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Abstract. The aim of the present study was to investigate the 
effects of the mammalian target of rapamycin (mTOR) inhib-
itor, RAD001, on the growth of human endometrial cancer 
cells. The effects of RAD001 on human endometrial cancer 
Ishikawa and HEC‑1A cell proliferation were determined by 
MTT assay. Green fluorescent protein microtubule‑associated 
protein 1 light chain 3α (GFP‑LC3) protein aggregates were 
observed under a confocal microscope, and Ishikawa and 
HEC‑1A cell apoptosis was detected using flow cytometry. 
The expression levels of LC3‑I, LC3‑II and mTOR proteins 
were detected by western blot analysis. The results showed 
that RAD001 effectively inhibited human endometrial cancer 
Ishikawa and HEC‑1A cell proliferation via downregula-
tion of AKT/mTOR phosphorylation. Moreover, RAD001 
induced autophagic cell death and a higher sensitivity to pacli-
taxel‑induced apoptosis. These results indicate that RAD001 
could have therapeutic potential in human endometrial cancer 
with hyperactivated AKT/mTOR signaling.

Introduction

Globally, endometrial carcinoma is the fourth most common 
type of malignant tumor affecting women (1,2). In the past 
few decades, as longevity has increased and lifestyle has 
changed, the incidence of endometrial cancer has significantly 
increased and it has become the most common gynecological 
cancer in Western countries (3). In 2010, 43,470 individuals 
were newly diagnosed with endometrial cancer, whereas there 
were only 12,200 estimated new cases of cervical cancer 
in the United States during the same period (1). Although 
the prognosis of early‑stage endometrial cancer is favorable 
when using surgical resection or adjuvant chemotherapy, no 
promising treatment is available for advanced‑stage or/and 
metastatic endometrial cancer. Therefore, it is crucial that a 
novel viable treatment strategy is developed in this field. As 
in the majority of sarcomas, the phosphoinositide 3‑kinase 
(PI3K)/AKT/mammalian target of rapamycin (mTOR) 
signaling transduction pathway plays a critical role in endome-
trial carcinoma progression. Numerous studies have suggested 
that several genetic mutations in this pathway, including loss 
of function of the main negative regulator, phosphatase and 
tensin homolog (PTEN), directly contribute to its constant 
activation, which further leads to tumor progression. There-
fore, the study of the PI3K/AKT/mTOR signaling transduction 
pathway may provide novel insights into the drug development 
for endometrial cancer. mTOR is one important downstream 
target in the PI3K/AKT signaling pathway. Drugs that target 
mTOR are able to inhibit cancer cell proliferation, induce call 
apoptosis and reverse the drug resistance of cancer cells.

Autophagy is a basic biological process that occurs in 
response to physiological or pathological stress, such as 
starvation or energy depletion (4). The process is essential 
for maintaining intercellular homeostasis and is thus a key 
player in tumorigenesis. On one hand, autophagy promotes 
tumor cell survival and induces drug resistance (5). On the 
other hand, certain drug‑induced autophagy can suppress 
tumor growth and contribute to tumor cell apoptosis (6,7). 
Although the exact mechanism involved has not yet been 
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elucidated, autophagy is considered to exhibit dual roles in 
cancer development depending on the cell type and the stimuli 
received (6,7). Several studies have been performed analyzing 
the role of mTOR in autophagy (8). These studies suggested 
that mTOR complex 1 (mTORC1) interacted with the unc‑51 
like autophagy‑activating kinase  1 (ULK1) complex via 
Raptor  (9), and that under nutrient‑rich conditions, mTOR 
suppressed autophagy through the direct phosphorylation of 
ULK1 and mAtg13. Additionally, under glucose‑rich condi-
tions, mTOR could mediate the dissociation of adenosine 
monophosphate‑activated protein kinase and ULK1 via 
the direct phosphorylation of ULK1, thereby inhibiting 
autophagy (10). Upon starvation or rapamycin stimulation, 
mTOR dissociated from the ULK1 complex provoking the 
dephosphorylation of ULK1 and mAtg13, which further initi-
ated autophagy (11). Therefore, mTOR, as the main regulator 
in autophagy, is also an attractive target for the future develop-
ment of cancer treatment.

RAD‑001 (also known as everolimus), a derivative 
of rapamycin, is a newly developed oral mTOR inhibitor 
that is currently undergoing clinical trials as an antitumor 
drug (12,13). Similar to the rapamycin, RAD001 suppresses 
tumor proliferation by inhibiting mTOR function and blocking 
the mTOR signaling pathway (14). The half maximal inhibi-
tory concentration (IC50) for RAD001 ranges between 5 and 
1,800 µmol/l among different cell types, including melanoma, 
lung cancer, breast cancer, lymphoma, pancreatic and colon 
cancer cells (15). Preclinical studies indicated that RAD001 
alone could suppress tumor growth, and that it also displayed 
a synergistic effect in combination with either hormones or 
other cytotoxic agents (16). It was reported that RAD001 could 
induce autophagy in testicular cancer cells with PTEN muta-
tion and that it sensitized the cells to radiation therapy (17,18). 
For certain drug‑resistant cancer cells, RAD001 in combina-
tion with certain anticancer drugs could effectively inhibit 
cell proliferation and promote cell apoptosis. Clinical study 
results suggested that RAD001 showed a synergistic effect in 
combination with other anticancer agents, and no marked toxic 
effect was observed (19,20). A recent phase IB clinical study 
conducted on patients with advanced‑stage carcinoma reveled 
that the combination of RAD001 and paclitaxel exhibited a 
less toxic effect than either drug alone (21).

The present study therefore aimed to investigate the effect 
of the mTOR inhibitor, RAD001, on autophagy in endometrial 
cancer cells and the mechanism involved.

Materials and methods

Materials. The human endometrial cancer Ishikawa and 
HEC‑1A cell lines were obtained from the Shanghai Institute 
of Cellular Biology of the Chinese Academy of Sciences 
(Shanghai, China) and cultivated in Dulbecco' modified 
Eagle's medium (DMEM) (Invitrogen; Thermo Fisher Scien-
tific Inc., Waltham, MA, USA) supplemented with 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific Inc.), 50 µg/ml 
penicillin (Invitrogen; Thermo Fisher Scientific Inc.), 50 µg/ml 
streptomycin (Invitrogen; Thermo Fisher Scientific Inc.) and 
2 mmol/l glutamine (Gibco; Thermo Fisher Scientific Inc.) at 
37˚C in 5% CO2. All experiments were performed with cells 
in the logarithmic phase.

RAD001  (catalogue no.  07741), MTT and chloroquine 
(CQ) were purchased from Sigma‑Aldrich (Merck Millipore, 
Darmstadt, Germany). RAD001 was formulated in 1 mmol/l 
dimethyl sulfoxide (DMSO) diluent. Polyclonal rabbit 
anti‑phospho‑AKT (Ser473) antibody (#9271; 1:1,000), mono-
clonal rabbit anti‑mTOR antibody (#2983; 1:1,000), monoclonal 
rabbit anti‑phospho‑mTOR (Ser2448) antibody (#5536; 1:1,000), 
monoclonal rabbit anti‑p70S6K antibody (#2708; 1:1,000) 
and polyclonal rabbit anti‑phospho‑p70S6K (Thr421/Ser424) 
antibody (#9204; 1:1,000) were acquired from Cell Signaling 
Technology Inc. (Danvers, MA, USA). Polyclonal rabbit anti‑LC3 
antibody (#NB100–2220; 1:1,000) was obtained from Novus 
Biological LLC (Littleton, CO, USA). Goat anti‑rabbit immu-
noglobulin G horseradish peroxidase‑conjugated secondary 
antibody (#sc‑2004; 1:2,000) was purchased from Santa Cruz 
Biotechnology Inc. (Dallas, TX, USA) and monoclonal mouse 
anti‑GAPDH antibody (KC‑5G4; 1:5,000) was purchased from 
Kangcheng Bio‑tech Inc. (Shanghai, China).

MTT assay. Cells in the logarithmic phase were seeded in 
96‑well plates at a density of 8,000 cells/well in 195 µl DMEM 
and cultivated at 37˚C overnight. The cells were then treated with 
CQ (10 mg/ml in DMSO), paclitaxel (1, 2, 4, 8 and 16 µM or the 
indicated concentrations in DMSO), 3‑methyladenine (3‑MA) 
(10 µM in H2O, which was used as an autophagy inhibitor) and 
DAPI (1 µg/ml in H2O) for the indicated time points at 37˚C in 
5% CO2. Solvent was used as the control in each experiment. 
Experiments were terminated by adding 10 µl of 5 mg/ml MTT 
and incubated at 37˚C for 4 h. Following complete removal of 
the medium, 100 µl of DMSO (Sigma‑Aldrich; Merck Milli-
pore) was added to each well to dissolve the purple formazan 
product. Absorbance values of the resultant purple solution were 
obtained with a test wavelength of 570 nm. The IC50 values were 
calculated by the Bliss method: Inhibitory rate (%)= [1 ‑ the 
average optical density (OD) value of the treatment group / the 
average OD value of the control group] x 100. Growth inhibition 
was calculated according to the results of the MTT assay, and 
the combination index was determined using CalcuSyn software 
version 2.0 (Biosoft, Cambridge, UK).

Fluorescence microscopy. For the microscopic examination, 
1 day prior to transfection, the cells were plated in 6‑well plates 
with antibiotic‑free RPMI 1640 growth medium at a density of 
1.5x105 cells/well. When the cells grew to a confluence of ~50% 
on the second day, green fluorescent protein microtubule‑asso-
ciated protein 1 light chain 3α (GFP‑LC3)‑expressing plasmids 
were transfected into the cells using Lipofectamine  2000 
(Thermo Fisher Scientific Inc.), and cells stably transfected 
with the GFP‑LC3 plasmid (kindly provided by Professor Beth 
Levine), which stably expressed GFP‑LC3, were selected with 
growth medium containing G418 antibiotic. Subsequent to 
treatment with the experimental drugs, the cells were washed 
with 1X PBS three times and then evaluated under a confocal 
fluorescence microscope (LSM 710 Meta; Carl Zeiss AG, 
Oberkochen, Germany).

Immunoblotting analysis. Prior to the drug treatment, the cells 
were plated in 6‑well plates at a density of 4x105 cells/well and 
incubated at 37˚C in 5% CO2 overnight. Following treatment, the 
cells were collected and washed with 1X PBS three times and 
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lysed in 100 µl/well of lysis buffer. Cell lysates were centrifuged 
at 13,600 x g for 10 min at 4˚C and the protein concentrations 
were determined by Bio‑Rad protein assay (Bio‑Rad Labora-
tories Inc., Hercules, CA, USA). SDS‑PAG loading buffer was 
added to the cell lysate, which was then heated at 95˚C for 10 min. 
Each sample containing 40 µg of protein was then loaded into 
each well of the SDS‑PAGE gels and the resolved proteins were 
transferred to a polyvinylidene difluoride membrane electro-
phoretically. Subsequent to blocking with 5% skimmed milk, 
the membranes were probed sequentially with primary and 
secondary antibodies overnight at 4˚C. Following washing three 
times with TBS plus Tween 20 [10 mmol/l Tris‑HCl (pH 7.4), 
150 mmol/l NaCl and 0.1% Tween 20] (TBST), the proteins 
were detected using enhanced chemiluminescence reagent (GE 
Healthcare Life Sciences, Chalfont, UK) and XAR film (Kodak, 
New York, NY, USA).

Flow cytometry. Pre‑treated cells were collected and washed 
twice with 1X PBS. The cells were then re‑suspended in 
1X PBS at a density of 1x106 cells/ml. Next, 10 µl of 10 mg/l 
propidium iodide was added to 1‑ml cell suspension, which was 
then incubated in the dark for 10 min. The samples were placed 
on ice prior to being analyzed by flow cytometer (BD Biosci-
ences, Franklin Lakes, NJ, USA).

RNA interference. Protein depletion through RNA‑mediated inter-
ference was mediated using the pSUPER small hairpin (sh)RNA 
system. Retroviruses were generated by co‑transfection of 
pSUPER‑shRNA plasmids (#30519; Addgene, Inc., Cambridge, 
MA, USA) with retrovirus plasmid PIK (Ecopac: M. Finer Cell 
Genosys, Redwood City, CA, USA) into 293T cells by liposome. 
Retroviruses were collected in high‑serum media at 48 and 72 h 
post‑transfection. Ishikawa and HEC‑1A cells were transduced 
with retroviruses and 8  µg/ml Polybrene (hexadimethrine 
bromide; Sigma‑Aldrich; Merck Millipore) followed by incuba-
tion with virus at 37˚C for 4‑6 h. shRNA‑transduced cells were 
selected for with 1 µg/ml puromycin for 72 h. To confirm the 
efficiency of Atg5 shRNA, puromycin‑selected cells transfected 
with a specific shRNA targeting human Atg5 (5'‑GCA​ACU​
CUG​GAU​GGG​AUUG‑3') were cultured three‑dimensionally 
in vitro. Cells were then subjected to western blot detection 
with anti‑Atg5 polyclonal rabbit antibody (1:1,000; #2630; Cell 
Signaling Technology Inc.) and anti‑GAPDH antibody (1:5,000; 
KC‑5G4; Zhejiang Kangchen Biotech Co., Ltd., Shanghai, 
China) for 12 h at 4˚C. Following three washes with TBST, the 
proteins were detected using an enhanced chemiluminescence 
reagent and BioMax XAR Film (Kodak, Rochester, NY, USA).

Statistical analysis. Data were presented as the mean ± standard 
deviation, and analyzed with a one‑way analysis of variance 
and Student‑Newman‑Keuls‑q test (22) by SPSS 16.0 statistical 
software (SPSS, Inc., Chicago, IL, USA). P<0.05 was considered 
to indicate a statistically significant difference.

Results

RAD001 inhibits human endometrial cancer Ishikawa and 
HEC‑1A cell proliferation. The inhibitory effect of RAD001 
on Ishikawa and HEC‑1A cells was demonstrated using MTT 
assay. The soluble yellow compound of MTT was reduced to 

insoluble formazan, which produced a purple color in living 
cells. As the amount of formazan produced was proportional 
to the number of viable cells, after dissolving it in DMSO, the 
absorbance values of the resultant purple solution were used 
to calculate the inhibitory rate of cell proliferation and thus 
evaluate the cytotoxicity of RAD001. Following treatment with 
different concentrations (0, 5, 10, 20, 40 and 80 nM) of RAD001 
for 72 h, the proliferation of the Ishikawa and HEC‑1A cells 
was suppressed in a dose‑dependent manner, and all results 
were significant compared with the control group (P<0.01) 
(Fig. 1). The group treated with 0 nM PAD001 was considered 
as the control group, and the decreased proliferation rate of this 
group was normalized to 0% (which coincides with the origin 
of coordinates in Fig. 1). The IC50 values were 36.80±1.64 and 
25.72±1.16 nM for the Ishikawa and HEC‑1A cells, respectively. 
The results suggested that RAD001 alone could effectively 
inhibit the proliferation of the Ishikawa and HEC‑1A cells.

RAD001 sensitizes endometrial cancer Ishikawa and HEC‑1A 
cells to paclitaxel treatment. Following treatment with RAD001 
in combination with different concentrations of paclitaxel, the 
proliferation of the Ishikawa and HEC‑1A cells was significantly 
inhibited in a dose‑dependent manner. The IC50 values for the 
Ishikawa and HEC‑1A cells treated with paclitaxel alone were 
7.91 and 9.27 µM, respectively. The corresponding combina-
tion index was <1 for the two cell lines, which was statistically 
significant (Fig. 2A). Apoptosis was observed in the Ishikawa 
cells treated with paclitaxel, as indicated by the presence of 
cleaved caspase3 and cleaved poly ADP ribose polymerase; 
when RAD001 was also added, the cleaved band became mark-
edly more intense (Fig. 2B). According to flow cytometry, the 
apoptotic cell count increased from 15.2 to 45% (Fig. 2C). These 
results indicated that the combination treatment of RAD001 and 
paclitaxel is synergistic for suppressing the human endometrial 
cancer cell proliferation.

RAD001 induces autophagy in endometrial cancer Ishikawa 
and HEC‑1A cells. LC3 is an autophagic marker protein 
whose lipidated form, LC3II, is recruited to the autophago-
somal membranes at a late stage of autophagy (23). As shown 
in Fig. 3A, upon treatment with RAD001, green puncta were 
detected in the cytosol of GFP‑LC3‑expressing Ishikawa and 
HEC‑1A cells, denoting the formation of autophagosomes. 
Western blot analysis results further confirmed this, as the 
expression level of LC3II protein increased in a dose‑depen-
dent manner for the two cell lines following treatment with 
different concentrations of RAD001 for 24 h (Fig. 3B). This 
suggested that RAD001 induced autophagy in the Ishikawa 
and HEC‑1A cells.

RAD001 induces autophagic cell death in endometrial 
cancer Ishikawa and HEC‑1A cells. MTT results confirmed 
that the inhibitory effect of RAD001 on Ishikawa and 
HEC‑1A cell proliferation was decreased when autophagy 
was suppressed by CQ, suggesting that RAD001 induced 
autophagic cell death in the Ishikawa and HEC‑1A cells 
(Fig. 4A). Furthermore, inhibition of autophagy by shRNA 
knockdown of Atg5 also resulted in the reduced inhibition 
of cell death as induced by RAD001 (Fig. 4B). The levels 
of Atg5 were effectively reduced by Atg5 shRNA (data not 
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shown). Together, these results showed that RAD001 induced 
autophagic cell death in the endometrial cancer Ishikawa and 
HEC‑1A cells.

RAD001 suppresses the AKT/mTOR/p70S6K signaling trans‑
duction pathway in endometrial cancer Ishikawa and HEC‑1A 
cells. To further investigate whether the AKT/mTOR/p70S6K 
signaling pathway plays a role in RAD001‑induced autophagy, 
the expression levels of the key proteins in this signaling 
pathway were examined in Ishikawa and HEC‑1A cells by 
western blot analysis. The results indicated that RAD001 
inhibited serine 473 phosphorylation and mTOR phosphoryla-
tion in a dose‑dependently manner in the two cell lines, with 
no significant change in the expression level of mTOR (Fig. 5). 
Furthermore, it was observed that the phosphorylation of one 
of the essential substrates of mTORC1, p70S6 kinase, was 
also significantly suppressed. These results suggested that 
the AKT/mTOR/p70S6K signaling transduction pathway was 
suppressed upon treatment with RAD001 in the Ishikawa and 
HEC‑1A cells.

RAD001 sensitizes Ishikawa cells to paclitaxel via the induc‑
tion of autophagy. To establish whether RAD001 sensitized 
endometrial cancer Ishikawa and HEC‑1A cells to paclitaxel 
treatment via the induction of autophagy, Ishikawa cells were 
treated with 3‑MA, the autophagy inhibitor, together with 
RAD001. Consistent with aforementioned results, RAD001 
triggered autophagy, as shown by the presence of LC3II, and 
3‑MA inhibited this change (Fig. 6A). As shown in Fig. 6B, 
the effect of autophagy inhibition with 3‑MA plus RAD001 
was tested on cell death in the Ishikawa cells; it was found 
that RAD001‑induced autophagic cell death was efficiently 
suppressed when autophagy was blocked. Also, the result from 
the flow cytometric apoptosis assay indicated that Ishikawa 
cell apoptosis was significantly enhanced when the cells were 
treated with RAD001 in combination with paclitaxel, and this 
effect was repressed upon inhibition of autophagy (Fig. 6C). 
These results suggested that RAD001 sensitized the Ishikawa 
cells to paclitaxel via the induction of autophagy.

Discussion

Endometrial cancer is the most common gynecological cancer, 
accounting for 20‑30% of cases. In certain countries, it is even 
the most common gynecological malignancy (1).

Abnormal signal transduction is one of the contributing 
factors for cancer development (24,25). As a deeper under-
standing has been gained in the field of signal transduction 
over the past decade, targeted cancer therapy has become 
an innovative approach for future cancer treatment (24‑26). 
mTOR is a key downstream protein kinase of the PI3K/Akt 
signaling pathway, and drugs that target mTOR can effec-
tively inhibit cancer cell proliferation, induce cancer cell 
apoptosis and reverse the drug‑resistant effect in cancer 
chemotherapy  (27,28). Since mTOR has become a novel 
target for research in cancer therapy, its inhibitor, RAD001, 
has received much attention as a potential targeted cancer 
drug (12,13).

Paclitaxel is a common anticancer drug that is used in 
combination chemotherapy (29‑32). Although a high dose of 
paclitaxel has proven to be more effective, its clinical toxicity 
is severe (33,34). The present study investigated the effect of 
the combination of RAD001 and paclitaxel on Ishikawa and 
HEC‑1A cells. The results showed that RAD001 sensitized 
the cells to paclitaxel, suggesting that using a combination 
treatment involving RAD001 could reduce the cytotoxic effect 
of paclitaxel, as it was effective at a lower dose. More impor-
tantly, RAD001 only targets malignant cancer cells, with few 
side effects on normal cells, which makes it an ideal targeted 
drug in the synergistic therapy for future clinical cancer treat-
ment (35).

Autophagy is a highly‑conserved metabolic process 
that removes damaged organelles or proteins, and recycles 
cytoplasmic contents in response to cytotoxic and metabolic 
stresses (36). Although autophagy is essential for maintaining 
intracellular homeostasis and promoting cell survival, it can 
also be involved in the cell death process (37). Therefore, the 
precise role of autophagy in cancer should be the first consid-
eration in the study of autophagy‑inducing antitumor agents. 
To further illustrate the role of RAD001‑induced autophagy 
in endometrial cancer cells, the present study pre‑treated 
Ishikawa and HEC‑1A cells with the autophagy inhibitor 
CQ. The results showed that cell survival was significantly 
increased, suggesting that RAD001 induced autophagic cell 
death in endometrial cancer cells.

Previous studies confirmed that, under nutrient deprivation 
or rapamycin stimulation, the function of mTOR kinase was 
suppressed. Also, Atg13 was dephosphorylated, which allowed 
it to have higher affinity to Atg1 and thus bind to Atg17‑29‑31 
to form the Atg1 complex. Atg1 was further activated by 

Figure 1. RAD001 suppresses the proliferation of Ishikawa and HEC‑1A cells. The cells were cultured in a 96‑well plate (6,000 cells/well), exposed to the 
indicated concentrations of RAD001 (nM) and incubated for 72 h. The data is presented as the mean ± standard deviation of three experiments.*P<0.05.
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Figure 3. RAD001 induces autophagy in Ishikawa and HEC‑1A cells. (A) The cells were treated with RAD001 (30 nM) for 24 h. The accumulation of 
GFP‑LC3 dots was observed under confocal microscope. (B) The cells were treated with RAD001 at the indicated concentrations for 24 h, and immunoblotting 
was used for detecting LC3‑I and LC3‑II. The values represent the mean ± standard error of ≥3 independent experiments. **P<0.01; ***P<0.001. GFP‑LC3, green 
fluorescent protein microtubule‑associated protein 1 light chain 3α.

  A

  B

Figure 2. RAD001 sensitizes endometrial cancer Ishikawa and HEC‑1A cells to paclitaxel treatment. (A) Cell inhibition rate of paclitaxel and RAD001, alone 
or in combination, at the indicated concentrations for 72 h. The cells were exposed to the indicated concentrations of paclitaxel (4 µM) and RAD001 (30 nM) 
for 72 h. The data are presented as the mean ± standard deviation of three experiments. (B) Immunoblots of cells treated with paclitaxel (4 µM) or RAD001 
(30 nM) or paclitaxel (4 µM) plus RAD001 (30 nM) for 24 h were probed for the indicated antibodies. (C) Ishikawa cells were treated with paclitaxel (4 µM) 
and/or RAD001 (30 nM) for 24 h followed by Annexin V/PI staining. The values represent the mean ± standard error of ≥3 independent experiments. *P<0.05. 
PARP, poly ADP ribose polymerase; PI, propidium iodide; CTRL, control.

  A   B

  C
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Atg13/Atg17 and re‑localized to the phagosome assembly site 
for the initiation of autophagy (38‑40). Hence, mTOR kinase is 
the negative regulator in autophagy. The present results demon-
strated that RAD001 significantly inhibited the AKT/mTOR 

phosphorylation in Ishikawa and HEC‑1A cells, which further 
suppressed its downstream substrate, p70S6 kinase.

In conclusion, the present study demonstrated that RAD001 
sensitizes endometrial cancer Ishikawa and HEC‑1A cells to 
paclitaxel by inducing autophagic cell death via suppression 
of the mTOR signaling pathway. The study provides experi-
mental evidence for the future clinical study of combination 
chemotherapy and introduces the possibility of using RAD001 
as a potential targeted drug in the synergistic therapy for future 
clinical cancer treatments.
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