcriptional 
repressor  (19,37). It was considered that the inappropriate 
expression of BCL6, which was a result of the changes in 
post‑transcriptional regulation of the chimeric mRNA, was 
responsible for lymphomagenesis (19).

Leukemia. Etomidate is an essential tool in a variety of 
scenarios for intubation and procedural sedation. DNA micro-
array assay indicated that etomidate increased the expression 
of GAS5 in murine leukemia in vitro. Etomidate is cytotoxic 
due to its induction of apoptosis. However, the mechanism for 
etomidate‑induced apoptosis remains unclear. GAS5 may play 
a role in the process (38). Table I summarizes the expression of 
GAS5 in various types of cancers.

4. GAS5 tumor-suppressive functions

The frequent downregulation of GAS5 in human cancers has 
provided new insight into our understanding of its functions. 
GAS5 suppresses tumors by regulating multiple cellular 
processes, including growth arrest, apoptosis, proliferation, 
metastasis and DNA damage repair. In this section, we discuss 
how GAS5 deregulations contribute to cancer development.

GAS5 regulates growth arrest and apoptosis. Apoptosis, also 
called programmed cell death, is critical in normal develop-
ment, and in the initiation and progression of cancers (39). 
Mutated and deleted pro‑apoptotic genes give rise to carcino
genesis and tumor growth. A number of in  vitro studies 
have demonstrated that GAS5 is pro‑apoptotic. In vitro and 
in  vivo experiments revealed that GAS5 induced growth 
arrest and apoptosis in numerous cancers, including breast 
cancer, NSCLC, gastric cancer, renal cancer and prostate 
cancer (15‑17,23,31,40).

GAS5 regulates proliferation. GAS5 was demonstrated to 
inhibit tumor cell proliferation in gastric cancer, pancre-
atic cancer, renal carcinoma cell lines and bladder cancer 
cells (16,27,28,31).

GAS5 regulates metastasis. In addition to promoting tumor 
cell apoptosis and inhibiting proliferation, GAS5 also inhibits 
tumorigenesis by inhibiting metastasis. Overexpression of 
GAS5 inhibited migration and invasion potential in renal 
carcinoma cell lines (31). GAS5 gene expression was markedly 
decreased in prostate cancer cells derived from metastases 

Table I. Growth arrest-specific transcript 5 expression in various human cancers.
 
Cancer type	 Expression	 Method of analysis	 Reference

Breast cancer	 Decreased	 RT-qPCR	 15
Lung cancer	 Decreased	 RT-qPCR 	 23
Gastric cancer	 Decreased	 RT-qPCR	 16
Pancreatic cancer	 Decreased	 RT-qPCR 	 28
Renal cell carcinoma	 Decreased	 RT-qPCR	 32
Bladder carcinomas	 Decreased	 RT-qPCR	 27
Prostate cancer	 Decreased	 RT-qPCR	 17
Malignant pleura mesothelioma	 Decreased	 RT-qPCR	 22
B‑cell lymphoma	 Decreased 	 RT-qPCR	 19
Leukemia	 Decreased 	 RT-qPCR	 38

RT-qPCR, reverse transcription-quantitative polymerase chain reaction.
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when compared with those derived from normal prostate 
tissue or primary prostate cancer (34).

5. Molecular mechanism and action of GAS5

Although GAS5 has been reported as a tumor suppressor, the 
underlying molecular mechanism remains largely unknown. 
LncRNAs modulate the expression of various genes, playing 
a number of significant biological roles, including dosage 
compensation and genomic imprinting, histone‑modification, 
gene activation, gene repression, lineage determination and 
cell proliferation (5,41).

GAS5 controls gene transcription. Aberrant gene expres-
sion plays a critical role in the initiation and progression of 
cancer. Elucidation of the lncRNA‑mediated transcriptional or 
post‑transcriptional gene regulations has prompted investiga-
tions into the mechanisms of cancer.

The negative correlation between miR‑21 and GAS5 
expression in breast tumor suggested that they might regulate 
each other in a similar manner to the microRNA‑mediated 
silencing of target mRNAs (30). In gastric cells, GAS5 overex-
pression decreased the expression of E2F1 and cyclin D1 and 
increased the expression of P21 (16). E2F1 was demonstrated 
to contribute to tumorigenesis by influencing cell prolifera-
tion (23). Cyclin D1 is also associated with the development of 
cancers through its involvement in cell cycle regulation (42). 
Furthermore, GAS5 snoRNA levels are strongly correlated 
with p53 expression in colorectal cancer  (43). P53 plays a 
prominent role in cancer by deregulating apoptosis  (44). 
In addition, p21 is downregulated or lost in several cancer 
types with its inhibitory control over the cell cycle (45,46). 
GAS5 exerts its effect in bladder cancer partly by regulating 
CDK6, since knockdown of GAS5 increased CDK6 mRNA 
and protein levels  (27,28). CDK6 regulated the cell cycle, 
and dysregulation of CDK6 is associated with bladder cancer 
progression (47,48). In addition, GAS5 expression was highly 
expressed in podoplanin-positive MPM (22). Podoplanin, a 
type I transmembrane sialomucin‑like glycoprotein, is highly 
expressed in MPM and induces platelet aggregation (49). The 
GAS5‑BCL6 chimeric transcripts resulting from the chromo-
somal translocation t (1;3) (q25;q27) led to the inappropriate 
expression of BCL6 (19). It was considered to be responsible 
for the initiation and development of lymphoma.

GAS5 acts as molecular decoy sequestering‑specific 
DNA‑binding proteins. GAS5 could suppress glucocorticoid 
receptor (GR)‑induced transcriptional activity of endogenous 
glucocorticoid‑responsive genes by competing with DNA 
glucocorticoid receptor response element (GRE) for binding 
to the GR since it is structurally similar to GRE (34,43). The 
GR regulates cell survival by binding the promoters of various 
glucocorticoid‑responsive genes, including apoptosis‑related 
genes (50).

Upstream regulation of GAS5 expression. As mentioned above, 
GAS5 expression increased upon cell growth arrest. GAS5 plays 
critical roles in normal growth arrest, as well as in the growth 
arrest of a number of cancers. However, how GAS5 expression 
increases upon cell growth arrest remains unclear. The classifi-
cation of GAS5 as a 5'TOP gene provides a possible explanation 
as to why it functions as a growth arrest (20). During arrested 
cell growth, 5'TOP accumulates in mRNPs. In growing cells, 
spliced GAS5 RNA is associated with ribosomes, translated 
and rapidly degraded. When cell growth is arrested and transla-
tion is inhibited, the levels of GAS5 increase (Fig. 1).

The human genome integrity is constantly damaged by 
genotoxic agents from the exogenous environment (chemicals 
and ultraviolet, for example) and endogenous environment 
(replication and oxidative stress) (51,52). The ability to repair 
damaged DNA is critical for living organisms. GAS5‑derived 
snoRNA expression was induced by DNA damage in a 
p53‑dependent manner in colorectal cancer cell lines (43). It 
was considered that GAS5‑derived snoRNA might be involved 
in the DNA damage repair.

6. Implications in cancer management

Given that aberrant GAS5 expression was reported in 
various human cancers, it provides an attractive approach 
for cancer management. Firstly, GAS5 may be used as a 
biomarker for cancer screening. By monitoring the GAS5 
level in an individual with a suspected tumor, it is possible 
to predict the risk of cancer development and progression, 
or the prognosis of the cancer. Secondly, GAS5 is assumed 
to be a tumor suppressor, which inhibits cell growth and 
metastasis and induces apoptosis in certain cancer cells; there-
fore, re‑introduction of the GAS5 gene provides us with an  
attractive strategy to treat cancer. 

Figure 1. Cell growth arrest and growth arrest-specific transcript 5 (GAS5) expression. In growing cells, spliced GAS5 RNA is translated and consequently 
degraded. When translation is inhibited or cell growth is arrested, the levels of GAS5 increase. mRNP, messenger ribonucleoprotein particle.
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7. Conclusions and future directions

GAS5, downregulated in a number of human cancers, is a 
well‑characterized tumor suppressor. GAS5 induces apop-
tosis and inhibits proliferation and metastasis. The molecular 
mechanism of GAS5 tumorigenesis remains to be investigated. 
Through regulating the expression of various tumor‑related 
genes and proteins, including E2F1 and cyclin D1, GAS5 may 
exert its function in tumorigenesis. Since the regulatory mech-
anisms are tissue-specific, the effects of the polymorphisms on 
GAS5 expression and the associated regulatory mechanisms 
have only been evaluated in a few cancer tissues. Although 
previous studies have reported the tumor‑suppressing role of 
GAS5 in several cancer types, including breast and gastric 
cancer, the expression and function of GAS5 in other tumors, 
such as liver cancer, remains to be investigated.
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