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Abstract. The aim of the present study was to investigate 
the acceleration of pulmonary metastasis due to pulmonary 
injury caused by radiation treatment in a mouse model of 
breast cancer, in addition to determining the associated 
mechanism. The passive metastatic breast cancer model was 
used in radiation‑treated BALB/c mice. In total, 24 mice 
were randomly separated into two groups, with 12 mice per 
group, and the groups were treated with or without pulmo-
nary radiation. The survival time and variation of the weights 
of the lungs, spleen and liver were recorded. Lung metastasis 
was also evaluated, and chemokine (C‑X‑C motif) ligand 
12 (CXCL12)/chemokine (C‑X‑C motif) receptor 4 (CXCR4) 
expression was determined. The results revealed that the 
group with radiation‑induced pulmonary injury exhibited 
an increased incidence of pulmonary metastasis and shorter 
survival time compared with the mice without pulmonary 
radiation. The radiation‑treated group possessed an increased 
number of metastatic nodules in the lungs, but metastasis was 
not evident in the liver and spleen. The CXCL12/CXCR4 axis 
was markedly expressed and the expression was significantly 
increased subsequent to radiation compared with the expres-
sion in normal lung tissues. The present study demonstrated 
that radiation‑induced pulmonary injury may accelerate 
metastatic tumor growth and decrease the overall survival 
rate of the mice following in situ injection of tumor cells. 
Tumor localization and growth may have been favored by 
metastatic conditioning in the lung subsequent to radio-
therapy. The CXCL12/CXCR4 axis may affect key elements 
in the multistep process of metastasis induced by radiation 
injury.

Introduction

Radiation has previously been the main therapy in tumor 
treatment, and may prolong the survival time of patients 
by improving the local control rate of tumors (1). However, 
for patients with breast, esophageal, pulmonary and medi-
astinal lymph node cancer masses treated by radiation, 
radiation‑induced pulmonary injury frequently occurs (2,3). 
Patients may develop sub‑acute pneumonitis or late fibrosis 
subsequent to radiation exposure, which are the most 
common complications of radiotherapy that result in eventual 
mortality (3).

Following the treatment of patients by radiation, acute 
inflammation may be resolved with the recruitment of 
fibroblasts, resulting in interstitial collagen deposition and 
alveolar septal thickening during alveolar epithelial regen-
eration  (4). Endothelial dysfunction is mainly caused by 
vascular damage and endothelial barrier injury, which may 
activate various pathophysiological cascades  (5). Blood 
plasma permeates the damaged vascular barrier, and affects 
structural elements of vessels by activating the specific 
receptors  (6). This change in tissue homeostasis may, in 
turn, lead to a chronic inflammatory response that does not 
subside (7). Radiation has previously been found to change 
the cell phenotype and tumor microenvironment, and as a 
result, an increased number of invasive residual tumor cells 
demonstrated higher rates of metastasis (8). However, the 
pathophysiology of radiation induced pneumonitis is compli-
cated and remains unclear, although studies have indicated 
that inflammatory mediators affect genetic stability and 
cause persistent epigenetic alteration (9,10). This indicates 
that inflammatory components of the tumor microenviron-
ment affect fundamental mechanisms responsible for the 
generation of metastatic variants  (11). Therefore, it was 
hypothesized that radiation‑induced pulmonary injury may 
accelerate metastasis in the cancer patients that received 
chest radiation.

In the present study, the impact of radiation‑induced 
pulmonary injury on the lung metastasis of breast cancer was 
examined in mice. Furthermore, the present study aimed to 
reveal the mechanism by which radiation‑induced pulmonary 
injury accelerated the lung metastasis of breast cancer, and it 
has been hypothesized that there may be a novel method to 
prevent radiation‑induced pulmonary injury and metastasis 
subsequent to radiotherapy.
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Materials and methods

In vivo experiments. A total of 24 BALB/c inbred strains of 
female mice (age, 4‑6 weeks; weight, 16‑18 g) were purchased 
from the Experimental Animal Center of Wuhan University 
(Wuhan, Hubei, China). All animal experiments were approved 
by the Scientific Ethics Committee of Renmin Hospital of 
Wuhan University (approval no. KF 01‑143/03; Wuhan, Hubei, 
China). The animals were bred in a barrier‑free animal house 
in the First Clinical College of Wuhan University Laboratory 
Animal Center (Wuhan, Hubei, China). All mice were housed 
in accordance with the Guide for the Care and Use of Labora-
tory Animals (12).

The mice were randomly divided into the radiation and 
control groups, with 12 mice in each group. To generate the 
mammary cancer model, the mice in each group were injected 
with 3x105 mammary carcinoma 4T1 tumor cells (American 
Type Culture Collection, Manassas, VA, USA) in the right 
last mammary gland. For thoracic irradiation, the mice were 
anesthetized by intraabdominal administration of chloral 
hydrate (dose, 400 mg/kg in mice). The right chest in the 
radiation group was irradiated by 6 MV X‑rays from a linear 
accelerator (LINAC ; Elekta Oncology Systems, Ltd., Crawley, 
UK), at a dose of 9 Gy when tumors grew to measurable sizes, 
ranging between 3 and 5 mm in diameter, 7 days subsequent to 
tumor cell transplantation. The size of the treatment field was 
1.3x0.8 cm.

The body weights of the mice were tested every day and 
the survival rate was also evaluated. Following irradiation, 
spontaneous lung metastasis was scored  every week. The 
mice were sacrificed (three/week, every week) and the lungs 
were removed for weighing. Metastasis was assessed by 
observing the appearance of the lung, and the white round 
nodules on the surface of the yellowish lung were counted 
as metastatic lesions. The regions of the lungs were sepa-
rated and fixed in buffered formaldehyde (Tianjin Kermel 
Chemical Reagent Co., Ltd, Tianjin,China) for immunohis-
tochemical analysis.

Immunohistochemistry for detecting the chemokine (C‑X‑C 
motif) ligand 12 (CXCL12)/chemokine (C‑X‑C motif) receptor 
4 (CXCR4) axis. At the indicated times subsequent to irradia-
tion, 3 or 4 mice from each group were sacrificed by cervical 
dislocation, 1, 2, 3 or 4 weeks following irradiation. Sections 
of the lungs were formalin‑fixed and paraffin‑embedded. 
Coronal sections of the lung were sliced into 5‑mm sections, 
and the slides with the largest cross section were stained 
with hematoxylin and eosin. The slides were evaluated by 
a pathologist without knowledge of the treatment admin-
istered. Immunohistochemical analysis of CXCL12  and 
CXCR4 expression was performed according to the routine 
protocol (13). Briefly, 4‑5‑µm sections were de‑paraffinized 
in xylene and rehydrated through serial solutions of ethanol, 
consisting of 95, 90, 80  and 70% ethanol. Subsequent to 
antigen retrieval and blockage of endogenous peroxidase 
activity, the sections were incubated with polyclonal mouse or 
rabbit anti‑CXCL12 (#ab18919; 1:1,000; Abcam, Cambridge, 
UK) and monoclonal anti‑CXCR4  (#ab124824; 1:1,000; 
Abcam) antibodies at 4˚C for 8‑12 h, followed by detection 
using 3,3'‑diaminobenzidine coloration.

Statistical analysis. Statistical analysis was performed using 
SigmaStat software (Jandel Scientific, San Rafael, CA, USA). 
All results are presented as the mean ± standard deviation of 
at least six independent experiments. The data of the groups 
were compared using non‑paired t‑test. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Development of lethality following thoracic irradiation. 
Firstly, the effect of various doses of radiation on the mice was 
investigated. Following radiation treatment at a dose of 9 Gy, 
the mice did not succumb to pneumonitis, but succumbed, 
in general, 4‑5 weeks later due to metastasis. In addition, 
sub‑acute pneumonitis occurred at 2 weeks after irradiation 
and progressively increased over the next 2  weeks. Lung 
metastasis began to appear at 3 weeks. Finally, the possibility 
that radiation‑induced pulmonary injury may decrease the 
survival time in mice was investigated. A passive metastatic 
model was used in the radiation‑treated BALB/c mice, and the 
mice that were intrahepatically injected with 4T1 cells 7 days 
subsequent to radiation treatment demonstrated a shorter 
median survival time of 21 days, compared with 27 days in 
the mice without radiation treatment. The survival time of 
the radiation‑treated mice was significantly shorter compared 
with the survival time of untreated mice (Fig. 1). In addition, 
the effect on survival was reflected in a statistically signifi-
cant reduction in body weight in the radiation‑treated mice 
compared with untreated mice (P<0.05; Fig. 2).

Metastasis formation. It was hypothesized that the mice with 
radiation‑induced pulmonary injury may possess an increased 
risk of lung metastasis and associated cancer progression, which 
may contribute to the shorter survival time in radiation‑treated 
mice. To test this hypothesis, mice were sacrificed weekly 
subsequent to the administration of radiation. Lung metastatic 
progression was evaluated by measuring the lung wet weight, 
counting the lung nodules and histological examination. All 
mice that succumbed demonstrated an extensive tumor burden 
in the lungs, but evident metastasis was not observed in other 
organs, including the liver and spleen, indicating that the mice 
succumbed to lung metastasis (Fig. 3). Histological examina-
tion revealed the infiltration of inflammatory cells in the early 
period subsequent to radiation and the presence of lung meta-
static nodes at 3 weeks (Fig. 4). The present results provide 
evidence that the mice with radiation‑induced pulmonary 
injury may demonstrate an increased risk of lung metastasis.

Expression of the CXCL12/CXCR4 axis in lung tissues of mice. 
The contribution of the levels of the CXCL12/CXCR4 axis 
to the metastatic activity of mammary carcinoma 4T1 cells 
was investigated. It has been reported that the activation of 
the CXCL12/CXCR4  axis was important in the develop-
ment of radiation‑induced pulmonary fibrosis  (14). The 
CXCL12/CXCR4  axis participated in the vascularization 
induced by radiation and was closely associated with the 
recurrence and metastasis of breast cancer subsequent 
to radiation. In the present study, the expression level of 
CXCL12/CXCR4  in treated mice increased markedly 
following radiation and was significantly increased compared 
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Figure 1. Survival time of mice treated with and without radiotherapy. The survival time of radiation‑treated mice (n=12) was significantly shorter compared 
with the survival time of the untreated mice (n=12, *P<0.05).

Figure 2. Changes in the body weight of mice treated with and without radiotherapy. The weight loss of radiation‑treated mice was evident. In the first 3 days, 
weight loss may be associated with acute radiation injury. In days 12‑30, lung metastasis may have been responsible for the weight loss. At the end of the study, 
the in situ tumor demonstrated extremely rapid growth, and therefore the weight was increasing.

Figure 3. Weight variation of the lung, spleen and liver. Compared with the spleen and liver, the weight of the lungs in radiation‑treated mice was not different 
from the untreated weight in the first two weeks, but in the later two weeks, the lung weight of mice increased further subsequent to lung radiation. This may 
be associated with lung metastasis.*P<0.05.
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with normal lung tissues (Fig. 5). The present results indicate 
that the CXCL12/CXCR4 axis was associated with pulmonary 
metastasis accelerated by radiation‑induced pulmonary injury.

Discussion

To the best of our knowledge, the present study demonstrated 
for the first time that radiation‑induced pulmonary injury 
may accelerate pulmonary metastasis in a passive metastatic 
breast cancer BALB/c mouse model. This finding is supported 
by studies that have revealed that irradiated fibroblasts accel-
erate the invasive growth of non‑irradiated adenocarcinoma 
cells  (15,16). The aforementioned irradiated lung‑induced 
phenomena were elicited through a bystander mechanism 

involving the interaction of cancer and normal cells, as the 
tumor itself was not irradiated. This indicated that the effects 
of radiation on cancer and normal cells should be considered 
in cancer radiotherapy. In the present study, the precise under-
lying mechanism of the aforementioned radiation‑induced 
pulmonary metastasis phenomena was unclear. It was 
hypothesized that the activation of surrounding stromal cells 
and recruitment of various inflammatory cells subsequent to 
radiation was involved in the multistep process of invasion and 
metastasis. In addition to promoting carcinogenesis, myelo-
monocytic cells and the mediators of these cells affect the key 
components of the multistep process of metastasis, including 
the interaction with the extracellular matrix and the construc-
tion of a pre‑metastatic niche (17).

Figure 4. Lung node and hematoxylin and eosin pathological section. (A) The lung nodes of radiation‑treated mice were increased in size compared with the 
nodes of untreated mice. (B) Comparison between the lung nodes of radiation‑treated and control mice. *P<0.05. (C) In the same field of view, an increased 
number of nodes were identified in the radiation‑treated mice.

Figure 5. Expression of the CXCL12/CXCR4 axis in the lung tissues of mice. The expression of CXCL12/CXCR4 in the treated mice markedly increased and was 
significantly increased compared with normal lung tissues (P<0.05). CXCL12, chemokine (C‑X‑C motif) ligand 12; CXCR4, chemokine (C‑X‑C motif) receptor 4.
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Radiation‑induced lung injury may be divided into two 
phases, consisting of an acute inflammatory phase and a 
late fibrotic phase (18,19). The histopathological changes to 
the irradiated lung have been well described (18,20,21). The 
inflammatory phase is generally characterized by alveolar cell 
depletion and inflammatory cell accumulation (4,22). This 
process initiated the activation of specific leukocyte subsets to 
produce important biological mediators, including cytokines, 
growth factors and chemokines, which participate in the 
majority of the aspects of the inflammatory response (4). Bone 
marrow derived cells are chemotactically recruited to sites 
of radiation tissue injury and fibroblasts are directly involve 
in the fibrotic pathway. The fibrotic phase includes fibroblast 
proliferation, collagen accumulation and alveolar septal thick-
ening (22). It was hypothesized that the acute inflammation 
during the early phase lead to the later fibrosis phase, but a 
direct and causal association between early acute inflammation 
and the later fibrotic phase has not been established (23,24). 
The recruitment and activation of monocytes, macrophages 
and lymphocytes is a key component of radiation‑induced 
lung injury, and chemokines are important mediators in the 
pathogenesis of lung injury in several environments (25,26). 
Previous studies have reported that the expression of chemo-
kines and chemokine receptors is elevated in tumor cells, 
fibrosis‑sensitive mice and patients that have undergone radio-
therapy (27‑29). In addition, blockade of the chemokine ligand 
and the associated receptors may prevent lung inflammation 
and fibrosis in C57BL/6J mice that received thoracic radia-
tion (30). Therefore, it was hypothesized that the expression of 
specific chemokines and chemokine receptors during the acute 
inflammatory phase induced by radiation may result in the 
recruitment and activation of lymphocytes and macrophages, 
which then contribute to the late fibrotic phase.

It has previously been reported that activation of the 
chemotactic receptor CXCR4  by the ligand CXCL12  was 
important in the development of radiation‑induced pulmo-
nary fibrosis  (14). Subsequent to radiation‑induced injury, 
bone marrow‑derived fibroblast progenitor cells, also termed 
fibrocytes, which express CXCR4, are recruited to regions of 
fibrosis in the lung (25,31). A neutralizing antibody against 
CXCL12 may prevent the recruitment of circulating fibrocytes 
to radiation‑damaged lung and suppress the development of 
fibrosis. The CXCL12‑CXCR4  axis was also reported to 
participate in the vascularization induced by radiation (32), 
in addition to being closely associated with recurrence and 
metastasis subsequent to radiation (33,34). Previous studies 
have demonstrated that stromal fibroblast fractions extracted 
from a number of invasive human breast carcinomas were 
more able to promote the growth of mammary carcinoma cells 
and to enhance tumor angiogenesis compared with the compa-
rable cells derived from outside of these tumor masses (35,36). 
Furthermore, high concentrations of CXCL12  gradients 
in the lung, liver and lymph nodes more easily attracted 
circulating CXCR4‑expressing tumor cells to such sites (37). 
These findings are not unique to breast cancer and were also 
found in other types of tumors (38‑42). According to previous 
findings, the CXCL12/CXCR4 axis participates in the patho-
physiological process of metastasis in at least 23  types of 
tumors (43). High levels of the CXCR4 expression by various 
types of human carcinoma cells are clinically associated with 

a poor prognosis (44). Therefore, it was hypothesized that the 
CXCL12/CXCR4 axis played an important role in the accel-
eration of the metastasis of breast cancer due to radiation. As 
a result, the expression levels of CXCL12/CXCR4 were tested 
in treated mice, and were found to be increased subsequent 
to radiation, compared with normal lung tissues. To a certain 
extent, this result confirmed the present hypothesis.

In summary, radiation‑induced pulmonary injury leads to 
a chronic inflammatory response, which produces an eligible 
pre‑metastatic microenvironment for cancer cells. It is possible 
that the CXCL12/CXCR4 axis affects key elements in the 
multistep process of invasion and metastasis. However, addi-
tional studies are required to validate the exact mechanism.
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