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Abstract. Twist-related protein 1 (Twist1), is a class II basic 
helix-loop-helix transcription factor, which has been demon-
strated to be a major regulator of epithelial‑mesenchymal 
transition (EMT), and therefore is involved in promoting 
carcinoma metastasis. Previous studies have demonstrated 
that Twist1 expression is upregulated in cervical cancer cases 
with poor clinical outcomes. However, the mechanisms that 
mediate the role of Twist1 in cervical cancer metastasis are 
poorly understood. To the best of our knowledge, the present 
study provides the first evidence that the downregulation of 
Twist1 by short hairpin RNA lentivirus (LV‑shRNA) resulted 
in the inhibition of invasion and migration of cervical cancer 
cells. Furthermore, the present study presents evidence that 
reducing Twist1 expression prevents cervical cancer cells 
from undergoing EMT. The expression of the epithelial cell 
marker, E‑cadherin, was elevated; and the expression levels 
of mesenchymal cell markers [fibronectin, vimentin, matrix 
metalloproteinase‑9 (MMP‑9) and MMP‑2] were reduced in 
the LV‑sh‑Twist1 group in cervical cells. Collectively, these 
findings indicate that Twist1‑mediated modulation of EMT is 
important in the invasion and migration of cervical cells, and 
also indicates the potential therapeutic importance of strategies 
involving the inactivation of Twist1-mediated mesenchymal 
changes in cervical cancer.

Introduction

Cervical cancer is the second most common cause of 
cancer‑associated mortality in women worldwide  (1), and 

its global incidence increased at an annual rate of 0.6% 
between 1980 and 2010 (2). Invasion and metastasis are the 
primary causes of treatment failure and subsequent mortality 
in patients with cervical cancer (3). Recurrence and metastasis 
of cervical carcinoma to other sites, including the lymph 
nodes (4), bones (5), lungs (6) and liver (7) may also occur. 
Therefore, the inhibition of metastasis is an auxiliary strategy 
for curing patients of cancer. However, the molecular altera-
tions that drive invasion and metastasis in cervical cancer are 
not well established. Identifying these molecular mechanisms 
may provide insights into potential targets for diagnosis and 
therapy.

Twist‑related protein 1 (Twist1) is a class II member of the 
highly conserved family of basic helix‑loop‑helix transcription 
factors. Twist1 is overexpressed in a number of types of cancer, 
and correlates with low E‑cadherin expression, high cancer 
aggressiveness and poor patient survival rates (8,9). The role 
of Twist1 in tumor invasion and metastasis has been attracting 
increasing interest. Previous studies have demonstrated that 
carcinoma invasion and metastasis are driven by a process 
termed epithelial‑mesenchymal transition (EMT) (10), which 
is a process whereby epithelial cells acquire mesenchymal 
properties and override senescence (11). Twist1 overexpression 
promotes metastasis in vivo by inducing EMT (8). Suppres-
sion of Twist1 by small interfering RNA in prostate cancer 
cells induced the expression of epithelial components and 
specifically inhibited their capacity for invasion and metas-
tasis (12,13). Furthermore, Twist1 expression also enhances 
cell migration and invasion in gastric cancer in  vitro and 
in vivo (14). Therefore, targeting Twist1 may be a novel thera-
peutic approach for the treatment of cervical cancer.

The present study targeted Twist1 in human cervical 
cancer HeLa cells and reduced it's expression levels using a 
short hairpin (sh)RNA lentivirus (LV‑sh‑Twist1) and assessed 
the resulting effects on migration and invasion of the cells.

Materials and methods

Cell culture. The human cervical cancer cell line HeLa was 
maintained in RPMI‑1640 medium (Gibco, Gaithersburg, 
MD, USA), supplemented with 10% fetal bovine serum 
(FBS) (MinHai Bio‑Engineering, Lanzhou, China), 1% 
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penicillin‑streptomycin (Invitrogen Life Technologies, 
Carlsbad, CA, USA) in a humidified incubator at 37˚C, 5% 
CO2 atmosphere and 95% air.

Lentiviral shRNA production and stable knockdown of Twist1. 
The GIPZ lentiviral shRNAmir‑GFP system (Open Biosys-
tems, Lafayette, CO, USA) was used to knockdown human 
Twist1 in HeLa cells. Lentiviruses (LVs) that co‑express 
green fluorescent protein (GFP) and shRNAs targeting Twist1, 
and with expression of GFP and empty vector control were 
used to infect HeLa cells. The detailed method for making 
an shRNA‑based stable knockdown of Twist1 cell lines is 
described in a previous study (15). The LVs produced were 
titered and stored according to the manufacturer's instructions.

MTT assay. HeLa cells were cultured in 96‑well plates at a 
density of 1x105 cells per well overnight and infected with 
LV‑sh‑Twist1. After 0, 24, 48 and 72 h, 50 ml MTT (1 mg/ml) 
from Sigma‑Aldrich (St Louis, MO, USA) was added to the cell 
media. After 4 h, the MTT was discarded and 150 ml dimethyl 
sulfoxide was loaded into each well. The spectrophotometric 
absorbance of the samples was measured using a microplate 
reader (Model 680; Bio‑Rad Laboratories, Inc., Richmond, CA, 
USA) at 570 nm with a reference wavelength of 655 nm. The 
percentage of cell survival was calculated using the following 
formula: Cell viability  =  (absorbance value of infected 
cells / absorbance value of uninfected control cells) x 100. Six 
duplicate wells were measured at each concentration, and each 
experiment was performed at least three times.

Apoptosis assay. At 48 h after transfection, the HeLa cells 
were collected and washed twice with cold phosphate‑buffered 
saline, resuspended in 400 µl Annexin V‑fluorescein isothio-
cyanate (FITC) binding buffer at a density of 1x106 cells/ml. 
The cells were stained with 5 µl Annexin V‑FITC and 10 µl 
propidium iodide from an Apoptosis Detection kit (Jingmei 
Biotech, Shanghai, China) following the manufacturer's 
instructions. The cells were then subjected to flow cytometry 
(BD Biosciences, San Jose, CA, USA) to detect cell apoptosis. 
This experiment was conducted 3 times.

Cell migration and invasion Transwell assays. In vitro cell 
invasion assays were carried out in Matrigel‑based Tran-
swell plates with slight modifications. HeLa cells (500 µl of 
1x105 cells/ml in 0.1% FBS + RPMI‑1640) were seeded into 
the Matrigel™‑coated upper chambers of an 8 µm pore‑sized 
polycarbonate membrane (Corning Costar, Cambridge, MA, 
USA). The lower compartments were filled with medium 
supplemented with 20% FBS. After 24 h, the cells that were 
present on the other side were stained with crystal violet 
dye and counted under a light microscope (DP70; Olympus, 
Melville, NY, USA). The number of cells were determined in 
eight random fields. The experiment was repeated 3 times for 
each group. Cell migration assays were carried out in a similar 
way but without Matrigel™. Migration or invasion of the cells 
through the chamber to the underside of the filter was assessed 
as described previously (16).

Reverse transcription quantitative polymerase chain reaction 
(RT‑qPCR) assay. Total RNAs were prepared from the treated 

cells using TRIzol® reagent (Invitrogen Life Technologies). 
qPCR was carried out using the ABI 7300 real‑time PCR system 
(Applied Biosystems, Foster City, CA, USA) and performed by 
SYBR® Green dye according to the manufacturer's instructions. 
Oligonucleotide primers were synthesized by Sangon Biotech 
Co., Ltd (Shanghai, China). Sequences of primers used in the 
qPCR analysis are presented in Table I. The qPCR results were 
calculated using the 2‑ΔΔCT method as described previously (17).

Western blot analysis. Whole cell proteins were separated 
on 10% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS‑PAGE) at 6‑8  V/cm and transferred to 
polyvinylidene difluoride membranes using an electrotransfer 
system (Bio‑RadLaboratories, Inc.). The membranes were then 
blocked in 5% non‑fat milk diluted in Tris‑buffered saline. The 
filters were hybridized with polyclonal rabbit anti‑Twist1 (cat 
no. sc‑15393; Santa Cruz Biotechnology, Santa Cruz, CA, USA), 
mouse anti‑E‑cadherin (cat no. 14472s), rabbit anti‑matrix 
metalloproteinase‑9 (MMP‑9; cat no. 3852s), anti‑MMP‑2 (cat 
no. 4022s), rabbit anti‑vimentin (cat no. 12826; Cell Signaling 
Technology, Beverly, MA, USA) and rabbit anti‑fibronectin 
(cat no. ab2413; Abcam, Cambridge, UK) antibodies diluted 
to 1:1,000 at 4˚C overnight, followed by incubation with 
horseradish peroxidase‑conjugated goat anti‑mouse IgG or 
goat anti‑rabbit IgG secondary antibodies (Santa Cruz Biotech-
nology; 1:4,000 dilution) for 1 h at room temperature. Mouse 
anti‑GAPDH (cat no. sc‑365062; 1:1,000 dilution; Santa Cruz 
Biotechnology) was used as a loading control. Antibody‑antigen 
complexes were detected with electrochemiluminescence 
reagents (GE Healthcare, Freiburg, Germany) and the protein 
bands were quantified by densitometry for subsequent analysis 
(ImageJ software; National Institutes of Health, Bethesda, MD, 
USA).

Statistical analysis. Statistical analysis was conducted using 
SPSS software (version 16.0; SPSS, Inc., Chicago, IL, USA). 
Data from at least three separate experiments are presented as 
the mean ± standard error of the mean. Paired Student's t‑tests 
were used to determine any significant differences. P<0.05 was 
considered to indicate a statistically significant difference.

Results

LV‑sh‑Twist1 inhibits cervical cancer cell viability and 
induces cell apoptosis. To determine the function of Twist1 in 
cervical cancer cells, Twist1 was knocked down in HeLa cells 
using LV‑sh‑Twist1, which was selected from three candidates 
by qPCR (data not shown). The effects of LV‑sh‑Twist1 on 
Twist1 expression levels were examined by western blotting 
in cervical cancer HeLa cells. The results demonstrated that 
transfection of LV‑sh‑Twist1 resulted in the downregulation of 
Twist1 (Fig. 1A and B). The expression of Twist1 was reduced 
in HeLa cells at 24, 48 and 72 h after LV‑sh‑Twist1 transfection 
and that the level of inhibition increased in a time‑dependent 
manner (Fig. 1A). The expression level of Twist1 was decreased 
at 48 h after LV‑sh‑Twist1 transfection compared with LV‑GFP 
(Fig. 1B).

MTT assay was used to determine the effect of LV‑sh‑Twist1 
on HeLa cell proliferation. The present results revealed that 
the knockdown of Twist1 evoked a marked inhibition effect 
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on cell proliferation after 24, 48 and 72 h of LV‑sh‑Twist1 
transfection in HeLa cells (73.2±5.3%, P<0.05; 57.4±6.1%, 
P<0.01; and 32±6.7%, P<0.01, respectively; Fig. 1C), whereas 
the cell viability in the LV‑sh‑Twist1 transfection group was 
reduced significantly compared with the LV‑GFP group at 48 h 
(63.5±6.6%, P<0.01; Fig. 1D).

As it has been demonstrated that cell apoptosis serves 
a considerable role in the progression and development of 
tumors (18), the present study further explored whether the 
cell proliferation inhibition observed was due to the induc-
tion of apoptosis. Flow cytometry was used to determine 
the level of cell apoptosis at 48 h after control, LV‑GFP or 
LV‑sh‑Twist1 transfection. The results demonstrated that the 
total cell apoptosis rate of the LV‑sh‑Twist1 transfection group 
was significantly increased compared with the control group 
(19.4±1.5 vs. 6.2±0.6%, P<0.01; Fig. 2). The proportions of 
early and late cell apoptosis rates were consistent with the total 
cell apoptosis rates.

Altered expression of Twist1 influences migration and inva‑
sion in cervical cancer cells. The present study further 
examined whether the migration and invasion of cervical 
cancer cells is attenuated by the reduction of Twist1 expression 
via LV‑mediated shRNA. Transwell® assays were employed 
to investigate whether the migration and invasion of cervical 
cells were affected by LV‑sh‑Twist1. Notably, when Twist1 was 
downregulated by LV‑sh‑Twist1 transfection, the migration of 
HeLa cells was reduced by ~53% compared with the control 
group (Fig. 3A; P<0.05). Similar results were obtained from 
invasion assays, which showed a reduction of ~5% compared 
with the control group (Fig. 3B; P<0.05).

LV‑sh‑Twist1 inhibits EMT of cervical cells. As numerous 
studies have revealed that EMT is closely associated with the 
migration and invasion of cancer cells  (19,20), the present 
study investigated the effect of LV‑sh‑Twist1 transfection on 
EMT processes in cervical cells by examining the changes in 

Figure 1. Inhibitory effect of LV‑sh‑Twist1 on the survival rate of HeLa cells. (A) The expression levels of Twist1 by LV‑sh‑Twist1 in HeLa cells at 0, 24, 48 and 
72 h, respectively. (B) The expression levels of Twist1 at 48 h after transfection with LV‑sh‑Twist1 or LV‑GFP. (C) HeLa cells were treated with LV‑sh‑Twist1. 
MTT assay was performed to determine cell viability rates at 0, 24, 48 and 72 h, respectively. (D) At 48 h after transfection with LV‑sh‑Twist1 or LV‑GFP, the 
viability of HeLa cells was assessed using MTT assay. Data are presented as the mean ± standard deviation from three independent experiments. *P<0.05 and 
**P<0.01 compared with control. Twist1, Twist‑related protein 1; sh, short hairpin; LV, lentivirus; GFP, green fluorescent protein.

Table I. List of reverse transcription‑polymerase chain reaction primers used in the present study.

Gene name	 Sequence	 Product length (bp)

β‑actin	 F: 5'TGACGTGGACATCCGCAAAG3'	 205
	 R: 5'CTGGAAGGTGGACAGCGAGG3'
E‑cadherin	 F: 5'TGCCGCCATCGCTTACAC3'	 179
	 R: 5'TGCTTAACCCCTCACCTTGA3'
Vimentin	 F: 5'AAATGGCTCGTCACCTTCG3'	 186
	 R: 5'GGGTATCAACCAGAGGGAGTG3'
Fibronectin	 F: 5'TGCCAACCTTTACAGACCTATCC3'	 122
	 R: 5'GAAATGTGAGATGGCTGTGGTG3'

F, forward; R, reverse.

  A   B

  C   D
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E‑cadherin, fibronectin, MMP‑9, MMP‑2 and vimentin expres-
sion. RT‑qPCR results demonstrated that the expression of the 
epithelial cell marker, E‑cadherin, was significantly elevated 
in HeLa cells 48 h after LV‑sh‑Twist1 transfection (P<0.05). 
As hypothesized, the expression levels of mesenchymal cell 
markers (fibronectin and vimentin) were significantly reduced 

in the LV‑sh‑Twist1 transfection group (P<0.05; Fig. 4). In 
addition, similar results were observed from western blot anal-
ysis; the expression levels of fibronectin, vimentin, MMP‑9 
and MMP‑2 were downregulated, whereas E‑cadherin was 
upregulated in the LV‑sh‑Twist1 transfection group (Fig. 4). 
These results provide evidence for a potential role of EMT 

Figure 2. The impact of Twist1 expression on cell apoptosis. Downregulation of Twist1 induced cell apoptosis in HeLa cells. Cells were harvested at 48 h 
after transfection, followed by an apoptosis assay using the Annexin V‑fluorescein isothiocyanate apoptosis detection kit. Cells in the right lower and upper 
quadrants are considered to indicate early and late apoptosis, respectively, and those in the left upper quadrants are considered to indicate dead cells. The 
results were analyzed by FlowJo software. These data are expressed as the mean ± standard deviation of three independent experiments. *P<0.05 and **P<0.01 
compared with control. Twist1, Twist‑related protein 1; LV, lentivirus; GFP, green fluorescent protein; sh, short hairpin.

Figure 3. Knockdown of Twist1 suppressed the migration and invasion of HeLa cells. HeLa cells were infected with lentiviral vectors encoding shRNA against 
Twist1. The results of the Transwell assay showed that the lentiviral delivery of shRNA targeting Twist1 resulted in reduced cell (A) migration and (B) invasion 
in HeLa cells. Three independent experiments were performed. *P<0.05 compared with control. Twist1, Twist‑related protein 1; shRNA, short hairpin RNA; 
LV, lentivirus; GFP, green fluorescent protein.

  A

  B
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during the effects of Twist1 downregulation, which reduces 
the migration and invasion of cells in cervical cancer.

Discussion

Cervical cancer remains the only major gynecological 
malignancy that is clinically staged. At present, no accurate, 
efficient techniques for indicating prognosis and diagnosing 
parametrium invasion and lymph node metastasis are avail-
able for the selection of the most suitable treatment (21). The 
identification and functional characterization of molecules 
critically involved in prognosis, parametrium invasion and 
lymph node metastasis may reveal targets for diagnostic and 
therapeutic applications.

The majority of cancer‑related mortality events occur as a 
result of metastasis rather than the original tumor; therefore, 
inhibiting cancer cell metastasis is a crucial aspect of cancer 
prevention. Previous studies observed that Twist1 expression 
promoted the migration and invasion capabilities of human 
breast cancer and hepatocellular carcinoma cells (22,23), which 
are essential for tumor metastasis  (8). Furthermore, Twist1 
expression in cervical cancer is associated with poor disease 
outcome (24). These results indicate that Twist1 is closely corre-
lated with the invasion of cervical cancer cells. The objective of 
the present study was to investigate whether the migration and 
invasion of cervical cancer cells was regulated by Twist1, and if 
this was the case, which molecular mechanisms and signaling 

pathways were involved. To investigate the therapeutic relevance 
of inhibiting Twist1 in cervical cancer, Twist1 expression was 
knocked down using shRNA and the effects on cell invasion 
and migration were assessed. The results of the present study 
indicated that specific inhibition of Twist1 expression resulted 
in marked reductions in cervical cancer cell invasion in vitro. 
These findings are consistent with the pro‑invasive functions 
of Twist1 in cervical cancer and support the therapeutic poten-
tial of inhibiting Twist1 or Twist1‑mediated EMT to inhibit 
cervical cancer cell invasion and migration. The present data 
demonstrated that the inhibition of Twist1 expression resulted 
in a notable reduction in cervical cancer cell growth and an 
increased cell apoptosis rate. These results indicate that the 
inhibition of Twist1 may have therapeutic potential, resulting in 
the targeting of cervical cancer cell invasiveness that contrib-
utes to tumor growth, progression and treatment resistance. To 
further address this potential, ongoing and future studies should 
address the effects of Twist1 inhibition in cervical cancer cells 
on tumor growth, invasion and response to therapy in vivo. 
The present study revealed that the downregulation of Twist1 
by LV‑sh‑Twist1 transfection attenuates the cell migration and 
invasion abilities of cervical cancer cells through the reversal of 
EMT or suppression of MMP expression.

EMT is characterized by increased migratory features, 
reduced epithelial cell adhesion, loss of cytoskeleton compo-
nents and acquisition of mesenchymal components (25), which 
is also critical for cancer metastasis. Induction of EMT may 

Figure 4. Inhibition of Twist1 expression regulates the epithelial and mesenchymal markers in HeLa cells. HeLa cells were transfected with control, LV‑GFP or 
LV‑sh‑Twist1 and incubated for 48 h. mRNA expression of (A) E‑cadherin, (B) vimentin and (C) fibronectin were quantified by reverse transcription quantita-
tive polymerase chain reaction. Each expression was normalized to that of β‑actin, and the relative expression levels compared with the sample of each control 
solvent are shown. Data are presented as the mean ± standard error of the mean of three different experiments. *P<0.05 compared with control. (D) Whole‑cell 
extracts were analyzed by SDS‑PAGE and western blot analysis with specified antibodies. Fibronectin, E‑cadherin, MMP‑9, MMP‑2 and vimentin proteins 
were determined and GAPDH was selected as the endogenous control. Densitometry was used to quantify and analyze the data. Twist1, Twist‑related protein 1; 
MMP, matrix metalloproteinase; sh, short hairpin; LV, lentivirus; GFP, green fluorescent protein.

  A   B

  C   D
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result in cancer cells invading the surrounding stroma, and 
to intravasation, dissemination and colonization of distant 
sites. Thus, reversal of EMT is considered to be an effective 
strategy against cancer metastasis (26). In the present study, 
downregulation of Twist1 by LV‑sh‑Twist1 was demonstrated 
to be capable of reversing the process of EMT by reducing 
the expression of mesenchymal markers vimentin and fibro-
nectin, and increasing the expression of the epithelial marker 
E‑cadherin. These findings indicate that the inhibition of inva-
sion by LV‑sh‑Twist1 in HeLa cells may be partly attributed to 
the reversal of EMT.

MMPs serve a critical role in cancer invasion, migra-
tion, metastasis and tumorigenesis. Blocking tumor cell 
expression of MMPs significantly reduces tumor invasion 
and metastasis (27). MMP‑2 and ‑9 are major components of 
the extracellular matrix and basement membrane. A number 
of human tumors have been reported to be associated with 
increased expression of MMP‑2 and ‑9  (28), and tumor 
aggressiveness has been found to significantly correlate 
with increased levels of MMP‑2 and ‑9 in prostate (29) and 
breast (30) cancer. Cytokines and inhibitors regulate MMP‑2 
and ‑9 expression in cervical and ovarian cancer cells (31). In 
the present study, knockdown of Twist1 reduced expression of 
MMP‑2 and ‑9 in the cervical cancer cell line.

In conclusion, the present study provides experimental 
evidence that knockdown of Twist1 by LV‑sh‑Twist1 suppresses 
cell migration and invasion in cervical cancer, which in turn 
drives EMT. Therefore, the results demonstrate an effect of 
Twist1 on cervical cancer cell invasion and metastasis, which 
may lead to the identification of novel diagnostic markers 
and therapeutic targets, and thus aid the understanding of the 
mechanisms behind cervical cancer metastasis.
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