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Abstract. Metastasis, a life‑threatening complication of 
cancer, leads to the majority of cases of cancer‑associated 
mortality. Unfortunately, the underlying molecular and cellular 
mechanisms of cancer metastasis remain to be fully eluci-
dated. C‑type lectins are a large group of proteins, which share 
structurally homologous carbohydrate‑recognition domains 
(CRDs) and possess diverse physiological functions, including 
inflammation and antimicrobial immunity. Accumulating 
evidence has demonstrated the contribution of C‑type 
lectins in different steps of the metastatic spread of cancer. 
Notably, a substantial proportion of C‑type lectins, including 
selectins, mannose receptor (MR) and liver and lymph node 
sinusoidal endothelial cell C‑type lectin, are important 
molecular targets for the formation of metastases in vitro and 
in vivo. The present review summarizes what has been found 
regarding C‑type lectins in the lymphatic and hematogenous 
metastasis of cancer. An improved understanding the role of 
C‑type lectins in cancer metastasis provides a comprehensive 
perspective for further clarifying the molecular mechanisms 
of cancer metastasis and supports the development of novel 
C‑type lectins‑based therapies the for prevention of metastasis 
in certain types of cancer.
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1. Introduction

The process of cancer metastasis comprises a multitude of 
consecutive steps. Hematogenous and lymphatic metastases 
are common routes for the spread of cancer. Generally, hema-
togenous metastasis of cancer consists of multiple sequential 
steps (1) (Fig. 1). In detail, cancer cells first escape from a 
primary site and then infiltrate the vascular endothelium 
into the bloodstream, where they flow to secondary sites, 
extravasate via the vascular endothelium into secondary sites 
and ultimately establish metastatic lesions. Cancer cells can 
also enter the blood vessel indirectly through the lymphatic 
duct (2). Similar to hematogenous metastasis, the complete 
lymphatic metastasis of cancer cells occurs by penetrating into 
the lymphatic endothelium, circulating in the lymphatic duct 
and subsequently metastasizing to distant lymph nodes (3). It 
is well recognized that the hematogenous metastasis of tumors 
is supported by the interactions between platelets, leukocytes 
and activated vascular endothelium. Aggregated platelets and 
leukocytes around tumor cells can defend tumor cells from 
immune elimination and promote subsequent dissemination. 
The activated endothelial cells can then mediate the adhe-
sion of cancer emboli and the following extravasation  (4). 
Selectins, commonly expressed on platelets, leukocytes and 
activated endothelium, are reported to be involved in the 
above steps via different roles (5). Mannose receptors (MRs), 
abundantly expression on afferent and efferent lymphatics, 
are involved in the lymphocyte homing and lymphatic metas-
tasis of cancer cells by interacting with L‑selectin. Notably, 
accumulating evidence indicates that adhesion molecules are 
associated with the biological behavior of primary cancer and 
the formation of secondary metastases (6,7). Dendritic cell 
(DC)‑specific intercellular adhesion molecule‑3‑grabbing 
non‑integrin (DC‑SIGN), DC‑SIGN‑related (DC‑SIGNR) 
and liver and lymph node sinusoidal endothelial cell C‑type 
lectin (LSECtin) have been confirmed to show cell‑adhesion 
functions, and have certain correlations with tumor metas-
tasis (8-10). This introduces a novel concept of C‑type lectins 
facilitating tumor metastasis. C‑type lectins are a large 
group of proteins consisting predominantly of selectins, MR 
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family members, Type II natural killer (NK) cell receptors 
and the DC‑SIGN family. The majority of these are trans-
membrane proteins, whereas certain others are secreted as 
soluble proteins. The CRD of C‑type lectins is the primary 
binding domain to several carbohydrates. Abnormal glyco-
sylation leading to the alteration of carbohydrate structures 
is a warning sign of malignant transformation. The elevated 
expression of carbohydrate structures, including sialylated 
Lewis‑x (sLex) and sialylated Lewis‑a (sLea), correlates with 
cancer progression (11). Generally, the recognition of these 
carbohydrate structures is performed by the CRD of C‑type 
lectins. Therefore, it is meaningful to investigate the roles of 
C‑type lectins in tumor metastasis.

2. CRD of C‑type lectin

C‑type lectins share a structurally homologous CRD, which 
bind to carbohydrate structures in a Ca2+‑dependent manner. 
The CRD structure possesses a characteristic double‑loop. 
The stability of this double‑loop structure is dependent on 
two highly conserved disulfide bonds, and a set of conserved 
hydrophobic and polar interactions. The long loop domain is 
reported to function as a Ca2+‑dependent carbohydrate‑binding 
region  (12). The carbohydrate‑binding potential of C‑type 
lectins is specifically supported by the CRD, and the adhesion 
affinity of different C‑type lectins depends on the types of 
glycans. However, a number of CRD‑containing proteins do 
not bind to carbohydrates. Generally, the subgroups of C‑type 
lectins exhibit variation in their recognition of carbohydrates. 
The CRD of selectins recognizes sialylated, fucosylated glyco-
proteins, which frequently contain terminal tetrasaccharides 
sLex and sLea (13). MRs have two independent CRDs, which 
bind sulfated and mannosylated carbohydrates, respectively, 
and their recognitions is modulated by sialylation (14). Of note, 
the CRD of DC‑SIGN recognizes glycoconjugates containing 
mannose, N‑acetylglucosamine, fucose, and nonsialylated 
Lewisx and Ly glycans (15). Therefore, the CRDs of C‑type 
lectins are associated with the recognition of several types of 
carbohydrate structures. Of note, the binding of C‑type lectin 
CRDs to their carbohydrate ligands provides potential for the 
subsequent progression of cancer.

3. Selectins

The selectin family comprises three members: L‑, P‑ and 
E‑selectin. All members of this family are type I transmem-
brane proteins with an N‑terminal C‑type lectin‑like domain 
(CTLD), an epidermal growth factor‑like domain, between 
two and nine complement‑binding protein‑like domains, a 
transmembrane domain, and a C‑terminal cytoplasmic tail 
(Fig. 2). L‑selectin is predominantly expressed by lymphocytes. 
E‑selectin presents exclusively on the activated endothelium. 
P‑selectin is expressed on activated platelets and endothelial 
cells (16). Selectins are a family of multifunctional adhesion 
molecules, which are important in physiological processes, 
including mediating the adhesion of leukocytes and plate-
lets with the endothelium in the bloodstream. Analogously, 
another pathophysiological process, which is also associated 
with selectins, is the binding of circulating cancer cells to 
leukocytes and platelets, which defends them from immune 

elimination and facilitates metastatic spread. The N‑terminal 
CTLD is the primary mediator for the interaction of selectins 
with their carbohydrate ligands. The malignant alteration 
comprises high affinity with abnormal glycosylation. Increased 
expression levels of sLex and sLea have been linked to the 
evolution and progression of several types of cancer (11). Of 
note, sLex and its isomer, sLea, tetrasaccharides are recognized 
by all selectins (13), and the selectin‑based adhesion of sLex 
and sLea carbohydrates facilitates tumor metastasis.

4. L‑ and E‑selectin in the lymphatic metastasis of cancer

The process of lymphocyte homing to peripheral lymph nodes 
requires the cooperation of adhesion molecules and chemokine 
receptors with their ligands (17). The molecular mechanism of 
cancer cell lymphatic metastasis is similar to that of lympho-
cyte homing (18). L‑selectin is an adhesion molecule, which is 
essential in homing of lymphocytes to peripheral lymph nodes 
via interacting with a group of heterogenous glycoproteins, 
termed peripheral lymph node addressins (PNAds), expressed 
on high endothelial venules (HEVs) (19,20). The expression of 
MRs on lymphatic endothelium is identified as another ligand 
for L‑selectin, which mediates the adhesion of lymphocytes 
to the lymphatic endothelium. MR is not expressed on HEVs, 
and PNAds are absent from the lymphatic endothelium (21). 
In vitro, silencing or inhibition of the expression of L‑selectin 
on P388D1 macrophage‑like lymphoid neoplasm cells signifi-
cantly inhibits the adhesion of P388D1 cells to lymph nodes, 
and P388D1 cells transfected with L‑selectin small interfering 
RNA, preincubated with MEL‑4 or rat IgG have a significantly 
reduced metastatic rate to peripheral lymph nodes, compared 
with corresponding controls following footpad injections (22). 
P388D1 cells preincubated with heparin, an inhibitor for 
L‑selectin, show similar results as those described above 
following footpad injections (23). In a transgenic mouse model 
expressing Tag (T), L‑selectin (L), and Escherichia coli LacA 
(Z) in pancreatic β cells, the LTZ mice develop insulinomas, 
which specifically metastasize to lymph nodes, and the metas-
tasis is inhibited by an anti‑L‑selectin monoclonal antibody 
in vivo (18). However, the adhesion of L‑selectin expressed 
on a B‑cell lymphoma cell line with lymph node HEVs in a 
L‑selectin‑dependent manner is not associated with increased 
incidence of lymphatic metastasis, which may be ascribed to 
the impaired function of L‑selectin in partial tumor cells (24). 
Therefore, with the exception of regulating the trafficking 
of normal leukocytes, L‑selectin can facilitate lymphatic 
metastasis of tumor cells (Fig. 3A and B). Currently, whether 
L‑selectin promotes lymphatic metastasis via the same the 
process as the homing of lymphocytes via the ligand of PNAds 
or MR remains to be elucidated. E‑selectin is expressed on 
activated endothelial cells and commonly promotes hema-
togenous metastasis. Of note, E‑selectin and its carbohydrate 
ligand sLex are involved in the lymphatic metastasis of invasive 
breast micropapillary carcinoma (25).

5. Selectins in the hematogenous metastasis of cancer

The interactions of cancer cells with platelets and leuko-
cytes in the circulation, and the subsequent formation of 
cancer‑cell‑platelet‑leukocyte emboli protect cancer cells 
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from immune elimination, facilitate their adhesion to the 
endothelium and support the development of secondary 
metastastic foci  (26). The selectins expressed on platelets, 
leukocytes and activated endothelial cells are crucial in 
establishing tumor cell thrombi and subsequent hematogenous 
metastasis (Fig. 4A and B). The expression of E‑selectin on 
the cytokine‑activated endothelium mediates the rolling of 
leukocytes, their subsequent arrest and their transmigration of 
the endothelium. Substantial evidence shows that E‑selectin 
supports the attachment of tumor cells to the endothelium 
in a similar manner (5,27). The activation of E‑selectin on 
the endothelium is cytokine‑dependent, induced through 
the Ras/raf/mitogen‑activated protein kinase pathway (28). 
Tumor cells metastasizing to the hepatic circulation can 
induce a cytokine cascade effect, resulting in the activation 

of E‑selectin (29,30). Generally, colorectal cancer preferen-
tially metastasizes to the liver and leads to a poor prognosis. 
E‑selectin on activated hepatic sinusoidal endothelial cells 
interacts with carbohydrate ligands on colorectal cancer cells, 
including CD44 and hematopoietic cell E‑/L‑selectin ligand, 
mediating liver metastasis in  vivo  (28,31,32). This metas-
tasis can be inhibited by E‑selectin monoclonal antibody or 
C‑raf antisense oligonucleotides, inhibiting the expression of 
E‑selectin (29,33). In the metastasis of colon cancer to the lung, 
E‑selectin is important in the formation of spontaneous metas-
tasis in vivo (34). The E‑selectin‑CD44v4 interaction promotes 
the migration of breast cancer cells across the endothelium 
and transendothelial metastasis in vitro (35). The expression 
of gangliosides and Mac‑2 on breast cancer cells are novel 
ligands for E‑selectin, potentially mediating the formation of 

Figure 1. Successive steps of metastasis. The metastatic process begins with the proliferation of cancer cells in primary foci. The cancer cells escape from 
the primary site and intravasate the vascular endothelium into the bloodstream. Cancer cells interact with leukocytes and platelets protect them from immune 
elimination when circulating in the bloodstream. Subsequently, cancer cells are arrested by endothelial cells in the small capillaries of the secondary organ. 
Finally, cancer cells extravasate via the vascular endothelium into secondary sites and ultimately colonize metastatic lesions. C‑type lectins are important in 
multiple metastatic steps.

Figure 2. Structure of C‑type lectins. All molecules are transmembrane proteins with cytoplasmic, transmembrane and extracellular domains. The distinction 
between these proteins is concentrated in the extracellular domain. The extracellular domain of selectins comprises a CTLD, an epidermal growth factor‑like 
domain and between two and nine fibronectin type Ⅱ domains. The extracellular domain of the MR family comprises eight CTLDs, a complement‑binding 
protein‑like domain and a cysteine‑rich domain. The extracellular domain of the DC‑SIGN family consists of a CTLD and between one and nine coiled‑coil 
neck domains. The extracellular domain of CLEC‑2 possesses only a CTLD. The CTLD is the primary domain involved in the recognition of carbohydrates 
on cancer cells. CTLD, C‑type lectin‑like domain; MR, mannose receptor; DC‑SIGN, dendritic cell‑specific intercellular adhesion molecule‑3‑grabbing 
non‑integrin; DC‑SIGNR, DC‑SIGN‑related; LSECtin, liver and lymph node sinusoidal endothelial cell C‑type lectin; CLEC‑2, C‑type lectin‑like receptor 2.
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metastastic breast cancer (36,37). Furthermore, the interaction 
between bone‑metastatic prostate cancer cells and the bone 
marrow endothelium in vitro is also E‑selectin‑dependent (38). 
Increased endothelial E‑selectin can also facilitate the 
metastasis of pancreatic cancer cells to the liver in vivo (39). 
Interference of the cross‑linking between sLe antigens with 
E‑selectin indirectly suppresses the adhesion of tumor cells to 
the endothelium, inhibiting the formation of metastasis (40). 
Thus, it appears that E‑selectin is a mediator for hematog-
enous metastasis in several types of cancer. Platelet‑derived 
P‑selectin promotes tumor metastasis by mediating the 
aggregation and adhesion of platelets to tumor cells, and the 
formation of platelet‑cancer cell micro‑emboli (26). Of note, 
P‑selectin has been reported to bind to lymphoma, breast 
cancer, small cell lung carcinoma, colon cancer and neuro-
blastoma tumor cells, and these interactions are facilitated 
by multiple P‑selectin ligands on the tumor cells, including 
P‑selectin glycoprotein ligand‑1, CD44, CD24, sulfatides and 
chondroitin sulfate glycosaminoglycans (41‑46). In addition to 
its expression on platelets, P‑selectin is present on endothelial 
cells and several types of tumor cell. The endothelial‑derived 
P‑selectin contributes to the adhesion of tumor cells to the 
microvasculature in a P‑selectin‑dependent manner  (47). 
Similarly, P‑selectin derived from tumor cells is an important 
metastatic target (47,48). Accumulating experimental evidence 
from the inhibition of P‑selectin has elucidated the pivotal role 
of P‑selectin in hematogenous metastasis. For example, the 
metastatic potential of gastric cancer in vivo is significantly 
attenuated by P‑selectin monoclonal antibody (49). Heparin, 
an anti‑metastatic reagent, suppresses P‑selectin‑mediated 
interactions of platelets to colon and non‑small cell lung 
cancer cells  (50,51). Semisynthetic sulfated tri mannose 
C‑C‑linked dimer, a P‑selectin inhibitor, reduces the levels 

of metastasis in several animal models by suppressing 
P‑selectin in  vivo  (52). L‑selectin commonly supports the 
rolling of leukocytes along with endothelium and recruitment 
of leukocytes into inflammatory sites (53). Accordingly, the 
expression of L‑selectin on neutrophils, monocytes and NK 
cells facilitates tumor progression and metastasis, supported 
by cancer cell‑leukocyte‑endothelial interactions  (54,55). 
Podocalyxin‑like protein on colon carcinoma cells and sialo-
gucogylated podocalyxin on metastatic pancreatic cancer 
cells have been identified as functional L‑selectin ligands, 
which are potentially associated with tumor metastasis (56). 
CD44, a transmembrane glycoprotein widely expressed on 
polytype tumor cells, possesses multiple variant isoforms and 
is identified as a facilitator for cancer metastasis (57). Each of 
the selectins attaches to variant isoforms of CD44 (CD44v) 
on colon carcinoma cells and promotes hematogenous 
metastasis in multiple organs (31,34,43,57,58). Therefore, the 
selectin‑CD44v correlations may provide an explanation for 
the molecular mechanism underlying hematogenous metas-
tasis in colon cancer. The adhesion of selectins with their 
ligands on tumor cells or hematocytes facilities the formation 
of tumor microemboli and prevents tumor cells from immune 
clearance, which finally mediates hematogenous transendothe-
lial metastasis.

6. Members of the MR family

The MR family includes MR, M‑type phospholipase A2 receptor, 
DEC‑205 and Endo180. All members of this family are type 
I transmembrane receptors, which consist of an N‑terminal 
cysteine‑rich domain, a single fibronectin type II domain, and 
8‑10 CTLDs (Fig. 2). MRs are expressed by selected popula-
tions of macrophages, DCs and nonvascular endothelium. 
Commonly, MRs mediate the phagocytosis of pathogens with 
expression of mannose, glucose, N‑acetylglucosamine and 
fucose on the surface (14). In addition, MRs are abundant on 
afferent and efferent lymphatics. The presence of MRs on the 
lymphatic endothelium mediates the binding of lymphocytes 
to lymphatic vessels via its interaction with L‑selectin on the 
surface of lymphocytes (21). Furthermore, the expression of 
MRs on lymphatic endothelium cells is involved in cancer cell 
adhesion to the lymphatic endothelium, which may contribute 
to the behavior of lymphatic metastasis. Endo180, an endocytic 
receptor predominantly expressed on stromal cells, is crucial 
in intracellular collagen degradation (59). The degradation 
is indicated by the interactions of Endo180 with the type I 
collagen and glycosylated collagens, which are from the fibro-
nectin type II domain and CTLD, respectively (60). Similar 
to MR, the CRD of Endo180 also possesses a carbohydrate 
recognition function. However, Endo180 only exhibits binding 
potential to N‑acetylglucosamine.

7. MR in the lymphatic metastasis of cancer

The expression of MR on lymphatic endothelial cells is involved 
in the adhesion of cancer cells to the lymphatic endothelium, 
which is recognized as a critical step for lymphatic spread. MR 
directs the adhesion of head, neck and breast cancer cells to 
the lymphatic endothelium in vitro (61). A tumor model of MR 
(‑/‑) mice following subcutaneous footpad injections of cancer 

Figure 3. Roles of L‑selectin are similar in lymphocyte homing and the lym-
phatic metastasis of cancer. The lymphatic metastasis of cancer has a high 
degree of similarity with lymphocyte homing. PNAds and MRs are ligands 
of L‑selectin for lymphocyte adhesion to (A) HEVs and (B) lymphatic ves-
sels, respectively. The attachment of cancer cells to HEVs and lymphatic 
vessels has been identified, although the corresponding ligands remain to be 
elucidated. PNads, peripheral lymph node addressins; HEV, high endothelial 
venule; MR, mannose receptor.
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  B
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cells exhibited reduced regional lymph node metastases, 
with significantly larger primary tumors. The attachment of 
lymphocytes and tumor cells to lymphatic vessels was a simul-
taneous reduction in this model (62). MR and CD44 have been 
identified as a receptor‑ligand pair in supporting the migration 
of lymphocytes via the lymphatic vessel (63). The MR‑CD44 
interaction is dependent on the cysteine‑rich domain of MR 
and chondroitin sulfate side chains of CD44. Generally, there 
is a level of similarity between lymphatic metastasis and the 
homing of lymphocytes to lymph nodes. As CD44 is present 
in the majority of malignancies, including breast cancer (64), 
colon cancer  (65) and lung cancer  (66), the correlation 
between the expression of CD44 on cancer cells with the MRs 
expressed on lymphatic endothelium may be associated with 
the lymphatic metastasis of these malignancies.

8. Role of Endo180 in tumor metastasis

Endo180, also known as urokinase plasminogen activator‑asso-
ciated protein, is the fourth member of the MR family and 
is predominately expressed on fibroblasts, endothelial cells 
and macrophages (67). Additionally, Endo180 is present on 
a variety of tumors, including those in prostate cancer (68), 
head and neck cancer (69), breast cancer (70) and glioma (71). 
Of note, the expression of Endo180 in epithelial cancer is 
frequently restricted to the stromal compartment, rather than 
the cancer cells themselves (72). Generally, degradation of 
the extracellular matrix is responsible for tissue remodeling, 
tumor invasion and metastasis. Endo180 functions as an 
endocytic receptor, is critical in the uptake and degradation of 
intracellular collagen, and also promotes extracellular matrix 
degradation (73). This degradation is predominantly mediated 
by the CRD of Endo180 with corresponding carbohydrate 
ligands. Currently, Endo180 is identified as a facilitator for the 
invasion and metastasis of multiple types of tumor. Endo180 is 

significantly associated with the overespression of membrane 
type  1‑matrix metalloproteinase  14 in prostate cancer, 
which is associated with increased migration and metastasis 
in vitro (68). During the progression of head and neck squa-
mous cell carcinoma, Endo180 is involved in the destruction 
of connective tissue through mediating cellular uptake and 
the degradation of collagen (69). In breast cancer, Endo180 
has been confirmed to promote tumor growth in vivo (70). 
Notably, patients with breast cancer with elevated serum 
levels of Endo180 exhibit increased metastatic potential (74). 
Furthermore, a high expression level of Endo180 in glioma 
cells facilitates glioma invasion via collagen‑containing 
matrices in an Endo180‑dependent manner (71). Consistently, 
the downregulation of Endo180 is associated with decreased 
invasion and migration of glioma cells in vitro (75). These 
data demonstrated the specific relativity of Endo180 with the 
metastatic spread of tumors, and support that it may serve as a 
novel target for antitumor metastasis in a distinctive manner.

9. Type II NK cell receptor family in tumor metastasis

The NK‑cell receptor family comprises several members. 
C‑type lectin‑like receptor 2 (CLEC‑2) and lectin‑like 
ox‑low‑density lipoprotein receptor‑1 (LOX‑1) are two 
representative molecules, which promote tumor metastasis. 
Notably, the extracellular domain of CLEC‑2 possesses a 
CTLD (Fig. 2). CLEC‑2 is expressed in abundance on platelets 
and acts as a platelet activation receptor. Platelets are crucial 
in physiological hemostasis, pathological bleeding and throm-
bosis within the bloodstream (76). Platelets can also protect 
tumor cells from immune elimination by facilitating the 
formation of platelet‑tumor cell emboli, promoting the arrest 
of tumor cells at the endothelium and eventually establishing 
metastatic lesions. Podoplanin, functioning as an activating 
ligand for CLEC‑2, is frequently upregulated in several 

Figure 4. Interactions between selectins and the physiological processes and hematogenous metastasis of cancer. (A) Physiological functions of selectins 
in the blood. The attachment of leukocytes and platelets to the activated endothelium are mediated cooperatively by three types of selectins. (B) Potential 
selectin‑cancer cell correlations during the process of hematogenous metastasis. L‑ and P‑selectins mediate the recruitment of leukocytes and platelets to 
cancer cells, and subsequently facilitate the formation of cancer‑cell‑platelet‑leukocyte emboli, which protect cancer cells from immune elimination. E‑ and 
P‑selectins are then critical in the attachment of cancer cells to the activated endothelium and in supporting metastatic spread.

  A   B
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types of tumor, which increases their invasive potential and 
mediates the hematogenous metastasis of tumors  (77,78). 
Notably, the interaction between cancer cell‑derived podo-
planin and CLEC‑2 on platelets is identified as a facilitator 
for metastatic spread (79). Takagi et al  (77) reported that 
the anti‑human podoplanin antibody, MS‑1, can inhibit the 
CLEC‑2‑podoplanin interaction and subsequent platelet 
aggregation, and eventually suppress metastasis following 
xenografting of podoplanin‑positive lung squamous cell 
carcinoma into NOD‑SCID mice (77). Therefore, interference 
of the podoplanin‑CLEC‑2 attachment, which interferes with 
the platelet‑tumor interaction, may be a molecular therapeutic 
route for hematogenous metastasis. Podoplanin is overex-
pressed in several types of cancer, including squamous cell 
carcinoma of the oral cavity, larynx and lung (80-82), malig-
nant mesothelioma (83), colorectal adenocarcinoma (84) and 
brain tumors (85). Therefore, inhibiting podoplanin‑CLEC‑2 
binding may be a promising strategy for attenuating the 
hematogenous metastasis of these types of cancer. LOX‑1 is 
expressed primarily on the surface of endothelial cells and 
is key to the development of atherosclerosis. It is widely 
known that attachment of cancer cells to the endothelium 
and subsequent transendothelial migration are essential for 
metastasis. The upregulation of LOX‑1 on the surface of 
human lung microvascular endothelial cells induced by tumor 
necrosis factor‑α facilitates the adhesion and transendothelial 
migration of breast cancer cells in vitro (86). In this process, 
LOX‑1 exhibits functional similarity to endothelial E‑selectin 
in mediating tumor metastasis. Therefore, LOX‑1 may be 
an important mediator for tumor metastasis in addition to 
E‑selectin.

10. DC‑SIGN family in tumor metastasis

The DC‑SIGN family contains DC‑SIGN, DC‑SIGNR, 
LSECtin and CD23. All members of this family are type II 
transmembrane receptors, comprising a short NH2‑terminal 
cytoplasmic tail, a transmembrane domain, an extracellular 
neck domain and a C‑terminal CRD (Fig. 2). DC‑SIGN is 
predominantly expressed on DCs, whereas DC‑SIGNR and 
LSECtin are co‑expressed by liver and lymph node sinusoidal 
endothelial cells (9,87). DC‑SIGN, DC‑SIGNR and LSECtin 
share common functions in that they serve as adhesion 
molecules and are involved in antipathogenic microorganism 
immunity (87). It is understood that DCs are essential for the 
antitumor immune response. The expression of DC‑SIGN on 
DCs binds to Lewisx and Lewisy carbohydrates on tumor‑asso-
ciated carcinoembryonic antigens of colon cancer cells, 
suppressing the function of antitumor immunity of dendritic 
cells and subsequently inducing immune evasion, which is 
in favor of the progression and metastasis of colon cancer 
cells (8,88). Similar to DC‑SIGN, the expression of LSECtin 
on B16 melanoma cells facilitates tumor progression by 
attenuating tumor‑spectific T‑cell responses (89). Therefore, 
one mechanism of DC‑SIGN and LSECt in promoting 
tumor progression and metastasis may be through inhibiting 
the antitumor immune response. The association between 
DC‑SIGN and LSECtin and tumor metastasis has been further 
demonstrated. Jiang et al (9) reported high expression levels of 
DC‑SIGN in colon cancer tissues, which correlated positively 

with stage Ⅲ‑Ⅳ disease (9). Thus, DC‑SIGN is associated 
with the metastatic potential of colon cancer cells, as lymphatic 
metastasis or distant organ metastasis are frequently present 
are in stages Ⅲ‑Ⅳ of disease. The expression of LSECtin on 
liver sinusoidal endothelial cells mediates the migration and 
metastasis of colon cancer cells to the liver. Consistently, the 
metastatic rate is markedly reduced in LSECtin‑knockout 
mice following injections of colon cancer cells into the spleen 
in vivo  (10). This finding may be valuable for elucidating 
the molecular mechanism of hepatic metastasis in colon 
cancer. Although the association between DC‑SIGNR and 
tumor metastasis remains to be elucidated, previous studies 
have reported certain correlations between DC‑SIGNR and 
tumors (9,90). Thus, the DC‑SIGN family may be promising 
targets for tumor metastasis.

11. Targets for antimetastatic therapy

As mentioned above, the original interactions of C‑type lectins 
with their corresponding ligands are critical in the formation 
of metastases. Inhibiting the expression of C‑type lectins or 
interference of the binding between C‑type lectins and their 
ligands may offer potential in targeting therapy. Selectins, 
vital mediators of platelet‑cancer cell‑leukocyte‑endothelium 
interactions and the formation of metastases, have been 
identified as important targets and several selectin inhibitors 
have been found to have antimetastatic effects. For example, 
inhibiting the expression of E‑selectin by cimetidine 
inhibits the adhesion of cancer cells to the endothelium and 
subsequent metastasis (40). P‑selectin is a target of sulfated 
hexasaccharides in attenuating metastasis (52), and heparin 
effectively prevents the metastasis of various types of tumors 
by inhibiting selectins (47,50). In terms of the MR family, 
MR‑targeted vaccines offer for an attractive strategy in anti-
tumor therapy by increasing immune defense (91). Although 
the feasibility requires confirmation by further clinical trials, 
several studies, including in vivo studies, have supported the 
potential value of C‑type lectin‑dependent anti‑metastatic 
targeting therapy.

12. Conclusions and perspectives

The present review summarizes representative C‑type lectins 
crucial in the lymphatic and hematogenous metastasis of 
tumors, which are frequently dependent on the interactions 
between C‑type lectins and corresponding carbohydrate 
ligands on tumor cells. The process of the metastatic spread 
of cancer cells comprises a series of successive steps, and 
each step of the cascade is essential to the establishment of 
a metastatic focus. The majority of C‑type lectins, including 
selectins, MR, LSECtin, facilitate metastasis predominantly 
through involvement in the circulating of tumor cells in the 
blood or lymphatic vessels, adhesion to endothelial cells and 
subsequent transendothelial migration. However, Endo180 is 
involved in the invasion of tumor cells into the surrounding 
stroma by facilitating the degradation of extracellular 
matrix. An improved understanding of the involvement of 
C‑type lectins in the diverse steps of cancer metastasis can 
offer a comprehensive perspective for further clarifying the 
complicated molecular mechanisms of cancer metastasis. The 
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present review describes the novel concept of the association 
between C‑type lectins and tumor metastasis, which provides 
direction in identifying additional metastatic molecules of 
C‑type lectins. Although several C‑type lectins molecules 
have been identified as mediators for tumor metastasis, the 
corresponding ligands remain to be fully elucidated. Further 
investigations are warranted to investigate the indeterminate 
ligands of C‑type lectins. The elucidation of the importance of 
C‑type lectins in cancer metastasis may provide novel insights 
into C‑type lectin‑based anti‑metastatic therapy.
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