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Abstract. The aim of the present study was to investigate the 
anticancer activities of Nelumbo nucifera (Ba lotus) stamen 
ethanol crude extract (BLSEE) in human colon carcinoma 
HCT-116 cells. MTT assay, flow cytometry analysis and 
reverse transcription-polymerase chain reaction assay were 
employed to investigate the anticancer mechanisms of 
BLSEE (100, 200 and 400 µg/ml) in HCT-116 cells. BLSEE 
reduced HCT-116 cell proliferation in a dose-dependent 
manner. BLSEE treatment also significantly increased the 
sub-G1 population in HCT-116 cells (P=0.0020 at 400 µg/ml), 
as shown by flow cytometry assay. Following treatment 
with BLSEE, the mRNA levels of the apoptosis-associated 
factors Fas, Fas ligand, tumor necrosis factor-related apop-
tosis-inducing ligand, death receptor 4 (DR4), death receptor 5 
(DR5), caspases 3, 8 and 9, and B-cell lymphoma-2 (Bcl-2) 
associated X protein were increased, and the expression of 
anti-apoptotic Bcl-2 and Bcl-extra large was decreased in 
HCT-116 cells. The mRNA levels of matrix metalloproteinase 
(MMP)-2, MMP-9, TIMP metallopeptidase inhibitor 1 and 
TIMP metallopeptidase inhibitor 2 were also regulated by 
BLSEE treatment. In addition, BLSEE was able to modulate 

the expression of inflammation‑associated nuclear factor‑κB, 
inhibitory κBα, inducible nitric oxide synthase and cyclooxy-
genase 2 in HCT-116 cells. The present study clearly indicated 
the cytotoxicity of BLSEE in HCT-116 cells through induced 
cellular apoptosis. These results also suggested the BLSEE 
may be a powerful agent against colon cancer cells.

Introduction

Colorectal cancer (CRC) is one of the most frequently 
diagnosed cancers in the world. In the USA, CRC is the 
third most common malignant tumor, and there was an 
estimated 103,170 new cases of CRC throughout the country 
in 2014 (1). Previously, CRC has become the fourth most 
common malignant tumor, and the third leading cause of 
cancer-associated mortality in China (2). CRC also shows a 
high level of metastasis, and 25% of CRC patients that present 
with metastatic disease have a 5-year survival of only 10% (3). 
Surgical resection plus chemotherapy and/or radiation therapy 
are effective treatments for CRC in the clinic. However, 
chemotherapy and radiation therapy are commonly associated 
with serious side effects, including bone marrow suppres-
sion, nausea and vomiting, hair loss and loss of appetite (3). 
Enhancement of cancer cell apoptosis is a good strategy in the 
clinical treatment of cancer (4).

As classic apoptosis-associated factors, the B-cell 
lymphoma 2 (Bcl-2) family plays an important role in the 
regulation of cell apoptosis. The Bcl-2 family is generally 
divided into anti-apoptotic factors, including Bcl-2, Bcl-extra 
large (Bcl-xL) and Bcl-W, and proapoptotic factors, including 
Bcl-2-associated X protein (Bax), Bcl-2 associated agonist 
of cell death, Bcl-2 interacting mediator of cell death (Bim), 
Bcl-2 antagonist/killer 1 and p53 upregulated modulator 
of apoptosis (5,6). In the extrinsic apoptosis pathway, the 
cell death receptor Fas/Fas ligand (FasL) system plays an 
important role to induce receptor-ligand mediated cell apop-
tosis, and also regulates the Fas-associated death domain 
(FADD) and caspase-8-mediated cell apoptosis (7). In apop-
tosis, the depolarization of the inner mitochondrial membrane 
potential causes the release of cytochrome c (Cyto c) into the 
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cytosol (8). The released Cyto c also activates caspases by 
formation of a complex that induces the activation of apop-
totic protease-activating factor-1 (Apaf-1) and procaspase-9. 
Furthermore, activated caspase-8 and -9 cleaved the final 
executioner caspase-3, and directly induced the chromatin 
condensation and DNA fragmentation to promoting apoptosis 
in cells (9,10).

Traditional herbal medications are commonly used to treat 
colon cancer in the clinic (11-13). Lotus is traditionally used as 
a Chinese folk medicine to disperse the summer heat, and has 
shown numerous health benefits and pharmacological activi-
ties, including antioxidant (14), antidiarrheal (15), antiviral (16), 
anti-obesity (17-20), anti-angiogenic (21), hepatoprotec-
tive (22), immunomodulatory (23) and insulin secretagogue 
activity (24). Therefore, the present study focused on inves-
tigating the potential anticancer activity of Nelumbo nucifera 
(Ba lotus) stamen ethanol crude extract (BLSEE), and also to 
elucidate the mechanisms underlying its anticancer effects in 
human colon carcinoma HCT-116 cells.

Materials and methods

Chemical reagents. TRIzol reagent, OligodT18 primer, murine 
Moloney leukemia virus (MMLV) reverse transcriptase, 
RNase inhibitor, ethidium bromide (EtBr), and agarose were 
purchased from Invitrogen (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). All other reagents were of analytical 
grade and purchased from Sigma-Aldrich (Merck Millipore, 
Darmstadt, Germany).

BLSEE preparation. Fresh Ba lotus stamen purchased from 
Chongqing Enterprise Engineering Research Center of 
Ba-lotus Breeding and Deep Processing (Chongqing, China) 
were freeze‑dried and then ground into a fine powder. In total, 
100 g of powdered Ba lotus stamen was extracted twice with 
1,000 ml ethanol (70%, v/v) at 50˚C for 1 h. Subsequent to 
filtering, the sample extraction solution was condensed by 
vacuum rotary evaporator (Büchi Rotovapor RE 111; Büchi 
Labortechnik AG, Flawil, Switzerland) at 37˚C, freeze‑dried 
and stored at ‑80˚C until further study.

Cell culture. Human colorectal HCT-116 cancer cells were 
purchased from the American Type Culture Collection 
(Manassas, VA, USA). The cells were routinely maintained in 
RPMI-1640 medium supplemented with 10% (v/v) FBS, and 
1% penicillin-streptomycin in a humidified CO2 incubator 
(model 3154; Forma Scientific, Inc., Marietta, OH, USA) with 
a 5% CO2 atmosphere at 37˚C.

Cell viability assay. Cell viability was measured using an 
MTT assay. HCT-116 cells were seeded in 96-well plates 
(Nalge Nunc International, Rochester, NY, USA) at a density 
of 1x104 cells/well. Following a 24-h incubation, the cells 
were treated with the various concentrations (100, 200 and 
400 µg/ml) of BLSEE for 24 h. Following incubation with 
BLSEE 0.5 mg/ml of MTT reagent (100 µl) was added to each 
well and the cells were incubated in a humidified incubator 
at 37˚C to allow the MTT to be metabolized. At total of 4 h 
later, formazan crystals were dissolved with dimethyl sulf-
oxide (100 µl in each well). Absorbance of the samples was 

measured at a wavelength of 540 nm using a microplate reader 
(model, 680; Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Flow cytometry analysis. The BLSEE-treated HCT-116 cells 
were first collected following digestion with trypsin, washed 
twice with cold PBS, and resuspended in 2 ml PBS. The DNA 
contents of the treated cells were stained with propidium 
iodide (PI) using a DNA staining kit (CycleTEST™ PLUS 
DNA reagent kit; Becton Dickinson, Franklin Lakes, NJ, 
USA), according to the manufacturer's protocol. Fluorescence 
intensity was determined using a FACScan flow cytometer 
(EPICS XL-MCL, Beckman Coulter KK, Brea, CA, USA) and 
analyzed using CellQuest software (Becton Dickinson).

Reverse transcription‑polymerase chain reaction (RT‑PCR) 
assay. Total RNA was isolated from BLSEE-treated HCT-116 
cells using TRIzol reagent, according to the manufacturer's 
protocol, and centrifuged at 12,000 x g for 15 min at 25˚C 
following the addition of chloroform (200 µl). Isopropanol 
was added to the supernatant at a 1:1 ratio and the RNA was 
pelleted by centrifugation at 12,000 x g for 15 min at 4˚C. 
Subsequent to washing with ethanol, the RNA was solubilized 
in diethyl pyrocarbonate-treated RNase-free water and quanti-
fied by measuring the absorbance at 260 nm using a UV‑1750 
spectrophotometer (Shimadzu, Kyoto, Japan). Equal amounts 
of RNA (1 µg) were reverse transcribed in a master mix 
containing 1X reverse transcriptase buffer, dNTPs (1 mM), 
oligodT18 primers (500 ng), MMLV reverse transcriptase 
(140 U), and RNase inhibitor (40 U) for 45 min at 42˚C. PCR 
was then performed in an automatic thermocycler (Bioneer, 
Daejeon, South Korea) for 40 cycles (94˚C for 5 min, 58˚C for 
30 sec, and 72˚C for 90 sec) followed by a 10 min extension at 
95˚C. The primer sequences as presented at Table I. The PCR 
products were separated in 2% agarose gels and visualized 
by EtBr staining. GAPDH was used for normalization of the 
results. Gene expression was quantified using ImageJ software 
(version 1.44; National Institutes of Health, Bethesda, MD, 
USA) and results presented as fold change compared to the 
control group.

Statistical analysis. Data are presented as the mean ± standard 
deviation. Differences between the mean values for individual 
groups were assessed by a one-way analysis of variance with 
Duncan's multiple range tests. P<0.05 was considered to 
indicate a statistically significant difference. The SAS v9.1 
statistical software package (SAS Institute Inc., Cary, NC, 
USA) was used for the statistical analysis.

Results

BLSEE reduced HCT‑116 cancer cell growth. As shown 
in Table II, BLSEE significantly inhibited the colon cancer 
HCT-116 cell growth in vitro in a dose-dependent manner. At a 
high dose of 400 µg/ml, BLSEE showed the highest inhibition 
activity of HCT-116 cells (86.3%; P=0.0002), compared with 
doses of 100 (P=0.0006) and 200 µg/ml BLSEE (P=0.0017).

BLSEE induced the apoptosis in HCT‑116 cancer cells. Flow 
cytometry analysis revealed that BLSEE treatment was able 
to promote apoptosis in HCT-116 cells. As shown in Fig. 1, 
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the BLSEE treatment significantly increased the proportion of 
apoptotic cells to 10.2 (P=0.0043), 19.7 (P=0.0032) and 41.3% 
(P=0.0020) compared with the non-treated cells (2.3%).

Effect of BLSEE on the expression of Fas, FasL, tumor 
necrosis factor (TNF)‑related apoptosis‑inducing ligand 
(TRAIL), death receptor 4 (DR4) and death receptor 5 (DR5) 
in HCT‑116 cells. Following treatment with various doses of 
BLSEE, the mRNA levels of Fas (P=0.0019 at 400 µg/ml) and 
FasL (P=0.0003 at 400 µg/ml) were upregulated in HCT-116 
cells (Fig. 2). In addition, 400 µg/ml of BLSEE significantly 
upregulated the mRNA levels of TRAIL (24.7-fold; P=0.0015), 
DR4 (133.2-fold; P=0.0027) and DR5 (7.5-fold; P=0.0064) 
compared with non-treated HCT-116 cells (Fig. 3).

Effect of BLSEE on the expression of caspases 3, 8 and 9 in 
HCT‑116 cells. The effect of BLSEE on the mRNA caspase 
family, including caspases 3, 8 and 9 in HCT-116 colon cancer 
cells was determined by RT-PCR assay. BLSEE treatment 
significantly increased the mRNA expressions of these caspases 
in HCT-116 cells in a dose-dependent manner (Fig. 4). The 
highest dose (400 µg/ml) of BLSEE also increased the mRNA 
levels of caspase-3 (10.9-fold; P=0.0001), caspase-8 (3.5-fold; 
P=0.0046) and caspase-9 (11.9-fold; P=0.0014) compared to 
the non-treated HCT-116 cells.

BLSEE modulated the expressions of Bcl‑2, Bcl‑xL and Bax 
in HCT‑116 cells. As shown in Fig. 5, BLSEE treatment 
dose-dependently reduced the expression of Bcl-2 and Bcl-xL 
in HCT-116 cells. At the highest dose of 400 µg/ml, BLSEE 
significantly reduced the mRNA levels of Bcl-2 (98.9%; 
P=0.0009) and Bcl-xL (96.3%; P=0.0006) compared to the 

Table I. Sequences of reverse transcription-polymerase chain 
reaction primers.

Gene name Sequence

Caspase-3
  Forward 5'-CAAACTTTTTCAGAGGGGATCG-3'
  Reverse 5'-GCATACTGTTTCAGCATGGCA-3'
Caspase-8
  Forward 5'-CCCCACCCTCACTTTGCT-3'
  Reverse 5'-GGAGGACCAGGCTCACTTA-3'
Caspase-9
  Forward 5'-GGCCCTTCCTCGCTTCATCTC-3'
  Reverse 5'-GGTCCTTGGGCCTTCCTGGTAT-3'
Bax
  Forward 5'-AAGCTGAGCGAGTGTCTCCGGCG-3'
  Reverse 5'-CAGATGCCGGTTCAGGTACTCAGTC-3'
Bcl-2
  Forward 5'-CTCGTCGCTACCGTCGTGACTTGG-3'
  Reverse 5'-CAGATGCCGGTTCAGGTACTCAGTC-3'
Bcl-xL
  Forward 5'-CCCAGAAAGGATACAGCTGG-3'
  Reverse 5'-GCGATCCGACTCACCAATAC-3'
TRAIL
  Forward 5'-GGAACC CAAGGTGGGTAGAT-3'
  Reverse 5'-TCTCACCACACTGCAACCTC-3'
DR4
  Forward 5'-AAGTCCCTGCACCACGAC-3'
  Reverse 5'-CCACAACCTGAGCCGATG-3'
DR5
  Forward 5'-TGAGATAAAGGTGGCTAAA-3'
  Reverse 5'-AAAGGTAAACCAGGGAAG-3'
NF-κB
  Forward 5'-CACTTATGGACAACTATGAGGTCTCT
 GG-3'
  Reverse 5'-CTGTCTTGTGGACAACGCAGTGGAA
 TTTTAGG-3'
IκBα
  Forward 5'-GCTGAAGAAGGAGCGGCTACT-3'
  Reverse 5'-TCGTACTCCTCGTCTTTCATGGA-3'
iNOS
  Forward 5'-AGAGAGATCGGGTTCACA-3'
  Reverse 5'-CACAGAACTGAGGGTACA-3'
COX-2
  Forward 5'-TTAAAATGAGATTGTCCGAA-3'
  Reverse 5'-AGATCACCTCTGCCTGAGTA-3'
MMP-2
  Forward 5'-CTTCTTCAAGGACCGGTTCA-3'
  Reverse 5'-GCTGGCTGAGTACCAGTA-3'
MMP-9
  Forward 5'-TGGGCTACGTGACCTATGAC-3'
  Reverse 5'-GCCCAGCCCACCTCCACTCC-3'
TIMP-1
  Forward 5'-GTCAGTGAGAAGCAAGTCGA-3'
  Reverse 5'-ATGTTCTTCTCTGTGACCCA-3'

Table I. Continued.

Gene name Sequence

TIMP-2
  Forward 5'-TGGGGACACCAGAAGTCAAC-3'
  Reverse 5'-TTTTCAGAGCCTTGGAGGAG-3'
Fas
  Forward 5'-GAAATGAAATCCAAAGCT-3'
  Reverse 5'-TAATTTAGAGGCAAAGTGGC-3'
FasL
  Forward 5'-GGATTGGGCCTGGGGATGTTTCA-3'
  Reverse 5'-TTGTGGCTCAGGGGCAGGTTGTTG-3'
GAPDH
  Forward 5'-CGGAGTCAACGGATTTGGTC-3'
  Reverse 5'-AGCCTTCTCCATGGTCGTGA-3'

Bcl-2, B-cell lymphoma-2; Bax, Bcl-2-associated X protein; 
Bcl-xL, Bcl-extra large; TRAIL, tumor necrosis factor-related apop-
tosis-inducing ligand; DR4, death receptor 4; DR5, death receptor 5; 
NF-κB, nuclear factor-κB; IκBα, inhibitory κBα; iNOS, inducible 
nitric oxide synthase; COX-2, cyclooxygenase 2; MMP-2, matrix 
metalloproteinase-2; MMP-9, matrix metalloproteinase-9; TIMP-1, 
TIMP metallopeptidase inhibitor 1; TIMP-2, TIMP metallopeptidase 
inhibitor 2; FasL, Fas ligand.
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non-treated HCT-116 cells, respectively. By contrast, 400 µg/ml 
of BLSEE also enhanced the Bax levels of mRNA (2.9-fold; 
P=0.0036) compared to non-treated HCT-116 cells.

BLSEE modulated the expression of matrix metalloproteinase 
(MMP)‑2, MMP‑9, TIMP metallopeptidase inhibitor 1 
(TIMP‑1) and TIMP metallopeptidase inhibitor 2 (TIMP‑2) 

Table II. Growth inhibition of human HCT-116 colon cancer cells by Ba lotus stamen extract as evaluated by MTT assay.

Treatment (µg/ml) OD540 Inhibitory rate, % P-value

Control 0.488±0.003
100 µg/ml BLSEE 0.373±0.008 23.6±0.4 0.0017a

200 µg/ml BLSEE 0.238±0.010 51.2±0.5 0.0006a

400 µg/ml BLSEE 0.067±0.002 86.3±0.4 0.0002a

aP<0.01 vs. the control group. OD540, optical density at 540 nm; BLSSEE, Ba lotus stamen extract.

Figure 1. Level of apoptosis (sub‑G1 content) induced by Ba lotus stamen extract in HCT‑116 human colon cancer cells was evaluated using flow cytometry. 
**P<0.01 vs. the control group. Ba lotus, Nelumbo nucifera.

Figure 2. Effect of Ba lotus stamen extract on the mRNA expression of Fas/FasL, Fas and FasL in human colon cancer HCT-116 cells. The fold-ratio was 
calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. FasL, Fas ligand; Ba 
lotus, Nelumbo nucifera.
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in HCT‑116 cells. As shown in Fig. 6, BLSEE treatment 
dose-dependently reduced the expression of MMP-2 and 
MMP-9 in HCT-116 cells. At the highest dose of 400 µg/ml, 
BLSEE significantly reduced the mRNA levels of MMP‑2 
(95.8%; P=0.0002) and MMP-9 (85.9%; P=0.0002) compared 
with non-treated HCT-116 cells. By contrast, 400 µg/ml of 
BLSEE was also able to enhance the mRNA levels of TIMP-1 
(17.6-fold; P=0.0004) and TIMP-2 (73.6-fold; P=0.0002) 
compared with non-treated HCT-116 cells.

BLSEE modulated the expression of inducible nitric oxide 
synthase (iNOS), cyclooxygenase 2 (COX‑2), nuclear factor 
(NF)‑κB and inhibitory κBα (IκBα) in HCT‑116 cells. BLSEE 
treatment significantly decreased the mRNA levels of iNOS, 
COX-2 and NF-κB, and increased the IκBα levels in HCT-116 
cells (Fig. 7). Subsequent to treatment with a dose of 400 µg/ml 
BLSEE, the mRNA levels of iNOS, COX-2 and NF-κB were 
decreased by 89.2 (P=0.0008), 88.3 (P=0.0002) and 87.9% 
(P=0.0007) compared with the non-treated HCT-116 cells. 

Figure 3. Effect of Ba lotus stamen extract on the mRNA expression of TRAIL, DR4 and DR5 in human colon cancer HCT-116 cells. The fold-ratio was 
calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. TRAIL, tumor necrosis 
factor-related apoptosis-inducing ligand; DR4, death receptor 4; DR5, death receptor 5. Ba lotus, Nelumbo nucifera.

Figure 4. Effect of Ba lotus stamen extract on the mRNA expression of caspase-3, caspase-8 and caspase-9 in human colon cancer HCT-116 cells. The 
fold-ratio was calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. Ba 
lotus, Nelumbo nucifera.



ZHAO et al:  ANTICANCER ACTIVITY OF Nelumbo nucifera STAMEN EXTRACT 1475

Figure 5. The effects of Ba lotus stamen extract on the mRNA expression of Bax, Bcl-2 and Bcl-xL in human colon cancer HCT-116 cells. The fold-ratio 
was calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. Bcl-2, B-cell 
lymphoma-2; Bax, Bcl-2-associated X protein; Bcl-xL, Bcl-extra large; Ba lotus, Nelumbo nucifera.

Figure 6. The effects of Ba lotus stamen extract on the mRNA expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 in human colon cancer HCT-116 cells. The 
fold-ratio was calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. MMP-2, 
matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; TIMP-1, TIMP metallopeptidase inhibitor 1; TIMP-2, TIMP metallopeptidase inhibitor 2; 
Ba lotus, Nelumbo nucifera. 
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In addition, BLSEE also increased the mRNA levels of IκBα 
(8.3-fold; P=0.0075) compared with non-treated HCT-116 cells.

Discussion

In the present study, BLSEE treatment was found to signifi-
cantly inhibit the cell proliferation, and also increase the 
proportion of cells in the sub-G1 phase in HCT-116 cancer 
cells. These results suggested that BLSEE may induce apop-
tosis in HCT-116 cells.

Based on these observations, the mRNA expression 
of apoptosis-associated death receptors, including Fas and 
FasL, was analyzed in HCT-116 cells using an RT-PCR assay. 
Fas and FasL are apoptosis inducers, and play an important 
role during death receptor-induced extrinsic apoptosis in 
cells (25). The present study found that following incubation 
with 24 h of BLSEE, the mRNA levels of Fas and FasL were 
each significantly increased in HCT‑116 cells. Activation 
of Fas/FasL was able to recruit FADD and death domain, 
and subsequently induce the activation of caspases 8, 9 
and 10 to promote cellular apoptosis (26). In addition, the 
present study also observed that mRNA levels of TRAIL, 
DR4 and DR5 were increased by BLSEE treatment for 24 h. 

TRAIL binds to TRAIL receptors, such as DR4 and DR5, 
to form a trimeric complex, which leads to the recruitment 
of FADD, an adaptor molecule that recruits and activates 
caspase-8 (27,28).

The caspase signaling cascade is a key event in extrinsic 
and intrinsic cell apoptosis, which is characterized by the acti-
vation of caspase-8 and caspase-9, respectively (9). Caspase-8 
is a main initiator caspase in Fas signaling, and is recruited 
to the activated Fas receptor, as well as inducing death 
receptor-induced cell apoptosis (29). In addition, caspase-9 is 
an apoptosis effector molecule in the mitochondrial channel 
and starts programmed cell death subsequent to activation (10). 
Activated caspase-8 and caspase-9 are each able to activate 
caspase-3, which is an executor of apoptosis that subsequently 
induces apoptosis in cells (8). In the present study, it was found 
that the mRNA levels of caspases 3, 8 and 9 were significantly 
increased in BLSEE-treated HCT-116 cells.

It was also found that BLSEE treatment was able to 
modulate the mRNA expression of apoptosis-associated 
Bcl-2 family members in HCT-116 cells. BLSEE treatment 
significantly reduced the mRNA levels of anti-apoptotic 
Bcl-2 and Bcl-xL in HCT-116 cells. Bcl-2 and Bcl-xL are 
generally known as factors that prevent the release of Cyto c 

Figure 7. The effects of Ba lotus stamen extract on the mRNA expression of NF-κB, IκBα, iNOS and COX-2 in human colon cancer HCT-116 cells. The 
fold-ratio was calculated as follows: Gene expression/GAPDH x control numerical value (control fold ratio, 1). *P<0.05, **P<0.01 vs. the control group. NF-κB, 
nuclear factor-κB; IκBα, inhibitory κBα; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase 2; Ba lotus, Nelumbo nucifera.
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to pro-apoptotic Bax, and increasing the activation of the 
death receptor system, as well as promoting the cleavage of 
caspases-3, 8 and 9 in HCT-116 cells. These results suggest 
that the BLSEE is able to induce HCT-116 cell apoptosis 
through activating death receptor and mitochondrial apoptotic 
pathways.
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