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Abstract. Recent advances in genomics, proteomics, cell 
biology and biochemistry of tumors have revealed new path-
ways that are aberrantly activated in numerous cancer types. 
However, the enormous amount of data available in this field may 
mislead scientists in focused research. As cancer cell growth 
and progression is often dependent upon the phosphoinositide 
3‑kinase (PI3K)/AKT pathway, there has been extensive 
research into the proteins implicated in the PI3K pathway. 
Using data available in the Human Protein Atlas database, the 
current study investigated the expression of 25 key proteins that 
are known to be involved with PI3K pathway activation in a 
distinct group of 20 cancer types. These proteins are AKTIP, 
ARP1, BAD, GSK3A, GSK3B, MERTK‑1, PIK3CA, PRR5, 
PSTPIP2, PTEN, FOX1, RHEB, RPS6KB1, TSC1, TP53, BCL2, 
CCND1, WFIKKN2, CREBBP, caspase‑9, PTK2, EGFR, FAS, 
CDKN1A and XIAP. The analysis revealed pronounced expres-
sion of specific proteins in distinct cancer tissues, which may 
have the potential to serve as targets for treatments and provide 
insights into the molecular basis of cancer.

Introduction

Phosphoinositide 3‑kinases (PI3Ks) are an evolutionarily 
conserved family of lipid kinases that promote various cellular 
functions, including cell growth, metabolism and survival (1,2). 
The lipid second messengers that are generated in this reaction 
interact with specialized lipid‑binding domains that are present 
in a wide variety of signaling molecules. PI3Ks may be classi-
fied into one of three classes, each of which possesses different 
structures and characteristics (3). The PI3K pathway may be 
activated by upstream receptor tyrosine kinases, leading to the 
generation of phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) via 
the phosphorylation of phosphatidylinositol‑4,5‑bisphosphate. 
The phosphatase and tensin homolog (PTEN) may dephosphor-
ylate PIP3, which terminates PI3K signaling. The accumulation 

of PIP3 activates a signaling cascade, commencing with the 
phosphorylation (activation) of the protein serine‑threonine 
kinase AKT (also known as protein kinase B) at threonine 308 
by phosphoinositide‑dependent kinase 1. Activation of AKT 
serves a crucial role in essential cellular functions, including 
cell proliferation and survival, via the phosphorylation of a 
variety of substrates (Fig. 1) (4).

Although the PI3K/AKT pathway has been extensively inves-
tigated in detail in distinct in vitro and in vivo systems (5), its role 
in molecular targeted therapy for cancer required further study. 
Molecular targeted therapies (e.g. inhibitors of target molecules 
with critical roles in tumor growth and progression) have been 
investigated in various cancer models, particularly hematological 
malignancies, such as leukemia, lymphoma and myeloma, due to 
the ease in obtaining samples for examination (6). The PI3K/AKT 
pathway has been reported to be activated in numerous types of 
malignancy (7), and inhibitors associated with this pathway have 
been shown to induce apoptosis in targeted tumor cells (8).

Aberrant activation of the PI3K pathway may promote 
carcinogenesis and tumor angiogenesis (9,10). For example, 
a previous study reported that ~30% of breast cancer cases 
demonstrated activating missense mutations of phosphatidylino-
sitol‑4,5‑bisphosphate 3‑kinase, catalytic subunit α (PIK3CA), 
the gene encoding the catalytic p110α subunit of class I PI3K (2); 
this mutated gene provides cells with a growth advantage and 
promotes tumorigenesis (11). In addition, dysregulated PI3K 
pathway signaling has been implicated in conferring resistance 
to conventional therapies, including biologics, hormonal therapy, 
tyrosine kinase inhibitors, radiation and cytotoxic drugs in 
breast cancer, glioblastoma and non‑small cell lung cancer (12).

Wet laboratory research has revealed enormous data in the 
field of cancer research, and expression levels of certain proteins 
can be found at the Human Protein Atlas (www.proteinatlas.org). 
However, these proteins are not classified according to a specific 
disease or disorder. The aim of the present study was to utilize 
data deposited in the Human Protein Atlas to investigate the 
protein expression level of 25 proteins that are known to be 
implicated in the PI3K pathway in various cancer tissues. The 
proteins investigated were as follows: AKTIP, ARP1, BAD, 
GSK3A, GSK3B, MERTK‑1, PIK3CA, PRR5, PSTPIP2, 
PTEN, FOX1, RHEB, RPS6KB1, TSC1, TP53, BCL2, CCND1, 
WFIKKN2, CREBBP, capase‑9, PTK2, EGFR, FAS, CDKN1A 
and XIAP. The analysis reveals a pronounced expression of 
specific proteins in distinct cancer tissues, which may be poten-
tial targets for cancer treatment and provide insights into the 
molecular basis of cancer.
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Materials and methods

Data were collected from the Human Protein Atlas database 
(www.proteinatlas.org) via manual searches of the desired gene 
names. The expression levels of 25 specific proteins that are 
known to be involved in the PI3K pathway were investigated 
in 20 different cancer tissues types: Carcinoid, glioma, liver 
cancer, lymphoma, melanoma, ovarian cancer, pancreatic 
cancer, skin cancer, testis, urothelial, lung cancer, breast cancer, 
cervical cancer, colorectal cancer, head and neck, renal, thyroid, 
prostate, endometrial and stomach cancer.

The expression of the 25 proteins in the different cancer 
tissues were reported as high, medium or low (excluding no 
expression, which was considered as a separate category) rela-
tive to normal tissues as shown in the database. Thereafter, 
the percentage of high, medium and low expression in each 
tissue type was calculated by dividing the number of patients 
exhibiting high expression, for example, over the total number 
of patients in the sample for each tissue type. The number of 
patients per sample ranged from 8‑18. Furthermore, high and 
medium percentages were combined as the biological impact of 
high and medium expression was believed to be similar. Graphs 
were created using Microsoft Excel 12.0 (Microsoft Corpora-
tion, Redmond, WA, USA) to represent the percentage of each 
level of protein expression as it was expressed in these patients.

Results and Discussion

In this study, the expression levels of 25 proteins in tissues 
from 20 cancer types were analyzed utilizing the Human 
Protein Atlas (www.proteinatlas.org). The following proteins 
examined: AKTIP, ARP1, BAD, GSK3A, GSK3B, MERTK‑1, 
PIK3CA, PRR5, PSTPIP2, FOX1, RHEB, TSC1, TP53, BCL2, 
CCND1, WFIKKN2, CREBBP, RPS6KB1, caspase‑9, EGFR, 
PIK2, FAS, CDKN1A, XIAP and PTEN. The physiological 

activity and full name of these proteins, as well as their role in 
cancer initiation and control, is summarized in Table I (13‑43).

The results revealed that 9 of the 25 proteins tested exhib-
ited high expression levels in various cancer tissues. These 
proteins were PIK3CA, RPS6KB1, MERTK, RHEB, EGFR, 
TSC1, CCND1, TP53 and PTEN. The other 16 proteins exhib-
ited low or no expression in tumor tissues (data not shown).

The expression level for each protein tested was catego-
rized as either high/medium or low. The protein TSC1 

Figure 2. Expression levels of tuberous sclerosis 1 (TSC1) protein in different 
cancer tissues based on Human Protein Atlas.

Figure 1. PI3K/AKT signaling pathway. Binding of the ligand to membrane receptor tyrosine kinases activates PI3K, which phosphorylates PIP2 to produce 
PIP3. PIP3 recruits PDK1 to the plasma membrane. PDK1 phosphorylates and activates AKT, which regulates various cellular processes. The lipid phosphate 
activity of cytoplasmic PTEN dephosphorylates PIP3, thereby decreasing PIP3 levels and increasing levels of PIP2, resulting in a concomitant decrease in AKT 
activity. PI3K, phosphoinositide 3‑kinase; AKT, protein kinase B; PIP2 [PI(4,5)P], phosphatidylinositol 4,5‑bisphosphate; PIP3 [PI(3,4,5)P], phosphatidylino-
sitol (3,4,5)‑trisphosphate; PDK1, phosphoinositide‑dependent kinase 1; PTEN, phosphatase and tensin homolog.
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exhibited high/medium expression in all types of cancer 
tissue tested. TSC1 exhibited ~100% high/medium expres-
sion in breast, cervical, colorectal, head and neck, lymphoma, 
ovarian, pancreatic, prostate, skin, stomach, testis and urothe-
lial cancer tissues. It expression was ~90% high/medium in 
endometrial, glioma, liver and lung cancers (Fig. 2).

EGFR protein had high/medium expression level in >50% 
of carcinoid, head and neck, glioma, renal and urothelial 
cancer tissues (Fig. 3). For MERTK protein the high/medium 
expression rate was >50% in liver and thyroid cancer tissues, 
and 100% in renal cancer tissues. It was not detected in carci-
noid, glioma, or head and neck cancer tissues (Fig. 4). 

For RHEB protein, the highest expression level was 
present in >50% of breast, endometrial, ovarian, pancreatic 

and stomach cancer tissues, but was not detected in glioma 
and lymphoma cancer tissues (Fig. 5).

The RPS6KB1 protein expression level had ~100% 
high/medium in 9 cancer tissue tested: Carcinoid, colorectal, 
glioma, head and neck, ovarian, prostate, renal, skin and testis 
cancer tissues (Fig. 6).

CCND1 protein high/medium expression level was 
present in ~50% of head and neck cancer and melanoma 
tissues (Fig. 7). The high/medium expression percentage of 
TP53 protein was ≥50% in colorectal, head and neck, ovarian, 
pancreatic and urothelial tissues, but was not detected at all in 
carcinoid, prostate and thyroid cancer tissues (Fig. 8).

The expression level of PTEN protein (a tumor suppressor 
gene) was low in various cancer tissues as was expected. 

Figure 4. Expression percentages of MER proto oncogene tyrosine kinase 
(MERTK) protein in different cancer tissues based on Human Protein Atlas.

Figure 5. Expression percentages of Ras homolog enriched in brain (RHEB)
protein in different cancer tissues based on Human Protein Atlas.

Figure 6. Expression percentages of ribosomal protein S6 β1 (RPS6KB1) 
protein in different cancer tissues based on Human Protein Atlas.

Figure 3. Expression percentages of epidermal growth factor receptor 
(EGFR) protein in 10 different cancer tissues based on Human Protein Atlas.
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A high/medium PTEN expression level was present in 
<50% of breast, cervical, endometrial, glioma, head and 
neck, liver, pancreatic and skin cancer tissues; however, 
high/medium expression was present at a rate of ~75% in 
melanoma (Fig. 9).

PIK3CA protein expression level was high/medium in 
around 100% of lymphoma, ovarian and pancreatic cancer 
tissues, 90% of liver cancer tissues, 85% of melanoma and 
prostate cancer tissues, 70% of carcinoid and stomach cancer 
tissues and 65% of cervical cancer tissues (Fig. 10).

Taking this data together, the current analysis reveals 
a pronounced expression of specific proteins in distinct 
cancer tissues. These proteins may be potential candidates 
to serve as targets for cancer treatments and provide insights 
into the molecular basis of cancer. PI3Ks initiate signaling 

through a network of downstream effector pathways. Due 
to the direct implication of the pathway in numerous cancer 
types, this pathway has become the target for novel cancer 
therapies. This bird's‑eye view study highlights 9 proteins 
that are involved in the PI3K pathway and which may be 
potential targets for cancer treatment. These proteins are 
highly expressed in several cancer tissues as indicated. 
Designing new drugs that modulate the activity of these 
proteins may decrease cancer growth, migration and metas-
tasis.
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Figure 10. Expression percentage of phosphatidylinositol‑4,5‑bisphosphate 
3‑kinase, catalytic subunit α (PIK3CA) protein based on Human Protein Atlas.

Figure 9. Expression percentages of phosphatase and tensin homolog (PTEN) 
protein (tumor suppressor gene) based on Human Protein Atlas.

Figure 8. Expression percentages of tumor protein p53 (TP53) in different 
cancer tissues based on Human Protein Atlas.

Figure 7. Expression percentages of Cyclin D1 (CCND1) protein in different 
cancer tissues based on Human Protein Atlas.
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