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Abstract. Glioblastoma multiforme (GBM) is the most 
common and most lethal primary brain tumor, with tragi-
cally little therapeutic progress over the last 30 years. Surgery 
provides a modest benefit, and GBM cells are resistant to 
radiation and chemotherapy. Despite significant development 
of the molecularly targeting strategies, the clinical outcome 
of GBM patients remains dismal. The challenges inherent in 
developing effective GBM treatments have become increas-
ingly clear, and include resistance to standard treatments, the 
blood‑brain barrier, resistance of GBM stem‑like cells, and 
the genetic complexity and molecular adaptability of GBM. 
Recent studies have collectively suggested that certain antipsy-
chotics harbor antitumor effects and have potential utilities as 
anti‑GBM therapeutics. In the present review, the anti‑tumor-
igenic effects and putative mechanisms of antipsychotics, and 
the challenges for the potential use of antipsychotic drugs as 
anti‑GBM therapeutics are reviewed.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common and 
most malignant type of brain cancer. Despite extensive efforts 
over the past decades, the prognosis for GBM patients remains 
dismal. The median survival time of GBM patients is currently 
14.6 months from diagnosis, which is only a few months longer 
compared with 30 years ago. The five‑year overall survival 
rate of GBM is <10% (1). Currently, the standard‑of‑care for 
the majority of GBM patients is a combination of surgical 
resection, radiation and chemotherapy with temozolomide 
(TMZ) (2‑4). However, this aggressive treatment provides only 
palliation.

There are several factors to limit clinical improvements 
against this devastating disease. First, molecularly targeted 
agents with demonstrated therapeutic benefits in other 
types of cancer have shown minimal or no efficacy against 
GBM (5). For example, bevacizumab, a neutralizing antibody 
against vascular endothelial growth factor, is effective in 
treating certain cancers, including metastatic colon cancer 
and non‑small cell lung cancer (NSCLC). By contrast, recent 
large‑scale clinical trials with bevacizumab have achieved 
no improvement in the overall survival of newly diagnosed 
GBM patients (6,7). Epidermal growth factor receptor (EGFR) 
is frequently activated in GBM, as 40‑60% of GBM tumors 
have genomic amplifications and/or activating mutations of the 
EGFR gene. The first‑generation small‑molecule EGFR inhib-
itors, such as gefitinib, have performed poorly against GBM 
in several clinical trials (8‑10). While the Bcr‑Abl‑targeting 
drug imatinib revealed notable efficacy for patients with 
chronic myeloid leukemia, clinical trials of imatinib in GBM 
have failed to demonstrate any therapeutic advantages (11‑13). 
Finally, dasatinib, a platelet‑derived growth factor and Src 
inhibitor failed to show benefit in recurrent GBM patients, 
either alone or in combination with bevacizumab (14).

The low distribution of systemically administrated chemo-
therapeutics within the brain represents a significant challenge 
in treating GBM. The blood‑brain barrier (BBB) restricts 
delivery of therapeutic compounds, particularly for large 
molecules and hydrophilic drugs. The BBB can be compro-
mised at the core of a GBM tumor, however, it is generally 
intact at the invading edges of the tumor. In addition, other 
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factors, such as a distinct immune system in the brain and 
interstitial pressure, limit the retention of drugs in the tumor. 
Concentrations of systemically administered antineoplastic 
drugs were reported to be significantly low in glioma tissues 
compared with blood (15). Thus, certain drugs that may other-
wise be effective against GBM fail to show efficacy simply 
due to their low permeabilities or low retention capacities in 
the brain.

Recently, the strategies of utilizing the existing drugs 
for other diseases, known as ‘drug repositioning’ or ‘drug 
repurposing,’ have been extensively investigated as a method 
of drug discovery. The use of existing FDA‑approved drugs 
can bypass or shorten critical steps of drug development, 
such as chemical optimization and toxicology testing, thereby 
resulting in a shorter time frame for clinical translation (16).

Antipsychotics deserve particular scrutiny as potential 
therapies for GBM. Antipsychotic drugs such as pimozide, 
N‑methyl‑D‑aspartate receptor (NMDAR) agonists/antago-
nists, γ‑aminobutyric acid inhibitors and valproic acids 
are frequently prescribed for the management of various 
psychiatric disorders, including schizophrenia, acute/chronic 
psychosis, delusional disorders, depression and anxiety 
disorder (17‑20). These drugs have a long history of clinical 
use and tolerable safety in humans, and readily penetrate the 
BBB, which is particularly important for GBM (21). In the 
present review, an overview of various preclinical and clinical 
studies testing the efficacy of antipsychotics for the treatment 
of human malignancies, including GBM, is presented and the 
putative mechanisms for the anti‑neoplastic actions of these 
antipsychotic drugs is reviewed.

2. Anti‑neoplastic effects of antipsychotics

Antipsychotic drugs have been used for decades in various 
psychiatric clinical settings, and have tolerable or low toxici-
ties and well‑characterized profiles of sequelae. Due to the 
established safety of these drugs, combined with their proven 
ability to cross the BBB, antipsychotic medications are increas-
ingly being tested for efficacy in patients with various cancers, 
including malignant brain tumors. Furthermore, epidemio-
logical studies with diverse patient populations have reported 
significantly lower incidences of cancer among patients with 
schizophrenia compared with the general population (22‑29). 
These findings support the possibility that antipsychotics may 
partially ameliorate the risk of cancer development, although 
molecular elucidations are yet to be accomplished.

Valproic acid has been approved for the treatment of 
psychiatric disorders such as bipolar disorder and schizo-
phrenia. The anti‑neoplastic properties of valproic acid have 
been demonstrated in leukemia and several solid tumors. One 
of the most well‑studied molecular targets of valproic acid is 
the histone deacetylases (HDACs). Histone acetylation and 
deacetylation are epigenetic mechanisms that control gene 
expression via histone modification leading to the changes in 
chromatin structure. The overexpression and increased activity 
of HDACs have been reported in the stages of tumor initiation 
and progression (30‑34).

Another antipsychotic drug that has shown encouraging 
results in several different types of cancer is pimozide. 
Pimozide has been used to treat psychiatric disorders for over 

50 years. Pimozide inhibits the proliferation of breast cancer 
cells and significantly increases the sensitivity of tumor cells 
to γ‑irradiation (35‑37). The observed growth inhibition and 
radio‑sensitization are believed to be due to inhibition of 
σ‑receptors, which are atypical G protein‑coupled receptors 
(GPCRs). Additionally, pimozide has been shown to exhibit 
promising activity in patients with metastatic melanoma (38). 
Pimozide also inhibits the activity of a deubiquitination 
complex, ubiquitin‑specific protease 1 (USP1)/USP‑associated 
factor 1 (39).

In addition, a number of psychiatric drugs have shown 
promising results in pre‑clinical studies, although they have not 
yet demonstrated efficacy in human clinical trials. For example, 
the antipsychotic drug thioridazine selectively impaired the 
in vivo tumorigenicity of neoplastic pluripotent stem cells (40). 
It was reported that several antipsychotics, including phenothi-
azines, have anti‑proliferative properties against various tumor 
cell lines, including neuorblastoma, non‑small cell lung cancer, 
glioma and melanoma, which indicates that antipsychotics 
may be useful for adjuvant chemotherapeutic regimens (41). 
Drori et al showed that antipsychotics such as reserpine notably 
potentiated taxol‑  or anthracycline‑associated cytotoxicity 
in human nasopharyngeal carcinoma cells  (42). In another 
study, Haloperidol, a typical antipsychotic drug, augmented 
the cytotoxic effect of vinblastine, idarubicin and cisplatin in 
vinblastine‑resistant human leukemia cells (43). 

Wiklund  et  al tested the anticancer properties of six 
antipsychotics: Reserpine, chlorpromazine, haloperidol, pimo-
zide, risperidone and olanzapine. All these drugs, with the 
exception of risperidone, showed selective growth inhibition 
of various cancer cell lines derived from lymphoblastoma, 
neuroblastoma, NSCLC and breast adenocarcinoma (44). In 
another multi‑drug screening study, the antipsychotic drug 
class of the phenothiazines, consisting of chloropromazine, 
levomepromazine, promethazine, trifluoperazine and thio-
ridazine, displayed notable anti‑proliferative and selective 
cytotoxic properties against various leukemia cell lines (45). 
Evidence to justify further investigation of drugs that modulate 
muscarinic receptor signals as anti‑neoplastic therapies came 
from a recent study that examined the role of the autonomic 
nervous system (i.e. sympathetic and parasympathetic signals) 
in the development of cancer  (46). The NMDAR pathway 
contributes to the pathogenesis of multiple human cancers, 
including pancreatic ductal carcinoma, breast cancer, ovarian 
cancer and glioma, and is associated with the poor prognosis 
of patients with those cancers. For example, MK‑801, an 
NMDAR antagonist and potential antidepressant, displayed 
therapeutic efficacy in cultured cancer cells and tumor‑bearing 
mice (47). In summary, a series of studies have reported the 
anti‑tumorigenic effects of various antipsychotics, although 
further investigation is required to determine the precise 
molecular targets and mechanisms of these drugs.

3. Antipsychotics as anti‑GBM therapeutics

Valproic acid was first tested 15 years ago to evaluate its 
efficacy against pediatric malignant gliomas (33). Since then, 
several studies have provided support to the hypothesis that 
valproic acid derivatives are a promising drug class for the 
treatment of GBM. Valproic acid attenuated the growth of 
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glioma cells by inhibiting angiogenesis (48) and inducing 
differentiation (49). In addition, valproic acid increased the 
sensitivity of glioma cells to conventional GBM therapies, 
including TMZ and γ‑radiation (50,51).

As implied by its name, GBM harbors profound 
intra‑tumoral heterogeneity. The cancer stem cell hypothesis 
posits the cellular hierarchy in which a subpopulation of 
highly tumorigenic, stem‑like cells resides at the apex. While 
certain cancers may not follow cancer stem cell models, 
numerous studies support that the fact that the majority of 
GBMs harbor GBM stem‑like cells (GSCs). GSCs share a 
number of characteristics with normal neural stem/progen-
itor cells, most notably a self‑renewal capacity and potential 
for multi‑lineage differentiation. As GSCs are enriched with 
tumor initiation/propagation capacities, and as they are 
phenotypically resistant to radiotherapy and chemotherapy, 
potential curative GBM therapies may require the targeting 
of GSCs, as well as the bulk of the tumor (52‑61). Consid-
ering the cancer stem cell concept, Diamandis et al  (62) 
screened 1,267 chemical compounds to identify molecules 
that inhibit the clonogenic growth of neural cells  (59). 
Notably, several potent compounds were identified through 
this screen, including a number of dopamine receptor 
modulators (butaclamol, apomorphins and flupenthixol), an 
NMDA receptor antagonist (lifenprodil), an opioid receptor 
agonist (carbetapentane) and serotonin receptor agonists (62). 
Another chemical screening using embryonic stem cells and 
its derivative cancer cells showed that a dopamine receptor 
antagonist potently impaired the tumor formation capability 
of cancer stem cells (40). The phenothiazine class includes 
drugs such as thioridazine, fluphenazine or perphenazine, and 
is known to antagonize dopamine signaling. The anti‑glioma 
effects of phenothiazines have been reported  (63). Tricy-
clic neuroleptic drugs, such as chlorpromazine, promoted 
autophagic cell death in the PTEN‑null U‑87MG glioma cell 
line by inhibiting the PI3K/AKT/mTOR pathway (64). In 
addition, antipsychotics, such as paliperidone, pimozide and 
risperidone, which are selective 5‑HT7 inhibitors, have been 
studied for their potential use as an adjuvant chemotherapy in 
the management of GBM (65).

4. GPCR blockers in cancer

GPCRs transmit multiple biological signals through a hetero-
trimeric G protein associated with the inner surface of the 
plasma membrane (66). The heterotrimeric G proteins, which 
are composed of Ga (G‑α), Gb (G‑β) and Gc (G‑γ) subunits, 
are bound to guanosine diphosphate (GDP) when they are 
inactive. Upon activation, GDP is replaced by guanosine 
triphosphate (GTP), resulting in subunit dissociation into 
a βγ dimer and the GTP‑bound α‑monomer  (67). The Ga 
subunit is classified into four families: Gas, Gai, Gaq and Ga12. 
Each Ga family can transmit different downstream signals, 
thereby affecting diverse biological functions (68). Despite 
the biological significance of GPCRs in tumorigenesis, selec-
tive GPCR‑targeted anticancer drugs are few. The rarity of 
GPCRs as cancer therapies is rather striking considering that 
GPCRs are targeted by ~25% of top‑selling drugs, including 
β‑blockers, antipsychotics and analgesics (69). Typical anti-
psychotics, such as chlopromazine and haloperidol, were 

discovered in the 1950s. Although they are clinically effec-
tive, side‑effects such as extrapyramidal symptom (EPS) and 
hyperprolactinemia have limited their chronic application. 
The more recently developed ‘atypical’ antipsychotics, such 
as clozapine, show comparable efficacy to the typical drugs, 
but without EPS (70,71).

The majority of antipsychotic drugs bind to dopamine 
receptors, antagonizing this signaling pathway in striatal 
cells  (72). However, antipsychotics also have significant 
affinity for other GPCRs, including serotonin 5‑HT1A, 
α‑adrenergic receptors and muscarinic receptors  (73). 
Atypical antipsychotics regulate Gi and Gq activity by modu-
lating the function of serotonergic 2AR and the Gi‑linked 
GPCR metabotropic glutamate  2  receptor heterodimeric 
complex (74). A cell‑based functional assay to identify the 
pharmacological profile of 40 clinically useful antipsychotics 
revealed that almost all antipsychotics are potent inverse 
agonists of the 5‑HT2A receptor, a monoamine GPCR, as well 
as effective dopamine D2 receptor antagonists (75). A recent 
study demonstrated that clozapine and risperidone have 
activity at more than a dozen monoamine GPCRs (76). These 
findings collectively indicate that antipsychotics have high 
affinity and selectivity for GPCRs, but have low specificity 
among the GPCR superfamily.

Abnormal activation of GPCRs by unusually high 
levels of bio‑active lipids, such as lysophosphatidic acid 
or sphingosine‑1‑phosphate, leads to expression of various 
cancer‑associated genes involved in cell survival, prolif-
eration, migration and angiogenesis  (77‑79). In addition, 
endothelin receptors, GPCRs that are upregulated in 
several types of cancer, regulate cell survival, angiogenesis, 
invasion, metastasis and epithelial‑to‑mesenchymal transi-
tion (80). Seven‑transmembrane Frizzled family receptors 
and the co‑receptor lipoprotein receptor‑related protein are 
other GPCRs that initiate signaling within the canonical Wnt 
pathway, thus contributing to the development and progres-
sion of cancer (81‑83). The Wnt/β‑catenin signaling pathway 
plays a crucial role in the development of GBM by promoting 
glioma proliferation, invasion and GSC formation (84‑86). 
Hedgehog (Hh) signaling is another key component in the 
tumorigenesis of multiple malignancies (87,88). Smoothened 
(Smo), a seven‑span transmembrane GPCR, is a key trans-
ducer of Hh signaling (89). Aberrant Hh pathway activation 
by the mutation of Smo is associated with the development of 
several cancers, including basal cell carcinoma and medul-
loblastoma (90). Ligand‑dependent Hh pathway activation 
is involved in the tumorigenesis of gastrointestinal cancer, 
prostate tumors and glioma (91,92).

CXC chemokine receptors are another family of GPCRs 
that are indicated to be involved in tumorigenesis. Besides 
their roles in leukocyte chemotaxis, CXC chemokine 
receptors play an important role in cancer cell survival, prolif-
eration and angiogenesis (93‑96). The prominent expression 
of CXCR4, a G protein‑coupled chemokine receptor, and its 
ligand, stromal cell‑derived factor‑1α, result in the activation 
of MAPK and Akt, leading to enhanced survival in glioma 
cells (97). In addition, overexpressed CXCR4 is associated 
with an invasive phenotype in malignant glioma (98). Addi-
tionally, glioma stem‑like cells promote angiogenesis via the 
CXCR4/CXCL12 signaling pathway (99).
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Amongst the GPCRs, dopamine receptors are particu-
larly notable target molecules for therapies aimed at cancer 
stem cells (40). Dopamine receptors are predominant in the 
central nervous system (CNS), and participate in various 
neurological processes, including motivation, cognition, 
memory and fine motor control (100). A recent study demon-
strated that polymorphism of the dopamine receptor D2 is 
associated with the colorectal cancer risk, suggesting that an 
analogous situation could apply in CNS tumorigenesis (101). 
On the other hand, dopamine signaling enhances the effi-
cacy of anticancer therapy in breast and colon cancer cell 
lines (102). In addition, the balance of peripheral dopamine 
signals is critical in tumor growth (103). Signaling via 5‑HT7, 
a relatively specific GPCR within the human nervous system, 
promotes the activation of extracellular signal‑regulated 
kinases and STAT3, resulting in tumor survival and prolif-
eration (65).

5. Conclusion

The dismal prognosis of GBM highlights the urgent require-
ment for the development of drugs with novel mechanisms of 
action. Of all the classes of drugs that affect brain function, 
antipsychotics have the longest history of clinical use, and 
comprise some of the most frequently prescribed drugs in 
the world. A growing body of evidence suggests that several 
antipsychotics display significant anti‑neoplastic effects on 
multiple human cancers. For example, valproic acid attenu-
ates cancer cell proliferation by inhibiting HDACs. Therefore, 
antipsychotic drugs may represent strong candidates for 
chemotherapeutic adjuvants in the treatment of GBM due to 
their clinically proven safety and accumulation in the brain, 
along with their anti‑neoplastic efficacy.

One potential concern with the use of antipsychotics in 
cancer treatment is the possibility of unexpected adverse 
effects. Despite their long history of clinical application and 
a reliable safety profile, typical and atypical antipsychotics 
are known to cause a wide range of side‑effects (104). The 
majority of antipsychotics induce CNS side‑effects, such as 
sedation, headaches, dizziness and diarrhea in up to 50% of 
patients (105). More seriously, the extrapyramidal side‑effects 
of typical antipsychotic drugs, including akathisia, dystonia 
and drug‑induced secondary Parkinsonism, may prevent 
their chronic use (71). Second‑generation atypical antipsy-
chotics can also cause metabolic problems, such as obesity 
and type II diabetes (106). Thus, optimization of drug struc-
tures may be required to avoid adverse side‑effects if the 
anti‑tumorigenic effect of a given drug is proven.
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