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Abstract. The aim of the present study was to screen out 
the biomarkers associated with chemoresistance in ovarian 
carcinomas and to investigate the molecular mechanisms. 
microRNA (miRNA) expression data was obtained from 
published microarray data of the GSE43867 dataset from 
Gene Expression Omnibus (GEO), including the data of 
86  chemotherapy‑treated patients with serous epithelial 
ovarian carcinomas (response group, 36 complete response 
cases and 12 partial response cases; non‑response group, 10 
stable cases and 28 progressive disease cases), and identifica-
tion of differentially‑expressed miRNAs were conducted with 
a GEO2R online tool based on R language. TargetScan 6.2 
was used to predict the targets of differentially‑expressed 
miRNAs. Protein‑protein interaction network analysis was 
conducted by STRING 9.1, while functional enrichment [Gene 
Ontology (GO) biological process terms]������������������� and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analyses 
were conducted by GeneCodis3 for the target genes. A total 
of 6 differentially‑expressed miRNAs were screened out, with 
317 target genes obtained. It was found that 67 interactions 
existed among 76 genes/proteins through the PPI network 
analysis, and that 6 of these were potential key genes (PIK3R5, 
MAPK3, PTEN, S1PR3, BDKRB2 and NCBP2). The main 
biological processes involved in chemoresistant ovarian carci-
noma were apoptosis, programmed cell death, cell migration, 
cell death and cell motility. The miRNA target genes were 
found to be associated with the ErbB signaling pathway, the 
gonadotropin‑releasing hormone signaling pathway and other 

pathways in cancer. IK3R5, MAPK3 and PIK3R5 are involved 
in the majority of GO terms and KEGG pathways associated 
with chemoresistance in ovarian carcinoma.

Introduction

Ovarian cancer is one of the leading causes of cancer incidence 
and cancer‑associated mortality in women. Surgery combined 
with chemotherapy is the standard therapeutic strategy, and 
recurrence and chemoresistance in ovarian cancer patients 
are the main factors affecting the prognosis (1). Therefore, 
anti‑resistance has become a prominent target for research into 
ovarian cancer (2,3).

The combination data mining method increases the prob-
ability of identifying the biological processes and functional 
candidate genes that could represent the high‑throughput data 
and have a great effect on the studied disease. A number of 
studies have revealed that applying in silico bioinformatic 
approaches in mining data from high‑throughput microarray 
profiles is reliable and effective in predicting disease‑causing 
biomarkers and has high accuracy (4,5). Qu et al (6) used 
microarray technology to profile microRNA (miRNA/miR) 
expression between CNE‑2R and its parental cell line, CNE‑2, 
and miR‑205 was found to contribute to the radioresistance 
of nasopharyngeal carcinoma by directly targeting PTEN. 
In order to find feasible approaches for solving the chemo-
resistance in ovarian carcinoma, more and more studies 
have been performed in the last decade. Using microarray 
profiles, multiple potential biomarkers have been reported to 
be involved in chemoresistant ovarian carcinoma, including 
miR‑106a, miR‑591 (7), miR‑23b, miR‑27a (8), ARID1A (9) 
and Notch3  (10). However, the biological mechanisms of 
the biomarkers in chemoresistant ovarian carcinoma remain 
unclear.

The present study aimed to extract differentially‑expressed 
miRNAs from microarray datasets from the Gene Expression 
Omnibus (GEO) database to probe their biological function 
in the development and progression of chemoresistant ovarian 
carcinoma. Information retrieved via miRNAs expression data, 
PPI interaction network construction and pathway enrichment 
analysis was combined to screen out potential biomarkers for 
chemoresistant ovarian carcinoma. This research will assist 
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in disclosing the biomarkers of chemoresistance in ovarian 
carcinoma.

Materials and methods

miRNA expression profiles. The miRNA expression profile 
of the GSE43867 dataset was obtained from the GEO data-
base (http://www.ncbi.nlm.nih.gov/geo/), which is based on 
the GPL16566 Applied Biosystems TaqMan Array Human 
miRNA A/B Cards v2.0 platform (Applied Biosystems Life 
Technologies, Foster City, CA, USA). This dataset included the 
miRNA profile expression microarrays from formalin‑fixed 
and paraffin‑embedded blocks of 86 chemotherapy‑treated 
cases with serous epithelial ovarian carcinomas, which were 
submitted by Vecchione et al (11).

Screening of differentially‑expressed miRNAs. GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an interac-
tive web tool that performs comparisons on original 
submitter‑supplied processed data tables using the GEO query 
and limma R packages from the Bioconductor project (12). 
GEO2R was used to analyze the published microarray data 
of the GSE43867 dataset from the GEO database. In total, 
86  chemotherapy‑treated patients with serous epithelial 
ovarian carcinomas were divided into two groups: The 
response group consisted of 36  complete response cases 
and 12 partial response cases, while the non‑response group 
consisted of 10 stable cases and 28 progressive disease cases. 
The results were downloaded in text format, and the miRNAs 
that met the cut‑off criteria of P<0.05 and a |log fold‑change| of 
>1.0 were screened out as differentially‑expressed miRNAs.

Prediction of target genes of differentially‑expressed miRNAs. 
Targets of miRNAs are predicted by an online target prediction 
tool, TargetScan 6.2 (http://www.targetscan.org/)  (13,14), 
which predicts the biological targets of miRNAs by searching 
for the presence of conserved 8mer and 7mer sites that match 
the seed region of each miRNA. A prediction score of >0.5 is 
selected as a criterion for target genes with each miRNA.

Construction of a protein‑protein interaction (PPI) 
network. STRING is a database of known and predicted 
PPIs based on the sources derived from the genomic 
context, high‑throughput experiments, coexpression and 
previous knowledge (15). STRING quantitatively integrates 
interaction data from these sources for a large number of 
organisms, and transfers information between these organ-
isms where applicable (16). The latest version, STRING9.1 
(http://string‑db.org/), covers 5,214,234 proteins from 1,133 
organisms (17). In the present study, a PPI network of the 
miRNA target genes was constructed by STRING9.1, and 
highly‑correlated genes/proteins (confidence score, >0.7) 
were selected as inclusion criteria for PPI network analysis.

Functional enrichment and pathway enrichment analysis. 
Functional enrichment (GO biological process terms) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis (KEGG and Panther pathways) were 
performed for the genes in the PPI network using the Gene-
Codis3 web tool (http://genecodis.dacya.ucm.es/) (18,19). and 

the statistical test used for the enrichment was based on the 
hypergeometric distribution to compute P‑values, which were 
corrected by the Benjamini and Hochberg false discovery rate 
method for multiple hypothesis testing (α=0.05). Only those 
terms with a value of P<0.05 and a count number of ≥5 genes 
were selected for analysis.

Results

Differentially‑expressed miRNAs. A total of 6  differen-
tially‑expressed miRNAs were identified in the chemotherapy 
response cases compared with the non‑response cases (control) 
in the serous epithelial ovarian carcinomas according to the 
criteria. The 6 miRNAs were hsa‑miR‑760, hsa‑miR‑483‑5p, 
hsa‑miR‑766, hsa‑miR‑198, hsa‑miR‑129‑3p and hsa‑miR‑642. 
The information for these 6 differentially‑expressed miRNAs 
is presented in Table I.

Target genes and PPI network construction. A total 
of 317  target genes met the criteria of the 6  differen-
tially‑expressed miRNAs. The target genes were uploaded to 
the STRING online tool: A total of 67 interactions were found 
to exist among 76 proteins (genes) through the PPI network 
analysis, and 6 of them were potential key genes (PIK3R5, 
PTEN, MAPK3, S1PR3, BDKRB2 and NCBP2). Addition-
ally, 37 proteins/genes were involved in the construction of 
the MAPK3 and NCBP2 module PPI network, as shown in 
Fig. 1.

GO term enrichment and KEGG analysis. The Gene-
Codis 3 online tool was used to characterize the biological 
functions of the genes that were included in the PPI network 
of the aforementioned potential key genes. Functional analysis 
demonstrated that the genes in this module could be enriched 
into 5 functional GO terms, as shown in Table II. The target 
genes were identified to be associated with GO categories 
such as regulation of transcription, apoptotic process and 
signal transduction, as shown in Table II. Based on KEGG 
pathway analysis, the target genes were found to be involved 
in the gonadotropin‑releasing hormone signaling pathway, 
the ErbB signaling pathway and in other cancer pathways, as 
well as in the regulation of the actin cytoskeleton, as shown 
in Table III.

Table I. Differentially‑expressed miRNAs obtained from the 
GSE43867 dataset.

miRNA	   |logFC|	 P‑value

hsa‑miR‑642	   1.01956	 0.00848
hsa‑miR‑198	   1.23491	 0.01075
hsa‑miR‑483‑5p	   1.35478	 0.01347
hsa‑miR‑129‑3p	   1.11770	 0.02684
hsa‑miR‑760	   1.59264	 0.03878
hsa‑miR‑766	   1.24657	 0.03971

miR/miRNA, microRNA; FC, fold-change.
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Discussion

The present study identified 6  differentially‑expressed 
miRNAs from the GEO GSE43867 dataset, which included 
a miRNA profile expression microarray for chemoresistant 
serous epithelial ovarian carcinomas, by bioinformatics 
analysis. In order to confirm the functions of these miRNAs, 
the target genes were predicted and the PPI network was 
constructed. Finally, functional annotations and pathway anal-
ysis were conducted to determine the biological mechanisms 
contributing to chemoresistant ovarian carcinoma.

The 6 differentially‑expressed miRNAs were hsa‑miR‑760, 
hsa‑miR‑483‑5p, hsa‑miR‑766, hsa‑miR‑198, hsa‑miR‑129‑3p 
and hsa‑miR‑642. Iwaya et al  (20) reported that miR‑760 
was downregulated in the bone marrow and primary tumor 
of advanced gastric cancer, while Wang  et  al  (21) found 
that plasma miR‑601 and miR‑760 were of high value for 
discriminating advanced adenomas from normal controls. 
Zheng et al (22) found high expression levels of miR‑483‑5p 
in tumor tissues, plasma and cell lines of nasopharyngeal 
carcinoma patients. The results of a study by Wang et al (23) 
confirmed that miR‑483‑5p suppresses the proliferation of 
glioma cells via directly targeting extracellular signal‑regu-
lated kinase 1 (ERK1). The microarray results of a study by 
Yu et al (24) indicated that miR‑483‑5p was upregulated in 
ovarian serous carcinoma at stage III compared with stage I. 
miR‑766 has been shown to be associated with esophageal 
cancer, cutaneous squamous cell carcinoma and lung adeno-
carcinoma  (25‑27), while miRNA‑198 has been reported 
to be of high value for predicting the clinical outcomes of 

cancer (28,29). Several studies have demonstrated the use of 
miR‑129 as a diagnostic and prognostic biomarker for various 
tumors, such as renal cell carcinoma and gastric cancer (30,31). 
It has also been reported that increasing miR‑642 improves 
cisplatin sensitivity in advanced bladder cancer and cell 
lines (32).

In order to ascertain the function of the differen-
tially‑expressed miRNAs in the present study, the target 
genes of these miRNAs were retrieved by TargetScan 6.2, and 
317 target genes were obtained. Through the construction of a 
PPI network of the target genes of 6 differentially expressed 
miRNAs, 76 genes/proteins were shown to be involved in the 
PPI network, and 6 of these were screened out as potential key 
genes for chemoresistant ovarian carcinoma. PIK3R5, PTEN, 
MAPK3, S1PR3, BDKRB2 and NCBP2 formed a module in 
the PPI network construction, indicating that the two genes, 
PIK3R5 and MAPK3, may play important roles in the develop-
ment of chemoresistance in ovarian carcinoma. Results obtained 
from GO biological process and pathway enrichment analyses 
also lead to the identification of MAPK3 and PIK3R5 as key 
genes, which were involved in the majority of GO terms and 
KEGG pathways associated with chemoresistance in ovarian 
carcinoma.

MAPK3, also known as ERK1, is a member of the 
mitogen‑activated protein kinase family. Amsterdam et al (33) 
reported that intense phosphorylated ERK1 and ERK2 was 
detected in the peripheral areas of stage II ovarian carcinoma. 
Jeong et al (34) found that ERK1/2 are important in docetaxel 
resistance in MCF‑7 spheroids. In recent years, MAPK/ERK1 
has been reported to be associated with various cancer types, and 

Table II. Significant GO terms obtained from the microRNA targets in the protein‑protein interaction network.

GO term	 Genes	 P‑value

GO:0048011‑nerve growth factor 	 MAPK3, APH1A, KALRN, PTEN, PREX1	 0.000876
receptor signaling pathway
GO:0045944‑positive regulation of 	 NRIP1, MAPK3, PPARGC1A, MEF2D, STAT6, ETS1	 0.004176
transcription from RNA polymerase II promoter
GO:0045893‑positive regulation of 	 NRIP1, MAPK3, PPARGC1A, ERBB4, ETS1	 0.005182
transcription, DNA‑dependent
GO:0006915‑apoptotic process	 APH1A, KALRN, PREX1, MEF2D, ERBB4	 0.008394
GO:0007165‑signal transduction	 IQGAP1, KALRN, ARHGAP31, ERBB4, HBEGF, STAT6	 0.013630

GO, Gene Ontology.

Table III. KEGG pathways obtained from the miRNA targets.

Pathway	 Genes	 P‑value

Kegg:04912 GnRH signaling pathway	 MAPK3, MMP2, HBEGF, PLA2G5, GNRHR	 2.78x10‑12

Kegg:04012 ErbB signaling pathway	 MAPK3, PIK3R5, ERBB4, HBEGF, CBL	 3.05x10‑12

Kegg:05200 Pathways in cancer	 MAPK3, PIK3R5, MMP2, PTEN, ETS1, CBL	 3.21x10-10

Kegg:04810 Regulation of actin cytoskeleton	 MAPK3, PIK3R5, BDKRB2, PIP4K2B, IQGAP1	 5.97x10-10

GnRH, gonadotropin‑releasing hormone.
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it is believed that this gene participates in the process of cancer 
metastasis (35‑37). PIK3R5 is a protein‑coding gene. PIK3R5 
has been reported to be associated with ataxia‑oculomotor 
apraxia (38). Shull et al (39) reported that PIK3R5 mutations 
co‑occurred with BRAF mutations, indicating that the gene may 
be a potential chemotherapeutic target for melanoma patients 
resistant to BRAF inhibitors. Through functional enrichment 
analysis, the present study identified the aforementioned 
pathways associated with the hub genes and their regulators. 
Therefore, MAPK3 and PIK3R5 may be selected as therapeutic 
targets for chemoresistant ovarian carcinoma. We speculate that 
MAPK3 and PIK3R5 may be associated with the occurrence 
and development of chemoresistant ovarian carcinoma.

In conclusion, a bioinformatic approach was applied to iden-
tify the differentially‑expressed miRNAs in serous epithelial 

ovarian carcinomas samples of chemotherapy‑treated respon-
sive cases compared to those of non‑responsive cases. The 
results suggested that MAPK3 and PIK3R5 may be associated 
with chemoresistant ovarian carcinoma. However, as of yet, 
there are no other studies to prove that MAPK3 and PIK3R5 are 
associated with chemoresistant ovarian carcinoma. The present 
study may provide novel insights into the molecular mechanism 
of chemoresistant ovarian carcinoma, thus, further studies 
regarding the association of the two genes and chemoresistant 
ovarian carcinoma are required.
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