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Analysis of PI3K pathway components in human cancers
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Abstract. Recent advances in genomics, proteomics, cell
biology and biochemistry of tumors have revealed new path-
ways that are aberrantly activated in numerous cancer types.
However, the enormous amount of data available in this field may
mislead scientists in focused research. As cancer cell growth
and progression is often dependent upon the phosphoinositide
3-kinase (PI3K)/AKT pathway, there has been extensive
research into the proteins implicated in the PI3K pathway.
Using data available in the Human Protein Atlas database, the
current study investigated the expression of 25 key proteins that
are known to be involved with PI3K pathway activation in a
distinct group of 20 cancer types. These proteins are AKTIP,
ARPI, BAD, GSK3A, GSK3B, MERTK-1, PIK3CA, PRRS,
PSTPIP2,PTEN, FOX1,RHEB,RPS6KB1,TSC1,TP53,BCL2,
CCNDI1, WFIKKN2, CREBBP, caspase-9, PTK2, EGFR, FAS,
CDKNI1A and XIAP. The analysis revealed pronounced expres-
sion of specific proteins in distinct cancer tissues, which may
have the potential to serve as targets for treatments and provide
insights into the molecular basis of cancer.

Introduction

Phosphoinositide 3-kinases (PI3Ks) are an evolutionarily
conserved family of lipid kinases that promote various cellular
functions, including cell growth, metabolism and survival (1,2).
The lipid second messengers that are generated in this reaction
interact with specialized lipid-binding domains that are present
in a wide variety of signaling molecules. PI3Ks may be classi-
fied into one of three classes, each of which possesses different
structures and characteristics (3). The PI3K pathway may be
activated by upstream receptor tyrosine kinases, leading to the
generation of phosphatidylinositol-3.4,5-trisphosphate (PIP;) via
the phosphorylation of phosphatidylinositol-4,5-bisphosphate.
The phosphatase and tensin homolog (PTEN) may dephosphor-
ylate PIP;, which terminates PI3K signaling. The accumulation
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of PIP; activates a signaling cascade, commencing with the
phosphorylation (activation) of the protein serine-threonine
kinase AKT (also known as protein kinase B) at threonine 308
by phosphoinositide-dependent kinase 1. Activation of AKT
serves a crucial role in essential cellular functions, including
cell proliferation and survival, via the phosphorylation of a
variety of substrates (Fig. 1) (4).

Although the PI3K/AKT pathway has been extensively inves-
tigated in detail in distinct in vitro and in vivo systems (5), its role
in molecular targeted therapy for cancer required further study.
Molecular targeted therapies (e.g. inhibitors of target molecules
with critical roles in tumor growth and progression) have been
investigated in various cancer models, particularly hematological
malignancies, such as leukemia, lymphoma and myeloma, due to
the ease in obtaining samples for examination (6). The PI3K/AKT
pathway has been reported to be activated in numerous types of
malignancy (7), and inhibitors associated with this pathway have
been shown to induce apoptosis in targeted tumor cells (8).

Aberrant activation of the PI3K pathway may promote
carcinogenesis and tumor angiogenesis (9,10). For example,
a previous study reported that ~30% of breast cancer cases
demonstrated activating missense mutations of phosphatidylino-
sitol-4,5-bisphosphate 3-kinase, catalytic subunit o (PIK3CA),
the gene encoding the catalytic p110a subunit of class I PI3K (2);
this mutated gene provides cells with a growth advantage and
promotes tumorigenesis (11). In addition, dysregulated PI3K
pathway signaling has been implicated in conferring resistance
to conventional therapies, including biologics, hormonal therapy,
tyrosine kinase inhibitors, radiation and cytotoxic drugs in
breast cancer, glioblastoma and non-small cell lung cancer (12).

Wet laboratory research has revealed enormous data in the
field of cancer research, and expression levels of certain proteins
can be found at the Human Protein Atlas (www.proteinatlas.org).
However, these proteins are not classified according to a specific
disease or disorder. The aim of the present study was to utilize
data deposited in the Human Protein Atlas to investigate the
protein expression level of 25 proteins that are known to be
implicated in the PI3K pathway in various cancer tissues. The
proteins investigated were as follows: AKTIP, ARP1, BAD,
GSK3A, GSK3B, MERTK-1, PIK3CA, PRRS5, PSTPIP2,
PTEN, FOX1, RHEB, RPS6KBI, TSC1, TP53, BCL2, CCND1,
WFIKKN2, CREBBP, capase-9, PTK2, EGFR, FAS, CDKNIA
and XIAP. The analysis reveals a pronounced expression of
specific proteins in distinct cancer tissues, which may be poten-
tial targets for cancer treatment and provide insights into the
molecular basis of cancer.
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Figure 1. PI3K/AKT signaling pathway. Binding of the ligand to membrane receptor tyrosine kinases activates PI3K, which phosphorylates PIP, to produce
PIP;. PIP; recruits PDKI1 to the plasma membrane. PDK1 phosphorylates and activates AKT, which regulates various cellular processes. The lipid phosphate
activity of cytoplasmic PTEN dephosphorylates PIP;, thereby decreasing PIP; levels and increasing levels of PIP,, resulting in a concomitant decrease in AKT
activity. PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; PIP, [PI(4,5)P], phosphatidylinositol 4,5-bisphosphate; PIP; [PI(3,4,5)P], phosphatidylino-
sitol (3,4,5)-trisphosphate; PDK1, phosphoinositide-dependent kinase 1; PTEN, phosphatase and tensin homolog.

Materials and methods

Data were collected from the Human Protein Atlas database
(www.proteinatlas.org) via manual searches of the desired gene
names. The expression levels of 25 specific proteins that are
known to be involved in the PI3K pathway were investigated
in 20 different cancer tissues types: Carcinoid, glioma, liver
cancer, lymphoma, melanoma, ovarian cancer, pancreatic
cancer, skin cancer, testis, urothelial, lung cancer, breast cancer,
cervical cancer, colorectal cancer, head and neck, renal, thyroid,
prostate, endometrial and stomach cancer.

The expression of the 25 proteins in the different cancer
tissues were reported as high, medium or low (excluding no
expression, which was considered as a separate category) rela-
tive to normal tissues as shown in the database. Thereafter,
the percentage of high, medium and low expression in each
tissue type was calculated by dividing the number of patients
exhibiting high expression, for example, over the total number
of patients in the sample for each tissue type. The number of
patients per sample ranged from 8-18. Furthermore, high and
medium percentages were combined as the biological impact of
high and medium expression was believed to be similar. Graphs
were created using Microsoft Excel 12.0 (Microsoft Corpora-
tion, Redmond, WA, USA) to represent the percentage of each
level of protein expression as it was expressed in these patients.

Results and Discussion

In this study, the expression levels of 25 proteins in tissues
from 20 cancer types were analyzed utilizing the Human
Protein Atlas (www.proteinatlas.org). The following proteins
examined: AKTIP, ARP1, BAD, GSK3A, GSK3B, MERTK-1,
PIK3CA, PRRS, PSTPIP2, FOX1,RHEB, TSC1, TP53, BCL2,
CCNDI1, WFIKKN2, CREBBP, RPS6KBI, caspase-9, EGFR,
PIK2, FAS, CDKNIA, XIAP and PTEN. The physiological
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Figure 2. Expression levels of tuberous sclerosis 1 (TSC1) protein in different
cancer tissues based on Human Protein Atlas.

activity and full name of these proteins, as well as their role in
cancer initiation and control, is summarized in Table I (13-43).
The results revealed that 9 of the 25 proteins tested exhib-
ited high expression levels in various cancer tissues. These
proteins were PIK3CA, RPS6KB1, MERTK, RHEB, EGFR,
TSC1,CCNDI, TP53 and PTEN. The other 16 proteins exhib-
ited low or no expression in tumor tissues (data not shown).
The expression level for each protein tested was catego-
rized as either high/medium or low. The protein TSCI
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Figure 3. Expression percentages of epidermal growth factor receptor
(EGFR) protein in 10 different cancer tissues based on Human Protein Atlas.
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Figure 4. Expression percentages of MER proto oncogene tyrosine kinase
(MERTK) protein in different cancer tissues based on Human Protein Atlas.

exhibited high/medium expression in all types of cancer
tissue tested. TSC1 exhibited ~100% high/medium expres-
sion in breast, cervical, colorectal, head and neck, lymphoma,
ovarian, pancreatic, prostate, skin, stomach, testis and urothe-
lial cancer tissues. It expression was ~90% high/medium in
endometrial, glioma, liver and lung cancers (Fig. 2).

EGFR protein had high/medium expression level in >50%
of carcinoid, head and neck, glioma, renal and urothelial
cancer tissues (Fig. 3). For MERTK protein the high/medium
expression rate was >50% in liver and thyroid cancer tissues,
and 100% in renal cancer tissues. It was not detected in carci-
noid, glioma, or head and neck cancer tissues (Fig. 4).

For RHEB protein, the highest expression level was
present in >50% of breast, endometrial, ovarian, pancreatic

DARAGMEH et al: ANALYSIS OF THE PI3K PATHWAY IN HUMAN CANCERS
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Figure 5. Expression percentages of Ras homolog enriched in brain (RHEB)
protein in different cancer tissues based on Human Protein Atlas.
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Figure 6. Expression percentages of ribosomal protein S6 31 (RPS6KBI)
protein in different cancer tissues based on Human Protein Atlas.

and stomach cancer tissues, but was not detected in glioma
and lymphoma cancer tissues (Fig. 5).

The RPS6KBI1 protein expression level had ~100%
high/medium in 9 cancer tissue tested: Carcinoid, colorectal,
glioma, head and neck, ovarian, prostate, renal, skin and testis
cancer tissues (Fig. 6).

CCNDI protein high/medium expression level was
present in ~50% of head and neck cancer and melanoma
tissues (Fig. 7). The high/medium expression percentage of
TP53 protein was =50% in colorectal, head and neck, ovarian,
pancreatic and urothelial tissues, but was not detected at all in
carcinoid, prostate and thyroid cancer tissues (Fig. 8).

The expression level of PTEN protein (a tumor suppressor
gene) was low in various cancer tissues as was expected.
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Figure 7. Expression percentages of Cyclin D1 (CCNDI) protein in different
cancer tissues based on Human Protein Atlas.
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Figure 8. Expression percentages of tumor protein p53 (TP53) in different
cancer tissues based on Human Protein Atlas.

A high/medium PTEN expression level was present in
<50% of breast, cervical, endometrial, glioma, head and
neck, liver, pancreatic and skin cancer tissues; however,
high/medium expression was present at a rate of ~75% in
melanoma (Fig. 9).

PIK3CA protein expression level was high/medium in
around 100% of lymphoma, ovarian and pancreatic cancer
tissues, 90% of liver cancer tissues, 85% of melanoma and
prostate cancer tissues, 70% of carcinoid and stomach cancer
tissues and 65% of cervical cancer tissues (Fig. 10).

Taking this data together, the current analysis reveals
a pronounced expression of specific proteins in distinct
cancer tissues. These proteins may be potential candidates
to serve as targets for cancer treatments and provide insights
into the molecular basis of cancer. PI3Ks initiate signaling
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Figure 9. Expression percentages of phosphatase and tensin homolog (PTEN)
protein (tumor suppressor gene) based on Human Protein Atlas.
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Figure 10. Expression percentage of phosphatidylinositol-4,5-bisphosphate
3-kinase, catalytic subunit a (PIK3CA) protein based on Human Protein Atlas.

through a network of downstream effector pathways. Due
to the direct implication of the pathway in numerous cancer
types, this pathway has become the target for novel cancer
therapies. This bird's-eye view study highlights 9 proteins
that are involved in the PI3K pathway and which may be
potential targets for cancer treatment. These proteins are
highly expressed in several cancer tissues as indicated.
Designing new drugs that modulate the activity of these
proteins may decrease cancer growth, migration and metas-

tasis.
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