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Abstract. Cancer-associated fibroblasts (CAFs) are one major
type of component identified in the tumor microenvironment.
Studies have focused on the genetic and epigenetic status of
CAFs, since they are critical in tumor progression and differ
phenotypically and functionally from normal fibroblasts.
The present review summarizes the recent achievements in
understanding the gene profiles of CAFs and pays special
attention to their possible epigenetic alterations. A total
of 7 possible genetic alterations and epigenetic changes in
CAFs are discussed, including gene differential expression,
karyotype analysis, gene copy number variation, loss of
heterozygosis, allelic imbalance, microsatellite instability,
post-transcriptional control and DNA methylation. These
genetic and epigenetic characteristics are hypothesized to
provide a deep understanding of CAFs and a perspective on
their clinical significance.
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1. Introduction

It is widely recognized that the accumulation of various harmful
genetic alterations in normal cells may induce malignant cancer
cells (1). Genetic mutation is one genetic alteration, but not all
genetic mutations are harmful. Genetic mutation promotes
biological evolution and results in biodiversity (2,3). Genetic
alterations include genetic mutation, gene copy number varia-
tion (CNV), loss of heterozygosity (LOH), allelic imbalance
(AI) and microsatellite instability (MSI). Epigenetic alterations,
represented by post-transcriptional control and DNA methyla-
tion, have been the focus of recent studies.

Cancer-associated fibroblasts (CAFs) are one major type
of component in the tumor microenvironment (4). CAFs differ
phenotypically and functionally from normal fibroblasts
(NFs) (5). CAFs provide cancer cells with nutrition and promote
the proliferation, invasion and metastasis of cells (6-9). CAFs
maintain their phenotype for numerous passages during culture
in vitro without exposure to cancer cells, while NFs cannot be
infinitely proliferous like cancer cells (10). Therefore, it has
been demonstrated that genetic or epigenetic alterations may
be responsible for the special features of CAFs (Fig. 1) (10).
Due to the critical role of CAFs during cancer progression,
the genetic characterization of CAFs aids in the investigation
of cancer therapy. The present review summarizes the current
knowledge regarding 7 possible genetic and epigenetic altera-
tions in CAFs.

2. Differential expressions of certain special genes in CAFs

CAFs are different from NFs, and their unique phenotypes and
functions are partly determined by differences in gene expres-
sion. The differences between CAFs and NFs in gene expression
have been extensively compared; in one study, 31 genes in breast
CAFs, which were identified using Affymetrix Human Genome
U133 Plus 2.0 and an empirical Bayesian model, were different
from those in NFs (11). Of the 31 genes, the 21 upregulated genes
were primarily associated with cell paracrine and intracellular
signaling, transcription regulation and cell adhesion and migra-
tion, and their transcriptional products included transforming
growth factor-f32 (TGF-f2), insulin-like growth factor-binding
protein 2 and transcriptional factor AP-2a/y (11). By contrast, the
10 downregulated genes were primarily associated with epithe-
lial membrane proteins (11). Genes mainly involved in coding
adhesion molecules and growth factors have also been found
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to be upregulated in other types of CAFs, including colon (12)
and pancreatic (13). The prostaglandin-endoperoxide synthase 2
gene (PTGS2), which encodes cyclooxygenase-2, was found to
upregulate the expression of TGF-B2 (14). These results are
consistent with another study concerning the gene expression
profiling of breast CAFs, which were detected using a comple-
mentary DNA microarray (15).

A study on the gene signature of CAFs in non-small
cell lung cancer (NSCLC) revealed similar results to those
observed in breast CAFs (16). In total, there were 46 genes
differently expressed in CAFs compared with NFs, and the
upregulated genes were enriched in cell signal transduction,
cell adhesion, cell response to stress and angiogenesis (16).
In total, of 6/46 genes were also associated with the TGF-3
signaling pathway (16). TGF-f is a multifunctional signaling
factor(17-19),whichisinvolvedintheepithelial-to-mesenchymal
transition (EMT) (20,21). This may be one origin of CAFs (5).
Cellular tumor antigen 53 (p53) signal transduction and genes
associated with cell apoptosis and death were downregulated
in colon CAFs (22). In addition, the gene expression profiling
of CAFs may be prognostically significant for patients with
NSCLC or colorectal cancer (CRC) (16,22).

The differences in gene expression between CAFs and NFs
are in keeping with the special function of CAFs in promoting
cancer progression. CAFs promote the growth of cancer
cells by providing nutrition to tumor cells (23,24), and facili-
tate the invasion and metastasis of tumor cells by secreting
matrix metalloprotease to resolve the matrix surrounding
cancer cells (16,25-28). Additionally, CAFs activate tumor
angiogenesis (29-31).

CAFs have a gene expression signature different from NFs,
and upregulated genes are primarily associated with angio-
genesis, EMT, cell adhesion and cell interactions (32,33). The
gene expression profiles of CAFs are different among various
tumors, despite certain general features. In the 3 subtypes of
breast tumor, which are differentiated according to 3 receptors,
estrogen, human epidermal growth factor receptor 2 (HER2)
and progesterone, the gene expression profiles of CAFs are
even subtype-specific (34), which may be used to distinguish
the 3 subtypes (32). Cancer stage also affects the gene expres-
sion profiling of CAFs in breast cancer (35).

3. Karyotype analysis in CAFs

A karyotype, which is defined as the chromosomal composition
in an individual cell, reflects the number and structure of
chromosomes. Humans are diploid with 46 chromosomes;
however, cancer cells are usually polyploidy or aneuploidy
with a larger nuclei-cytoplasm ratio compared with normal
cells. Polyploidy helps cancer cells to resist adverse factors,
and tetraploid cell lines are more viable than diploid cell
lines (36). Whether or not CAFs have various chromosome
karyotypes in a way that is similar to cancer cells remains
controversial. No clear differences have been identified in the
chromosome karyotype of CAFs in oral carcinoma (37). By
contrast, CAFs from 2 types of tumors, namely melanoma and
prostate cancer (xenograft or spontaneous), are characterized
by aneuploid karyotypes, which are caused by the attenuated
activation of p53 in CAFs (38). Common reasons that account
for the conflicting results observed include the heterogeneity

of CAFs and the various anatomical locations. Furthermore,
the largest difference between the two aforementioned studies
is the time in cell culturing; the study that identified positive
karyotype alterations had cultured CAFs for =20 weeks prior
to testing (38). Since survival advantage in the tumor microen-
vironment, caused by selection pressures, is the reason for the
alteration of karyotypes, a long-term culture is more likely to
obtain CAFs with altered karyotypes.

Senescence that is activated by signals in CAFs, including
growth-regulated oncogene-1 and the TGF-f/connective
tissue growth factor pathway, may fuel and promote the
growth of cancer cells (39,40). Polyploidy is one of the three
steps leading to the immortality of cancer cells, and cells
with normal karyotypes cannot avoid senescence (41). Conse-
quently, whether the absence of chromosome karyotype may
cause CAF senescence and whether the senescent CAFs then
promote tumor growth remains unclear.

4.DNA CNVs in CAFs

CNVs are particularly common in tumors and can contribute
to tumor progression (42). The multiplex ligation-dependent
probe amplification technique has previously demonstrated the
presence of gene dosage alterations in ovarian cancer CAFs,
and CNV was identified in 61% of genes (43). Amplifications
and deletions were detected in CAFs in colorectal and breast
carcinomas, and the presence of 17 CNVs was confirmed by
representational oligonucleotide microarray analysis (44).
Ephrin type receptor (Eph) A4, EphA2 and EphB2 were also
identified in these alterations, and EphA4 may be directly
associated with tumor angiogenesis and progression; thus
Ephs may be attractive drug targets for cancer therapy (45,46).
By contrast, CN'Vs were not identified in 95% of 98 patients,
including 484 frozen specimens (47), and this study
suggested that previous studies exhibiting a high frequency
of CN'Vs are not entirely believable, since formalin-fixed and
paraffin-embedded (FFPE) specimens have been used and,
thus, the high number of CN'Vs may reflect an FFPE-related
artifact. Finally, the authors of the aforementioned study
concluded that the tumor microenvironment is genomically
stable (47). The present authors hypothesize that genetic
statuses are different among various types of tumor. However,
CNVs in colorectal and breast carcinomas have been detected
without using FFPE specimens (44). Thus, investigations using
more specific and accurate methods are required.

5.LOH and AI

Numerous forms of genetic alterations, including MSI, LOH,
ATl and CNV, have been observed in benign and malignant
epithelial neoplasms. The LOH-induced tumor suppressor
gene (TSG) mutation is common among cancer epithelial
cells (48-50). Whether or not LOH and Al are present in CAFs
has been the focus of studies in recent years.

Several types of cancer, including head and neck squamous
cell carcinoma (HNSCC), breast cancer, ovarian cancer, bladder
cancer and CRC, and their associated stromata have been
investigated since 2000. LOH or AI was revealed in all these
cancer stromata. The LOH of the p53 and BRCAL1 genes in chro-
mosome 17 was identified in ulcerative colitis (UC)-associated
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carcinogenesis (51) and CRC (52). The LOH in stromal cells
is associated with the colitis-associated carcinogenesis, and
the frequency is increased compared with cancer cells (51). In
CAFs of HNSCC, LOH is identified in the tumor protein 53
(TP53) and phosphatase and tensin homolog (PTEN) genes
(two important tumor-suppressing genes) and the frequency
is associated with tumor size and lymph node metastasis (53).
LOH in TP53 is also observed in bladder cancer CAFs (54). The
frequency of LOH in chromosome 3p21.3, a region that harbors
3 hyaluronidase genes potentially encoding the hyaluronidase
tumor suppressor, in the stromal cells of ovarian cancer is
similar to the frequency in cancer cells (55). However, LOH in
these genes does not affect the accumulation of hyaluronidase
or tumor progress (55). Breast cancer is most commonly used
in the detection of LOH and A, and numerous studies focus on
TP53 and PTEN (56). The LOHs of TP53 and PTEN have been
identified in hereditary and sporadic breast cancers: Hereditary
patients are more prone to TP53 mutation; however, it is only
in sporadic breast cancer that LOHs of TP53 and PTEN are
associated with cancer lymph node metastasis, tumor grade
and type of estrogen receptor (57,58). The frequency of LOH is
high in sporadic breast cancer, and LOH at certain loci is noted
only in stromal cells; these loci primarily code TSGs (51,53).
LOH and AI of certain genes occur in tumor and stromal cells,
while some occur only in tumor or stromal cells (53,56). The
occurrence of LOH in the cancer epithelium or stromal cells
is not completely random; certain unique loci may contain
an increased frequency of LOH compared with other loci,
whilst several loci may act as trigger points, at which a LOH
may result in a LOH at another locus (59,60). p53 mutations in
CAFs also affect the CAF in question. LOH or complete loss
of p53 in CAFs leads to the accumulation of stroma in cancer
tissues, an increased proliferation of mesenchymal cells and a
mesenchymal response (61). pS3 status is involved in clinical
treatment, since a LOH of p53 in CAFs weakens the response of
cancer cells to radiotherapy and chemotherapy (38,62). Recently,
the acquired resistance to targeted chemotherapy of pulmonary
adenocarcinoma, including epidermal growth factor receptor
tyrosine kinase inhibitor (EGFR-TKI), has attracted more atten-
tion, and EMT may be one major reason (63,64). Since EMT
may be one origin of CAFs (5), the present study hypothesizes
that the p53 status or LOH of p53 in CAFs of pulmonary adeno-
carcinoma may play a role in the resistance against EGFR-TKI.
p53 status in cancer cells has been shown to be associated with
tumor angiogenesis (65-68). Regarding the reason for the multi-
functionality of CAFs, altered p53 signal transduction in CAFs
may also be associated with angiogenesis.

Overall, the present review concludes that genetic altera-
tions in cancer and stromal cells may occur independently, at
least in breast cancer. In addition, interactions and cross-talk
exist between tumor epithelia and supportive stromal cells.
Stromal cells should be recognized as an equal and inde-
pendent interactive component, rather than a response or an
accessory to the carcinoma.

6. MSI
MSI represents a defective mismatch repair and is one feature

of tumors (69). MSI occurs not only in cancer epithelial cells,
but also in CAFs. MSI occurs in 41% of CRC CAFs vs. 34%

of cancer cells (70). MSI in cancer cells is positively corre-
lated with differentiation and Duke's stage; however, in CAFs,
MSI is more frequent in samples with Duke's stage A (55%)
and well-differentiated CRCs (54%) (70). In addition, MSI
occurs in UC-associated CRC CAFs, since MSI in CAFs is
associated with TSGs, including p53 (71). Furthermore, TSG
instability is more important at the early stage of UC-associ-
ated oncogenesis (72). MSI also occurs at the early stage of
esophageal cancer CAFs, but the frequency is increased in
squamous cell carcinoma compared with in Barrett's adeno-
carcinoma (73).

With the exception of MSI in the nuclei of CAFs, MSI
in DNA occurs in the cytoplasmic mitochondria (Mt) of
CRC CAFs. The Mt genome contains 16,569 nucleotides
that encode 2 ribosomal RNAs and 22 transfer RNAs, the
production of which is critical for oxidative phosphoryla-
tion (74). MtMSI has already been reported in several types
of cancer cells (75-77). MtMSI in CAFs is primarily detected
in the D-loop of MtDNA, which contains transcription and
replication regulatory elements (78). Different from nuclear
MSI, MtMSI in CRC CAFs is not related to Duke's stage, or to
nuclear MSI of CAFs or cancer cells. MtMSI may work only
in the development, but not progression, of tumorigenesis (79).

7. Epigenetic alterations

Background. An epigenetic alteration is a local and global
gene expression regulation, which is achieved primarily
through DNA modification and nucleosome rearrangement
rather than changes in DNA base pairs (80). The initiation and
progression of cancer may be accompanied by genetic altera-
tions and epigenetic regulations (81). Epigenetic alterations are
divided into several subtypes, including post-transcriptional
control, DNA (promoter) methylation, long-range epigenetic
regulation, local nucleosome remodeling, deposition of
histone proteins and covalent modification of canonical core
histones (82). Certain subtypes associated with CAFs have
already been confirmed.

Post-transcriptional control. Post-transcriptional control
is a key process in gene expression, and its major tool is
microRNA (miRNA). miRNAs are small non-coding RNAs
of 19-25 nucleotides. miRNA is involved in numerous cellular
progresses, including development, differentiation, cell
response to stress, cell proliferation and apoptosis (83,84).
miRNA acts as an oncogene and tumor suppressor through
various target genes (85). The functions of miRNA have been
widely investigated in various types of cancer cells (86).

The mostrelevant studies focus on tumor microenvironment
and miRNA in CAFs (Table I). Recent studies on breast cancer
have revealed various miRNA statuses in CAFs. CAF cell
lines from 6 patients and paired NFs have been analyzed using
miRNA microarrays to identify 11 dysregulated miRNAs (87).
In total, 3/11 miRNAs (miRs), including miR-221-5p, -221-3p
and -31-3p, were found to be upregulated, and the remaining
8 miRNAs, including miR-26b, -101, -141, -200b, -200c, -205,
-342-3p and -let-7g were found to be downregulated (87). These
11 miRNAs target interleukin-6 (IL-6), TGF-f and hepatocyte
growth factor signaling pathways, which affect cell prolifera-
tion, differentiation, secretion, migration, intercellular adhesion
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Table I. miR status in cancer-associated fibroblasts of various cancer types.

Cancer type miR profile Status Target genes
Breast miR-221-5p, miRNA-221-3p, i TGF-f, IL-6, HGF, ETS-2 and Ki-67
miR-31-3p and miR-21
miR-26b, miR-101, miR-141, l
miR-200b, miR-200c, miR-205,
miR-342-3p, let-7g and miR-320
Bladder miR-16 and miR-320 T TNF-a, FGF-inducible4 and pro-angiogenic miR
miR-143 and miR-145 l
Ovarian miR-155 i CCLS5 or other chemokines secreted by CAFs
miR-31 and miR-214 l
Gastric miR-143 T TGF-B/Smad
Endometrial miR-148 l Wnt-1 and Wnt-10
Prostate miR-15 and miR-16 ! Bcl-2, Wnt, Bmi-1, Ccnel, Cendl, VEGF and IL-6
SCC miR-21 1 TPMI1, TPM3 and TGF-f3
Colorectal miR-21 i PDCD4, SPRY1, SPRY2, NFI-B, RECK and PTEN
NSCLC miR-186 i Glutl, CDK216, CCNDI1 and CkIla mRAN

SCC, squamous cell carcinoma; NSCLC, non small cell lung cancer; miR, microRNA; 1, upregulated; |, downregulated.

and interaction with other compartments in tumors (87).
miR-320 and -21 are also different, since miR-320 is regulated
by PTEN and its target gene is ETS proto-oncogene 2 (ETS2).
The downregulation of miR-320 with the upregulation of
ETS2 in PTEN-knocked-out CAFs promotes angiogenesis and
cancer cell invasion (87). The PTEN-miR-320-ETS2 complex,
which distinguishes between normal and tumor stroma, is
associated with the recurrence of breast cancer (88). miR-21
in CAFs is associated with Ki-67, and its high expression
results in the increased proliferation of tumor cells (89,90).
The roles of miR-21 are different among various CAFs. In
stage II CRC, CAFs with a high expression of miR-21 predicts
poor disease-free survival (91). During the process between
precancerous adenoma and advanced CRC, the frequency and
extent of miR-21 expression are increased (91). In esophageal
squamous cell carcinoma, miR-21 in CAFs affects the migra-
tion and invasion of cancer cells and may be involved in the
activation of NFs to CAFs through tropomyosin (TPM) 1,
TPM3 and TGF-f pathways (18,20,92).

Two other studies looking at CAFs in endometrial cancer
have identified 12 miRNAs with various expressions (87).
Among 12 miRNAs analyzed, miR-31 is the most down-
regulated (93), the target of which is the SATB2 homeobox
gene. Special AT-rich sequence-binding protein 2 (SATB2)
is a matrix attachment region-binding protein that codes cell
type-specific transcriptional factor involved in regulating
transcription in large chromatin domains (93). The upregu-
lated expression of SATB2 in breast cancer is associated with
increased tumor grade (94). SATB2 is highly expressed in
breast cancer CAFs, which results in the increased capacity
for promoting the migration of cancer cells and invasion
of CAFs (93). The introduction of SATB2 into NFs could
stimulate the expression of genes involved in the scattering,
migration and invasion of cells (95). miR-148a is another
reduced miRNA in breast cancer, and by acting with its target
Wnt family member 10B (WNT10B), miR-148a promotes the

migration of cancer cells without affecting growth rate (96).
WNTI10B may also be involved in the activation of CAFs (97).

miRNAs are also detected in other types of CAFs. Of the
4 miRNAs investigated in bladder cancer CAFs, 2 miRNAs
(miR-16 and -320) are upregulated and 2 miRNAs are down-
regulated (98). Certain studies suggested that miR-16 may
pro-apoptotically act as a tumor suppressor and miR-320
may be associated with DNA promoter methylation in cancer
cells (99,100). On the contrary, the expression of miR-143
and miR-145 is reduced in CAFs, and both are involved in
tumor suppression (101). Ovarian CAFs contain 2 down-
regulated miRNAs (miR-31 and -214) and 1 upregulated
miRNA (miR-155) compared with NFs. Mimicking the
miRNA status using miRNA suppressors and transforming
miRNAs could induce functional conversions from NFs to
CAFs, while the reverse experiment can result in the conver-
sion from CAFs to NFs (102). Notably, the upregulation of
miR-214 is directly associated with chemokine (C-C motif)
ligand 5, a chemokine that is abundant in the serum and
promotes the invasion and migration of cancer stem cells,
and these actions are similar to CAFs in ovarian cancer (103).
However, miR-143 expression is upregulated in the CAFs
of scirrhous gastric cancer rather than in the non-scirrhous
types 40 (104). miR-143 enhances the expression of collagen
type III through activating the TGF-f/SMAD pathway
40 (104). The increased expression of miR-143 is associated
with poor cancer-specific mortality, thus miR-143 may act
as an independent prognostic factor (104). Two miRNAs
(miR-15 and -16) with lower expressions have been indicated
in the CAFs of prostate cancer, and the downregulation of
each reduces the post-transcriptional repression of fibroblast
growth factor-2/fibroblast growth factor receptor-1, which in
turn promotes the growth and progression of cancer cells (105)
Therefore, the decreased expressions of miR-15 and -16 also
promote the growth of cancer cells. Oncogenes, such as
B cell lymphoma 2 and Wnt, and angiogenesis-related genes
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such as vascular endothelial growth factor and IL-6 (29), are
involved in the target genes of these two miRNAs (105).

miR-186 in CAFs is involved in glycolysis, and combined
with the 3'-untranslated region of its target gene glucose trans-
porter 1 (Glut 1), it is active in regulating the uptake of glucose
and production of lactate (106). The roles of CAFs in cancer
glucose and energy metabolism are recognized using a novel
method named the ‘reverse Warburg effect’ (23,107,108).
Caveolin-1 is a key pathway in the CAF metabolism conver-
sion (109,110). Whether or not miR-186 and Glut 1 are associated
with the caveolin-1 pathway requires further research.

DNA methylation. DNA methylation is one epigenetic change
and is mainly divided into two subtypes, hypermethylation
and hypomethylation (80). DNA promoter hypermethylation
could result in the silence of TSGs, while hypomethylation of
oncogenes causes its activation or overexpression (111,112).
Thus, the two subtypes are critical for tumorigenesis. DNA
methylation in CAFs has been widely investigated.

Tumor stroma is important for cancer progression. In
CRC, the components rich in connective tissues were found
to have an accumulation of chondroitin sulphate proteoglycan.
The relevant gene coding this proteoglycan contains a 3-fold
decrease of hypomethylation and this change only occurs in
the CAFs of tumor stroma, rather than in cancer cells (113,114).
The same hypomethylation is absent in the stroma of UC,
indicating that chronic inflammation is not powerful enough
to change cytosine methylation (115).

In prostate cancer, promoter hypermethylation of
cyclin-dependent kinase inhibitor 2A, hypermethylated in
cancer | protein, tumor suppressor candidate 3 and glutathione
S-transferase P1 (GSTP1) is extremely abundant in cancer
epithelial cells and CAFs (116). The GSTP1 promoter is meth-
ylated in >90% of prostate cancers. Though GSTP1 may not
suppress cancer cell growth and is not considered to be a TSG,
it may be a caretaker gene and its aberrant silencing in CAFs
may create a tumorigenic microenvironment (117). Promoter

hypermethylation could also be responsible for the inactivation
of another candidate TSG, the opioid binding protein/cell adhe-
sion molecule-like gene, in invasive cervical cancer CAFs (118).
In addition to hypermethylation, DNA promoter hypomethyl-
ation may also exist in CAFs. Activation of long interspersed
nucleotide element-1 in tumorigenesis-related CRC is due to its
hypomethylated promoter (119). Gene methylation profiles are
associated with the status of receptors. In HER2/neu-positive
breast cancer CAFs, 3 corresponding genes, including proges-
terone receptor, type IV 17-B-hydroxysteroid dehydrogenase
and H-cadherin, are downregulated (120). These genes are
methylated in breast cancer, but are only slightly or not methyl-
ated in non-neoplastic breast cancers (120). Gene methylation
is a dynamic process in esophageal squamous cancer and
cervical cancer; thus, the level of methylation changes with the
progression of cancer (121,122). Apart from locally methylated
DNA, global gene hypomethylation was confirmed in CAFs
of gastric cancer (123). Most importantly, global methylation
of CAFs occurs as early as the dysplastic stage, which could
potentially provide a novel strategy for early diagnosis.
Mechanistically, several possible reasons may explain
the aberrant methylation in CAFs. The field effect could be a
cause of methylation in certain CAFs, as this effect induces the
spread of methylation among various types of cells (124,125);
for example, Septin 9 gene hypermethylation in CAFs occurs
later than in CRC epithelial cells, which may reflect the
spread of Septin 9 hypermethylation from CRC epithelial
cells to CAFs. CAF methylation possibly occurs through field
effects from cancer cells (126). In addition, abnormal cell
proliferation, a local decrease of methyl donors under certain
premalignant conditions, or both of these factors may result
in hypomethylation (123,126). As for DNA promoter hyper-
methylation in cancer cells, 3 possible mechanisms have been
put forward, including the infidelity of maintenance DNA
(cytosine-5)-methyltransferase (DNMT)I, the de novo methyl-
ating enzymes, DNMT3a and DNMT3b, and the faulty repair
mechanism of aberrantly methylated DNA (127). Whether or
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not these 3 mechanisms are accurate and suitable for CAFs
should be validated through additional studies.

8. Clinical significance, controversies and future outlook

Perspective on the clinical significance. Clinical trials have
already used miRNAs as drug targets or biomarkers for the
stratification of patients, prognosis and drug efficacy (128).
miR-21 is upregulated in the CAFs of several cancer types
and is selected as a diagnostic and prognostic marker. mir-21
is associated with the Duke's stage of CRC. Highly expressed
stromal miR-21 predicts a poor recurrence-free survival (129).
Combined with other miRNAs, plasma miR-21 could be anovel
method for early cancer diagnosis. However, miR-143 usually
shows a decreased expression and is considered as a cancer
suppressor (104,130,131). Erb-b2 receptor tyrosine kinase 3
(ERBB3), one of the four members of the ERBB family of
receptor tyrosine kinases, is targeted by miR-143, which
in turn prevents breast cancer cells from proliferation and
invasion. EGFR-TKI drugs have a special effect in targeting
cancer cells, but patients have to endure drug-resistance for
several months after administration of the drugs. miR-143
could potentially be a novel pathway for targeted drugs as
it can inhibit cancer cell invasion through an EGFR signal-
ling pathway (132,133). With regard to upregulated miR-221,
a drug called 2'-O-methylphosphorothioate-modified
anti-miRNA-221 has already demonstrated an antitumor
effect in mouse models (134). The in vivo administration of
tumor suppressor microRNA or inhibitors of tumor-promoting
microRNA that target CAFs may be an emerging tumor treat-
ment; this may be more effective compared with existing
techniques, considering that CAFs have a relatively steady
phenotype compared with cancer cells (134).

DNA methyltransferase inhibitors and DNA methyltransferase
maybe be useful for combating CAFs possessing the corre-
sponding hypermethylation and hypomethylation. The drugs,
5-azacytidine and 5-aza-2'-deoxycytidine, which have already
been used for treatment of acute and chronic myeloid leukemia
and myelodysplastic syndrome, have been investigated in the
treatment other tumors; however, they are less effective in the
treatment of solid tumors and have associated side effects (135).

Controversies and further outlook. Whether or not CAFs
have somatic or genetic alterations remains controversial,
despite certain alterations that have already been found.
Studies that found a positive somatic alteration in CAFs,
without exception, have extracted DNA from archival tissues.
In other studies (10,47,136,137), CAFs were isolated from
fresh frozen tissues or flow cytometry; no somatic genetic
alterations were found, while CAFs from FFPE show a high
frequency of LOH and AI. This pattern indicates that FFPE
tissues could result in highly fragmented DNA and RNA
molecules, which are not suitable for large-scale genetic
analysis. PCR amplification then exacerbates the artificial
false positive result (138-143). Thus, certain studies refute
genetic alterations and instead attribute the results to epigen-
etic alterations More reliable and accurate methods should be
found to solve these controversies.

CAFs retain diploid rather than polyploid cancer cells,
which may account for the senescence of CAFs. Since

telomerase is closely linked with cell senescence, particularly
in cancer cells, the activity and status of telomerase in CAFs
may be worth additional studies, though certain studies have
already been performed (144-146).

9. Conclusion

CAFs, which are phenotypically and functionally different
from NFs due to numerous potential genetic alterations and
epigenetic changes, are critical for tumor progression and
have attracted increasing numbers of studies in recent years
(Fig. 1). With the potential genetic and epigenetic altera-
tions changes found in CAFs, the underlying mechanisms
regarding the features of CAFs are gradually revealed. With
the exception of genetic and epigenetic alterations, other rele-
vant changes may also explain the differential expressions
of genes in CAFs, and certain special genetic or epigenetic
alterations may be confirmed in the future. Further investi-
gation into the detailed genetic and epigenetic alterations of
CAFs in the tumor microenvironment increases the under-
standing of CAFs and provides novel approaches for clinical
application.
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