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Abstract. Pediatric acute lymphoblastic leukemia (ALL) 
accounts for over one‑quarter of all pediatric cancers. 
Interacting genes and proteins within the larger human 
gene interaction network of the human genome are rarely 
investigated by studies investigating pediatric ALL. In the 
present study, interaction networks were constructed using 
the empirical Bayesian approach and the Search Tool for 
the Retrieval of Interacting Genes/proteins database, based 
on the differentially‑expressed (DE) genes in pediatric ALL, 
which were identified using the RankProd package. Enrich-
ment analysis of the interaction network was performed 
using the network‑based methods EnrichNet and PathEx-
pand, which were compared with the traditional expression 
analysis systematic explored (EASE) method. In total, 
398 DE genes were identified in pediatric ALL, and LIF was 
the most significantly DE gene. The co‑expression network 
consisted of 272 nodes, which indicated genes and proteins, 
and 602 edges, which indicated the number of interactions 
adjacent to the node. Comparison between EASE and Path-
Expand revealed that PathExpand detected more pathways 
or processes that were closely associated with pediatric ALL 
compared with the EASE method. There were 294 nodes and 
1,588 edges in the protein‑protein interaction network, with 
the processes of hematopoietic cell lineage and porphyrin 
metabolism demonstrating a close association with pediatric 
ALL. Network enrichment analysis based on the PathExpand 
algorithm was revealed to be more powerful for the analysis 
of interaction networks in pediatric ALL compared with the 
EASE method. LIF and MLLT11 were identified as the most 
significantly DE genes in pediatric ALL. The process of 
hematopoietic cell lineage was the pathway most significantly 
associated with pediatric ALL.

Introduction

Acute lymphoblastic leukemia (ALL) is the most common 
malignant tumors in children, and accounts for >80% of all 
cases of acute leukemia (1). It is estimated that ~4% of chil-
dren <15 years of age develop ALL, which comprises over 
one‑quarter of all pediatric cancers (2). Therefore, pediatric 
ALL has attracted increasing attention in studies.

Rapid progress in molecular biology has aided in the 
selection of patients with specific poor prognostic genetic 
factors, and sensitive monitoring of minimal residual disease 
(MRD) has also contributed significantly to the manage-
ment of pediatric ALL (3). Previous studies have indicated 
that monitoring MRD constitutes an essential marker, and 
that detection of MRD, particularly at the end of induction 
and subsequent to treatment completion, was significantly 
predictive for the outcome of patients (4,5). In addition, the 
application of emerging DNA and RNA techniques, DNA 
methylation arrays and gene association studies has led to 
the identification of additional genetic and epigenetic altera-
tions in pediatric ALL (6,7). However, studies have focused 
on the effects of an individual gene and have not considered 
that genes not only encode as individual genes or proteins, but 
also as sub‑networks of interacting proteins within the larger 
human gene interaction network of the human genome (8). As 
a result, the exact mechanism of pediatric ALL remains to be 
elucidated.

Due to the difficulties of uncovering the pathogenesis of 
pediatric ALL via individual genes, the availability of large 
protein networks provides a method to partially address these 
challenges. Since large protein networks have become avail-
able for humans, a number of approaches have been used to 
extract relevant functional pathways based on the relevant 
databases (9). Subsequent to the measurement of sufficient 
protein interaction data, a large number of distinct functional 
pathways may be identified, which enables novel opportuni-
ties for elucidating pathways involved in major diseases and 
pathologies (10). In addition, numerous studies have hypoth-
esized more effective methods to combine gene expression 
measurements over groups of genes that fall within the path-
ways (11-13).

The aim of the present study is to investigate the genes 
and pathways associated with pediatric ALL using a combi-
nation of analysis methods. The current study pre‑processed 
downloaded datasets and identified differentially expressed 
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(DE) genes using the Bioconductor RankProd package (14). 
A co‑expression network was constructed using the empirical 
Bayesian approach based on DE genes in ALL. Protein‑protein 
networks were constructed and analyzed by enrichment and 
topological methods. In the enrichment analysis, the tradi-
tional expression analysis systematic explored (EASE) method 
of pathway analysis was compared with the network‑based 
algorithm PathExpand.

Materials and methods

Identification of gene expression datasets. The micro-
ar ray expression profiles of E‑GEOD‑26713  (15), 
E‑GEOD‑34670 and E‑GEOD‑42221 were obtained from the 
Array Express database (European Bioinformatics Institute, 
Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, 
UK), and were selected for identifying DE genes in pediatric 
ALL. E‑GEOD‑26713, which was included in the Human 
Genome U133 Plus 2.0 Array Platform (Affymetrix, Inc., 
Santa Clara, CA, USA), consisted of 7 normal controls and 
117  pediatric ALL patients. E‑GEOD‑34670, which was 
included in the Human Genome U133A Array Platform 
(Affymetrix, Inc.), consisted of 12  normal controls and 
25 pediatric ALL patients. E‑GEOD‑42221, which was also 
included in the Affymetrix Human Genome U133A Array 
Platform, consisted of 4 normal controls and 7 pediatric ALL 
patients.

Pre‑processing of datasets. The expresso function of the Affy-
Batch data structure was selected to control the quality of the 
gene microarray probe‑level data (16). The rma method was 
used to perform background correction (17), and the observed 
perfect match (PM) probes were modeled as the sum of a 
normal noise component (N), with a mean indicated by µ and a 
variance indicated by σ2, and an exponential signal component 
(S), with a mean indicated by α. To avoid the occurrence of 

negatives, the normal was truncated at zero. Since the observed 
intensity (O) had already been obtained, an adjustment was 
performed, as follows:
where a = s ‑ µ ‑ σ2α and b = σ. φ and Φ were the standard 
normal distribution density and distribution functions, respec-
tively. Mismatch (MM) probe intensities were not corrected by 
the rma method.

The quantile method, which was introduced by 
Bolstad et al, was used as the normalization method (18). The 
aim of the method is to provide each microarray chip with 
the same empirical distribution. The quantile normalization 
method uses the transformation x'i = F‑1 (G (xi)), where G is 
estimated by the empirical distribution of each array and F 
is estimated using the empirical distribution of the averaged 
sample quantiles. 

The mas method was used to perform PM/MM correc-
tion (16). The ideal MM is subtracted from PM in this method. 
The ideal MM is always less than the corresponding PM, and 
therefore the MM may be subtracted from the PM without the 
risk of negative values.

The medianpolish summarization method was also used in 
the present study (14). A multichip linear model was fitted to 

the data from each probe set. For the probe set k with i=1,…,Ik 
probes and data from j=1,…,J arrays, the following model is 
used:
where αi was the probe effect and βj was the log2 expression 
value.

In total, 20,109, 12,493 and 12,493 genes were identified 
subsequent to pre‑processing using the E‑GEOD‑26713, 
E‑GEOD‑34670 and E‑GEOD‑42221 datasets, respectively. 
The intersect function of the probe package was used to 
remove the genes identified by all three datasets, termed the 
common genes, in order to identify DE genes.

Analysis of DE genes. The RankProd package provides a novel 
and intuitive tool for detecting DE genes under two experi-
mental conditions (14). The package modifies and extends the 
rank product method proposed by Breitling et al to integrate 
multiple microarray studies from various platforms  (19). 
The significance of the detection was assessed using a 
non‑parametric permutation test, and the associated P‑value 
and false discovery rate (FDR) or percentage of false‑positive 
(pfp) were included in the output, in addition to the genes that 
were detected by user‑defined criteria. The RPadvance func-
tion was employed subsequent to pre‑processing to identify 
the DE genes associated with pediatric ALL in the datasets. 
pfp≤0.01 was considered to indicate a significantly DE gene. 
In addition, a log2 fold change >2 in genes was considered to 
indicate a DE gene that required additional investigation. 

Co‑expression network construction. The co‑expression 
network was constructed using the empirical Bayesian (EB) 
approach  (20), which provided a FDR‑controlled list of 
significant differential co‑expression (DC) gene pairs, without 
sacrificing power (21). An m by n matrix of expression values 
was produced, where m was the number of genes or probes 
under consideration and n was the total number of microarrays 
over all conditions. These values were normalized to obtained 
X. For a conditions array with length n, all members of this 
array should take values in 1‑K, where K was the total number 
of conditions. The ebPatterns function was used to define 
equal co‑expression/DC classes.

From X and the conditions array, intra‑group correlations 
were calculated for all p=m*(m‑1)/2 gene pairs. This step was 
accomplished through the makeMyD function and the resulting 
D matrix of correlations was p‑by‑K. The initializeHP func-
tion initialized the hyper parameters to identify the component 
normal mixture model that best fit the correlations of D subse-
quent to transformation. The zero‑step version did not perform 
any expectation maximization (EM) calculations and instead 
used the initial estimates of the hyper parameters to generate 
posterior probabilities of DC (22). After the selected EM func-
tion had finished its computations, the fit of the model chosen 
by the EM with the data was assessed visually using the prior 
diagnostic function. The crit.fun function of meta analysis was 
used to provide a soft threshold (FDR≤0.05) and simulations 
indicated that the soft threshold was desirable. 
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Construction of the protein‑protein interaction (PPI) network. 
To obtain the protein interaction data, a human PPI dataset 
obtained from the Search Tool for the Retrieval of Interacting 
Genes/proteins (23) was used. In addition, the PPI network was 
visualized using Cytoscape (24), a free software package for 
visualizing, modeling and analyzing the integration of bimo-
lecular interaction networks with high‑throughput expression 
data and other molecular states.

Enrichment analysis of PPI network and DE genes
Method. Two enrichment analysis methods, PathExpand and 
EASE, were used to determine the interaction networks and 
DE genes in the present study.

Enrichment analysis based on PathExpand. Java enrich-
ment of pathways extended to topology (JEPETTO) is a 
Cytoscape 3.1.0 plugin that performs integrative human gene 
set analysis (25). JEPETTO identifies functional associations 
between genes and known cellular pathways, and processes 
these associations using protein interaction networks and 
topological analysis. 

EnrichNet and PathExpand were used to perform the 
enrichment analysis. EnrichNet mapped the input gene set 
onto a molecular interaction network and, using a random 
walk  (26), scored the distances between the genes and 
pathways or processes in a reference database  (26). This 
network‑based association score (XD‑score) was relative to 
the average distance to all pathways and represents a deviation, 
either positive or negative, from the average distance. Path-
Expand mapped the input pathway/process onto the human 
PPI network and extended the network with proteins that were 
strongly associated with the pathway nodes and increased 
the pathway compactness by connecting the disconnected 
members (27). 

Enrichment analysis based on EASE. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) is a knowledge base for the 
systematic analysis of gene functions, linking genomic infor-
mation with higher order functional information (28). In the 
present study, KEGG pathway enrichment analysis for DE 
genes was performed using the online Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) (29). 

KEGG pathways with a P‑value <0.01 were selected based on 
the EASE test implemented using DAVID (30). The principle 
of EASE was as follows:

where n is the number of background genes, a is the gene 
number of one gene set in the gene lists, a + b is the number 
of genes in the gene list, including at least one gene set, a + c 
is the gene number of one gene list in the background genes. a 
may be replaced by a = a ‑ 1.

Topological analysis of the PPI network. Topological analysis 
was performed using TopoGSA (31). TopoGSA mapped the 
input gene set on an interaction network, computed the topolog-
ical signature and compared the signature with the signatures 
of the pathways and processes in a reference database. The 
degree of a node, which represented a gene or protein, was 

the average number of edges or interactions adjacent to this 
node. The degree quantified the local topology of each gene, 
by calculating the sum of the number of genes adjacent to the 
target gene. The shortest path analysis was the most basic 
function of the network analysis, and the Dijkstra algorithm 
was chosen to calculate the shortest path length (32). 

Results

Identification of DE genes. In total, 12,493 common genes were 
identified using the E‑GEOD‑26713, E‑GEOD‑34670 and 
E‑GEOD‑42221 datasets. The RankProd package was then 
used to analyze these genes. The DE genes were identified by 
assimilating a set of genes with the threshold of pfp≤0.01 and 
log2 fold change >2. In total, 398 DE genes in pediatric ALL 
were identified, and the top 100 DE genes were revealed in 
Table I. The most significantly DE genes were LIF, DEFA4, 
CEACAM8, S100A12 and ELANE.

Co‑expression network construction. The simplest method 
for identifying DC gene pairs was conducting pair‑specific 
tests for selected pairs within one condition, identifying 
those pairs that were strongly or significantly co‑expressed 
and defining the DC pairs as those co‑expressed. The EB 
approach provided a much‑required method for identifying 
DC pairs while controlling a specified FDR. In the present 
study, 627 pairs of associated genes and the expression values 
were obtained using the EB approach, and Cytoscape was 
used to construct a co‑expression network, which is shown in 
Fig. 1. The co‑expression network revealed the complicated 
regulation pattern of DE genes and consisted of 272 nodes 
and 602 edges. MLLT11 demonstrated the highest degree 
with 38, followed by ADA, with a degree of 35. SP110 and 
CD177 possessed the same degree of 22.

PPI network construction and analysis. The PPI network 
was constructed based on the DE genes of pediatric ALL. 
In the network, nodes indicated a DE gene and the edges 
between the nodes indicated the interaction of genes. The 
PPI network was comprised of 294 nodes and 1,588 edges, 
which consisted of 398 DE genes (Fig. 2). Among the nodes, 
TSPO exhibited the highest degree of 62, followed by 
TYROBP (degree, 62), ITGB2 (degree, 60), TLR2 (degree, 
55) and CTSS (degree, 54). 

In order to further study the PPI network, the JEPETTO 
plugin was selected to perform enrichment and topological 
analysis based on the interaction networks, to exhibit the 
target gene set within the interaction environment and to 
identify possible gene cofactors and topologically‑associated 
pathways and processes.

Enrichment analysis. The enrichment analysis found path-
ways significantly associated with the DE genes in terms of 
significance of interaction network distance between input 
gene set and pathways (XD‑score), reported in Table  II. 
Porphyrin metabolism (XD‑score=1.077), starch and sucrose 
metabolism (XD‑score, 0.788), nicotinate and nicotinamide 
metabolism (XD‑score, 0.563), galactose metabolism 
(XD‑score, 0.541) and hematopoietic cell lineage (XD‑score, 
0.536) were the top five pathways of pediatric ALL.
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Table I. Continued.

No.	 Gene

  51	 RAB31
  52	 MPO
  53	 GPR56
  54	 RNASE2
  55	 SCAI
  56	 ACSL1
  57	 CD1E
  58	 ALDH1A2
  59	 NCF4
  60	 ELOVL4
  61	 STOM
  62	 S100A9
  63	 IL1RN
  64	 CYBB
  65	 PGLYRP1
  66	 CTSS
  67	 CDA
  68	 RNASE3
  69	 TRAT1
  70	 HCK
  71	 PADI4
  72	 ORM1
  73	 LILRB2
  74	 IGLC1
  75	 CD14
  76	 LY86
  77	 RETN
  78	 CD1B
  79	 SKAP2
  80	 CFP
  81	 CTSG
  82	 CST7
  83	 SLC15A3
  84	 GPR65
  85	 B4GALT5
  86	 CD24
  87	 VNN2
  88	 GSAP
  89	 MAP1A
  90	 HCAR3
  91	 CD79B
  92	 ANPEP
  93	 CBFA2T3
  94	 ATHL1
  95	 MYO1F
  96	 BCL2A1
  97	 PF4
  98	 FGR
  99	 FCGR3B
100	 ARHGEF10

Table I. Top 100 differentially expressed genes in pediatric 
acute lymphoblastic leukemia.

No.	 Gene

  1	 LTF
  2	 DEFA4
  3	 CEACAM8
  4	 S100A12
  5	 ELANE
  6	 PPBP
  7	 LCN2
  8	 TSPAN7
  9	 CRISP3
10	 RCBTB2
11	 MLLT11
12	 S100P
13	 LPAR6
14	 CAMP
15	 ANXA3
16	 PLBD1
17	 CSTA
18	 MNDA
19	 MS4A3
20	 TOX
21	 ALOX5
22	 CLC
23	 MZB1
24	 BASP1
25	 LYN
26	 BPI
27	 C5AR1
28	 FCN1
29	 AZU1
30	 OLFM4
31	 FPR1
32	 SOX4
33	 MMP8
34	 PTGS2
35	 MS4A1
36	 GCA
37	 ARG1
38	 NCF2
39	 ADA
40	 PRTN3
41	 ITGAM
42	 TCN1
43	 CLEC7A
44	 PTX3
45	 VCAN
46	 CHI3L1
47	 MARCKS
48	 FAT1
49	 CSF2RB
50	 MMP9
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Topological analysis. Topological analysis identified pathways 
with a pattern of interactions that were most similar to those in 
the input gene set and visually compared the topological prop-
erties of these pathways (Fig. 3). As shown in Fig. 3, the most 
notable environmental information processing pathway was 
the calcium signaling pathway and ECM receptor interaction. 
In addition, these pathways are mainly involved in cellular 
processes (cell adhesion molecules, cell communication, and 
hematopoietic cell lineage), cell metabolism (pyrimidine 
metabolism, inositol phosphate metabolism and porphyrin 
metabolism) and genetic information processing (RNA poly-
merases and DNA polymerases).

Comparison of enrichment analysis between EASE and 
PathExpand. Comparison of the pathways in PathExpand of 
JEPETTO and EASE of DAVID clarified that JEPETTO was 
a more powerful and efficient tool compared with traditional 
methods. The KEGG pathway database is a collection of manu-
ally drawn pathway maps for metabolism, genetic information 
processing, environmental information processing, including 
signal transduction, and various other cellular processes and 
human diseases. Table III reports the 12 enriched terms of the 
DE genes, and reveals that the most significantly DE pathway 
was hematopoietic cell lineage (P<0.001).

The enrichment analysis result of the PPI network is partly 
reported in Table II. The total number of terms was 177, which 
was markedly higher compared with the results of KEGG. 
Thus, enrichment analysis of the PPI network identified novel 

Table II. Top 20 enrichment pathways of the protein‑protein 
interaction network.

Pathway or process	 XD‑score

Porphyrin metabolism	 1.07738
Starch and sucrose metabolism	 0.78793
Nicotinate and nicotinamide metabolism	 0.56282
Galactose metabolism	 0.54143
Hematopoietic cell lineage	 0.53555
Arachidonic acid metabolism	 0.4894
Amino sugar and nucleotide sugar metabolism	 0.47555
Asthma	 0.46713
Leishmaniasis	 0.45056
Primary immunodeficiency	 0.44834
Phagosome	 0.36488
Renin‑angiotensin system	 0.34249
Amoebiasis	 0.33596
Drug metabolism‑other enzymes	 0.33555
Fc gamma R‑mediated phagocytosis	 0.29335
Salivary secretion	 0.29058
Proximal tubule bicarbonate reclamation	 0.28617
Natural killer cell mediated cytotoxicity	 0.28415
B‑cell receptor signaling pathway	 0.27853
Lysosome	 0.27703

XD‑score, network‑based association score.

Figure 1. Co‑expression network based on the DE genes in pediatric acute lymphoblastic leukemia. The network contained 272 nodes and 602 edges. Nodes 
referred to the DE genes and the edges between nodes indicated the interaction of genes. MLLT11 exhibited the highest degree of 38. DE, differentially‑expressed.
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pathways that KEGG did not. The terms that were present in 
the DE gene and PPI networks were selected for additional 
analysis, as listed in Table III. Genes involved in the lyso-
some and asthma exerted a notable effect on the expression of 
ALL through KEGG analysis, but not through the JEPETTO 
analysis. 

Discussion 

In the present study, 398 DE genes were identified in pediatric 
ALL using the Bioconductor RankProd package, with the most 
significantly DE gene being LIF. The co‑expression network 
was constructed using the EB method, based on the identified 
DE genes, and contained 272 nodes and 602 edges. The PPI 
network was constructed and the network was analyzed using 
the JEPETTO plugin. Gene enrichment and topological anal-
yses revealed that hematopoietic cell lineage and porphyrin 
metabolism were the pathways most significantly associated 
with pediatric ALL. Comparison between the results of 
PathExpand and EASE revealed that PathExpand was able to 

identify more processes closely associated with pediatric ALL 
than EASE.

LIF is involved in the induction of hematopoietic differen-
tiation in normal and myeloid leukemia cells (33). LIF signaling 
regulates cellular processes to maintain the self‑renewal and 
pluripotency of cells (34). The protein encoded by this gene is 
a pleiotropic cytokine that performs roles in various systems, 
particularly in lymphoblastic leukemia (35). It has previously 
been reported that an increased level of LIF may be a factor 
in the development of Cushing's syndrome (CS) in patients 
with ALL, and central nervous system infiltration should be 
considered in leukemic patients that have developed CS (36). 
Therefore, the LIF gene was concluded to be closely associ-
ated with pediatric ALL.

The characterization, description and extraction of infor-
mation from networks have received attention in previous 
studies (37,38). The co‑expression network constructed using 
the EB method in the present study consisted of 272 nodes 
and 602 edges. The most significantly co‑expressed gene was 
MLLT11. MLLT11, which has been termed ALL1, HRX or 

Figure 2. PPI network of pediatric acute lymphoblastic leukemia DE genes. In total, 294 nodes and 1,588 edges were identified in the PPI network, which 
included 398 DE genes. The nodes refer to the DE genes and the edges between nodes indicated the interaction of genes. Out of the nodes, TSPO exhibited the 
highest degree (degree, 62), followed by TYROBP (degree, 62), ITGB2 (degree, 60), TLR2 (degree, 55) and CTSS (degree, 54). PPI, protein‑protein interaction; 
DE, differentially‑expressed.
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MLL, is located on chromosome 1 band q21 and has been 
demonstrated to be fused with a number of translocation 
partners in patients with leukemia (39). MLLT11 is a poor 
prognostic biomarker for pediatric acute myeloid leukemia, and 
MIR29B directly regulates MLLT11 expression (40). Complex 
duplication or translocation events of the MLLT11 locus have 
since been reported in hematological malignancies and high 
MLLT11 mRNA levels have been reported as markers of poor 
prognosis in leukemia and myelodysplastic syndromes (41,42). 
Therefore, it was concluded in the present study that 
MLLT11 exerts an important effect on pediatric lymphoblastic 
leukemia.

The JEPETTO plugin integrates three network‑centric 
human gene set analysis methods under the single interface 
of the Cytoscape 3.1.0 environment. This was then used to 
perform enrichment and topological analyses based on the 
interaction networks, and exhibit the target gene set within 
the interaction environment. Possible gene cofactors and 

topologically associated pathways and processes that were 
unlikely to be detected using traditional term‑based analysis 
were also identified (25). Comparison of the pathways identi-
fied by PathExpand and EASE confirmed that JEPETTO was 
a more powerful and efficient tool compared with traditional 
methods. As aforementioned, hematopoietic cell lineage and 
porphyrin metabolism were the pathways most significantly 
associated with pediatric ALL. Bonnet and Dick previously 
indicated that human ALL is organized as a hierarchy that 
originates from a primitive hematopoietic cell (43). It is possible 
that a hematopoietic cell lineage‑specific proteoglycan is 
involved in lymphoid cell adherence and activation (44), which 
is in accordance with the finding that cell adhesion molecules 
comprised a significant cellular process of pediatric ALL in 
the present study. However, bone marrow hematopoietic stem 
cells are likely to be distinguished by a distinct B‑cell lineage 
commitment (45). It has been reported that macrophages and 
dendrite cells are key components of cellular immunity and 

Figure 3. Comparative analysis of the topological properties of pathways in acute lymphoblastic leukemia. The red square next to the calcium signaling 
pathway represented the target network. ECM, extracellular matrix.

Table III. Comparison of pathways between expression analysis systematic explored and PathExpand.

Pathway or process	 EASE, P‑value	 PathExpand, q‑value

Hematopoietic cell lineage	 4.2345800 x 10‑7	 0.00021
Lysosome	 3.2443600 x 10‑4	 0.26732
Asthma	 2.0248050 x 10‑3	 0.32768
B‑cell receptor signaling	 9.7318830 x 10‑3	 0.18788
Natural killer cell mediated cytotoxicity	 9.8639250 x 10‑3	 0.06947
Starch and sucrose metabolism	 1.0380592 x 10‑2	 0.03252
Fc gamma R‑mediated phagocytosis	 1.0701949 x 10‑2	 0.17438
Cytokine‑cytokine receptor interaction	 2.0008775 x 10‑2	 0.17438
Primary immunodeficiency	 2.4587264 x 10‑2	 0.14603
Cell adhesion molecules	 2.5103397 x 10‑2	 0.39694
Leukocyte transendothelial migration	 3.4812818 x 10‑2	 0.17438
Galactose metabolism	 4.9005430 x 10‑2	 0.27336
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are considered to originate and renew from hematopoietic 
stem cells (46). Therefore, the results of the gene enrichment 
and topological analyses are valid and demonstrated they are 
associated with genes and pathways associated with pediatric 
ALL.

In conclusion, 398 genes were identified as DE genes in 
pediatric ALL, and the co‑expression and PPI networks were 
constructed based on these genes. Gene enrichment and 
topological analyses for the interaction networks identified the 
most significantly DE genes, such as MLLT11, and pathways, 
such as the hematopoietic cell lineage, associated with pedi-
atric ALL. The present study may provide further insight of 
the diagnosis and treatment of pediatric ALL at the molecular 
level.
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