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Abstract. Biomarkers that facilitate the prediction of breast 
cancer prognosis can improve the quality of life in patients 
during the long period of illness and treatment. Particularly 
in recent years, with the advent of a more exhaustive analysis 
of genetic information and gene products, the molecular 
mechanisms at play during breast cancer have gradually 
become clearer. In the present study, a systematic review of the 
literature between 2009 and 2014 was conducted by searching 
for the keywords ʻbreast cancer ,̓ ʻbiomarkers ,̓ ʻdiagnosis ,̓ 
ʻprognosisʼ and ʻdrug responseʼ to clarify the present state 
of knowledge regarding biomarkers. In the final analysis, 16 
studies on biomarkers for the breast cancer prognosis were 
retrieved. From these, 7 biomarkers in 9 studies were found 
to be strongly reliable predictors of prognosis and a further 
7 biomarkers in 7 studies were poorly reliable. The use of these 
prognostic biomarkers should increase the options available 
for treatment algorithms.
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1. Introduction

Currently, breast cancer treatment is progressing on a daily 
basis, and is divided into subtypes based on the hormone 

receptors human epidermal growth factor receptor type 2 
(HER2) and Ki‑67 (1). However, treatment algorithms do not 
necessarily result in satisfactory clinical outcomes. Therefore, 
to further improve the breast cancer prognosis, predic-
tive factors are required in order to arrive at more accurate 
prognoses and improve treatment efficacy. If such biomarkers 
could be identified, it would be possible to provide appropriate 
treatments to relevant subjects, resulting in excellent clinical 
outcomes. To date, prognostic prediction has been based on 
older studies of morphological characteristics (2). More recent 
research has concentrated on molecular biomarkers (3). The 
present study reports the findings of a systematic review of 
prognosis for patients with breast cancer based on molecular 
biomarkers. The correlations between these biomarkers, prog-
nosis and the treatment response may be useful for all breast 
cancer patients.

2. Literature search

A search of the PubMed database (National Center for 
Biotechnology Information, Bethesda, MD, UDA) using 
the key words ʻbreast cancer,ʼ ʻbiomarkers,ʼ ʻdiagnosis,ʼ 
ʻprognosisʼ and ʻdrug responseʼ retrieved 1,689 potential 
studies. Subsequent to filtering for studies involving humans 
and written in English, 76 studies were excluded. When the 
remaining reports were limited to the period between 2009 
and 2014, an additional 688 were excluded. Of the remainder, 
520 studies were excluded, as they did not contain the full text. 
Finally, the abstracts of 405 studies were evaluated and those 
that contained insufficient descriptions of diagnostic perfor-
mance, prognosis and drug response were excluded, resulting 
in a total of 16 studies for analysis (Fig. 1).

3. Highly reliable biomarkers (Table I)

Retinoic acid receptor α (RARA). Approximately 1/3 of 
estrogen receptor α (ERα)‑positive breast cancer patients 
treated with tamoxifen experienced a relapse of the disease (4). 
RARA is a potential biomarker for tamoxifen resistance (5). 
The anti‑tumor properties of RARA can be explained in 
association with the interaction of the receptor with ERα and 
their joint genomic binding site (6). The association between 
ERα resistance and RARA resistance was confirmed using 
tamoxifen‑susceptible and ‑resistant cell lines (MCF7 and 
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LCC2, respectively). The tamoxifen‑resistant cells were found 
to express high levels of RARA (7).

Patients with ERα‑positive breast cancer tumors with high 
internal levels of RARA protein that were treated with tamox-
ifen as adjuvant therapy exhibited shorter recurrence‑free 
survival (RFS) than patients with low internal levels of RARA 
protein (7). Johansson et al (7) performed an investigation into 
serum RARA levels using ELISA, and found significantly 
higher RFS rates in patients with high RARA expression 
levels compared with patients with low levels: Hazard ratio 
(HR)=4.1; 95% confidence interval (CI)=1.55‑11.0; P=0.0046. 
Therefore, RARA may potentially be a useful target of new 
treatment regimens and a biomarker to predict the effective-
ness of tamoxifen adjuvant treatment in ERα‑positive breast 
cancer.

Aromatase expression. Aromatase expression by breast cancer 
cells has been shown to influence the effectiveness of endocrine 
treatments for breast cancer (8,9). Ellis et al (10) conducted a 
study using a sample from a clinical trial comparing tamoxifen 
and letrozole as neoadjuvant endocrine therapies, and found 
that aromatase expression levels in tumor and somatic cells 
was correlated with treatment‑induced changes in Ki‑67, RFS, 
and breast cancer‑specific survival (BCSS) (11‑13).

Aromatase expression was correlated with a smaller tumor 
size (P=0.01), a higher Allred score of estrogen receptor 
(P=0.006) (14) and lower Ki‑67 levels (P=0.003). In addition, 
aromatase expression by tumor cells was a significant prog-
nostic factor of the independent variables RFS (HR=2.3; 95% 
CI=1.2‑4.6; P=0.01) and BCSS (HR=3.76; 95% CI=1.4‑10.0; 
P=0.008) (15). The aforementioned data supports the use of 
aromatase blockers as the first choice treatment for post‑meno-
pausal, hormone‑positive breast cancer.

Osteopontin. Osteopontin is a secreted extracellular matrix 
adhesion protein associated with tumor cell invasion and 
metastasis (16,17). Pang et al (18) examined the clinical and 
pathological effects of the adhesion molecules osteopontin‑c, 
E‑cadherin and β‑catenin in breast cancer, and found higher 
expression levels of all the aforementioned adhesion molecules 
in breast cancer compared with normal tissue. The expression 
of osteopontin‑c was associated with lymph node metastasis, 
and higher tumor node‑metastasis classification  (19) and 
histological grade (19). In addition, high expression levels of 
osteopontin‑c have been correlated with tumor recurrence 
and metastasis, as well as triple negative subtypes, which are 
predictive factors of the independent variables disease‑free 
survival (DFS; HR=3.094; 95% CI, 1.229‑7.789; P=0.016) 
and overall survival (OS; HR=2.558; 95% CI, 1.048‑6.243; 
P=0.039)  (20). Therefore, the development of treatments 
targeting osteopontin‑c may be beneficial for the treatment of 
breast cancer.

Ki‑67. Ohno et al (21) examined the role of Ki‑67 as a predictive 
biomarker of treatment response in a randomized, multicenter 
study to compare the effectiveness of docetaxel subsequent 
to treatment with fluorouracil/epirubicin/cyclophosphamide 
with or without capecitabine, in patients with operable breast 
cancer. The endpoint was the rate of pathological complete 
response (pCR). Analysis of hormone receptors and the Ki‑67 

labeling index (Ki‑67LI) by multivariate logistic regression 
analysis identified Ki‑67 as an independent prognostic factor 
(HR=2.718; 95% CI=1.331‑5.549; P=0.0061). In addition, the 
aforementioned results also suggest that the Ki‑67LI prior 
to treatment was a predictor for the response to preoperative 
docetaxel treatment and preoperative capecitabine treatment 
in early‑stage breast cancer.

Denkert et al (22) obtained 1,166 breast cancer bioassay 
specimens from a large‑scale cohort study established to 
investigate neoadjuvant treatment (the GeparTrio trial) and 
evaluated pre‑treatment Ki‑67 levels by immunohistochemical 
analysis. The study used the standardized, 3‑endpoint, cut‑off 
algorithm (pCR, DFS and OS) (23). The Ki‑67 index and preop-
erative chemotherapy variables were divided into 3 subgroups 
each: ≤15, 15.1‑35 and ≥35%, and pCR rates were 4.2, 12.8 
and 29.0%, respectively (P<0.0005). The HR for prognosis 
also increased in response to Ki‑67 (HR=1, 3.32 and 9.20, 
respectively), indicating that Ki‑67 is a prognostic predictor 
for hormone receptor‑positive, but not triple‑negative, breast 
cancer. The aforementioned findings regarding Ki‑67 may 
provide important information for the development of other 
quantitative biomarkers.

DeCensi et al (24) examined postoperative remission and 
prognosis in response to Ki‑67 in early stage ERα‑positive 
breast cancer patients treated with tamoxifen for 4 weeks 
as a short‑term neo‑adjuvant therapy and reported that 
post‑treatment levels of Ki‑67 in the second (14‑19%), third 
(20‑29%), and top (≥30%) quartiles had recurrence HRs of 2.92  
(95% CI, 0.95‑8.96), 4.37 (1.56‑12.25) and 6.05 (2.07‑17.65), 

Figure 1. Flow chart of search history. PubMed searches were conducted. 
A total of 16 studies were selected according to the inclusion criteria of the 
present study.
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respectively, compared with those in the bottom quartile 
(<14%; P=0.001). The mortality risks were 5.5‑fold higher 
when Ki‑67 levels were ≥20% (95% CI=1.26‑23.16; P<0.006) 
when compared to those with Ki‑67 levels <20% (P=0.006). 
The authors concluded that the level of Ki‑67 subsequent to 
short‑term neoadjuvant tamoxifen is a good predictor of RFS 
and OS, supporting the use of Ki‑67 as a surrogate biomarker 
to personalize adjuvant treatment and to cost‑effectively 
screen novel drugs.

Carcinoembryonic antigen‑related cell adhesion molecule 
6 (CEACAM6). CEACAM6 is a human carcinoembryonic 
antigen that functions as a multi‑functional regulatory protein 
and is overexpressed in various cell processes associated 
with cancer (25,26). CEACAM6 expression in atypical ductal 
hyperplasia has been suggested to serve an important role in 
the development of breast cancer (27). CEACAM6 has also 
been associated with invasive and treatment‑resistant breast 
cancer (28). However, in a large‑scale cohort study, CEACAM6 
expression in luminal breast cancer exhibited no effect on OS 
or correlation with prognosis, although an association between 
CEACAM6 expression and prognosis in breast cancer over-
expressing HER2 was revealed, as the high expression group 
tended to exhibit poorer OS (28). The aforementioned results 
appear to indicate that treatment is required for breast cancer 
patients with HER2 overexpression and the presence of 
CEACAM6.

Phosphatidylinositol‑4,5‑bisphosphate 3‑kinase, catalytic 
subunit α (PIK3CA). PIK3CA is a cancer gene coding for 1 
of 2 phosphoinositide 3‑kinase (PI3 K) subunits (29), which 
is a gain‑of‑function mutation in certain types of cancer, 
and is present in 20‑40% patients with breast cancer  (30). 
Cizkova et al (31) identified PIK3CA mutations in 17 (21.3%) 
tumors among 80 HER2‑positive patients treated with trastu-
zumab for 1  year. Patients exhibiting wild‑type PIK3CA 
demonstrated an improved DFS compared with patients exhib-
iting the PIK3CA mutations. The prognosis for HER2‑positive 
patients with PIK3CA mutations treated with trastuzumab was 
significantly worse than for patients exhibiting the wild‑type 
variation, which is considered to occur since the P13K/protein 
kinase B pathway is adversely affected by PIK3CA mutations, 
resulting in the lower efficacy of trastuzumab. Thus, the detec-
tion of PIK3CA mutations is only required in HER2‑positive 
patients.

Tissue inhibitor of metalloproteinases‑1 (TIMP‑1). Paclitaxel 
is the first chemotherapy treatment of choice for patients with 
lymph node metastasis (32,33). However, there are currently 
no biomarkers to predict susceptibility to chemotherapy. 
TIMP‑1 has been shown to protect cells from apoptosis (34). 
A previous epidemiological study demonstrated an association 
between high levels of TIMP‑1 and reduced responsiveness to 
cyclophosphamide/methotrexate/5‑fluorouracil and anthracy-
cline‑based chemotherapy regimens (35).

In a retrospective study of 99 breast cancer patients, 
Zhu et al (36) reported a correlation between TIMP‑1 expres-
sion levels in primary tumors and improved responsiveness 
to paclitaxel‑based chemotherapy. Kaplan‑Meier survival 
analysis revealed that patients with high TIMP‑1 levels had 

poorer 5‑year DFS that those with lower TIMP‑1 levels (71.1 
vs. 88.5%, respectively; P=0.020). The 5‑year OS was also 
lower (78.9 and 96.7%, respectively, P=0.004). The respon-
siveness to paclitaxel‑based chemotherapy was significantly 
worse when the TIMP‑1 expression levels were high. The 
aforementioned findings indicate that TIMP‑1 may be a useful 
predictive biomarker for chemotherapy resistance.

4. Low and moderately reliable biomarkers (Table II)

Ferritin light chain (FTL). Ferritin is a ubiquitous iron‑binding 
protein. In vertebrates, there are 2 types of apoferritin, which 
are assembled from 24 subunits including light and heavy chain 
types. The ratio between the ferritin heavy chain and FTL can 
vary greatly, depending on the tissue type and cellular condi-
tions (37). The increase in ferritin from different cancer tissue 
samples exhibited a close correlation with disease onset (38). 
Ricolleau et al (39) investigated the utility of FTL as a prog-
nostic marker for lymph node metastasis‑positive breast cancer 
and determined an FTL cut‑off level in tumors of 2.4. The 
high FTL level group had a significantly lower metastasis‑free 
survival rate, indicating that FTL was an independent prog-
nostic marker (HR=1.30; 95% CI=1.10‑1.50; P=0.001) (40).

Urokinase‑type plasminogen activator (uPA) and plas‑
minogen activator type 1 inhibitor (PAI‑1). uPA, as a 
tumor‑associated proteolytic factor, and PAI‑1 serve important 
roles in tumor invasion and metastasis (41), and cell signaling, 
adhesion, migration and proliferation  (42). In the final 
Chemo‑N0 trial for the validation of The American Society 
of Clinical Oncology‑recommended biomarkers (1993‑1998; 
n=647; 12  centers; median follow‑up period 113 months; 
range between 5 and 167 months), high uPA/PAI‑1 levels were 
correlated with significantly lower DFS among breast cancer 
patients who did not receive adjuvant treatment (HR=1.84; 
95% CI=1.1‑3.0; P=0.017) and OS (HR=1.84; 95% CI=1.1‑3.1; 
P=0.02). uPA/PAI‑1 was also identified as a prognostic factor 
for breast cancer in other studies (43).

C‑reactive protein (CRP). Serum CRP is a marker of acute 
inflammatory response and is considered to be a prognostic 
indicator in breast cancer  (44,45). The Women's Healthy 
Eating and Living study was a randomized comparative study 
examining the effect of a diet high in vegetables and low in 
fat on the prevention of premature mortality in women diag-
nosed with breast cancer. Serum protein analysis of 2,023 of 
3,088 eligible women showed that acute inflammation (CRP 
≥10 mg/l) was markedly suppressed by a high vegetable/low fat 
diet, resulting in improved long‑term survival (46). Although 
the anti‑oncological effects remain unclear, CRP was identi-
fied as an independent biomarker for prognosis of survival in 
breast cancer (HR=1.96; 95% CI=1.22‑3.13).

Chromosome 17 centromere enumeration probe (Ch17CEP). 
Chromosome 17 is the second densest chromosome in the 
human genome and codes for several genes, including BRCA1 
and HER2 with important roles in breast cancer, as well as 
the housekeeping DNA repair genes TP53, RAD51C and 
RAD52B (47). Ch17 centromeric region duplication (Ch17CEP) 
is closely associated with HER2 amplification (48). Ch17CEP 
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overlap is also a powerful marker for genome instability in 
breast cancer and is correlated with susceptibility to chemo-
therapy (48,49). In novel endovascular access trial/BR9601 
clinical trials, prognostic factors were analyzed and catego-
rized according to breast cancer subtype. Although numerous 
factors were not associated with subtype, Ch17CEP overlap 
was an independent prognostic factor for DFS and OS for all 
subtypes. Ch17CEP overlap was identified as a prognostic 
biomarker for breast cancer treated with cyclophosphamide, 
methotrexate and fluorouracil therapy in combination with 
epirubicin (HR=0.80; 95% CI=0.68‑0.95; P=0.009) (50).

Soluble human epidermal growth factor receptor 2 (sHER2). 
HER2 is a 185‑kDa protein arising from the intracellular, 
transmembrane and extracellular domains (ECD) (51). The 
ECD is occasionally spliced by metalloprotease, resulting 
in the release of sHER2 into the peripheral circulation (52). 
sHER2 is an important biomarker for HER2‑positive breast 
cancer at any stage (53). In the N9831 adjuvant breast cancer 
trials, early stage HER2‑positivity was identified as a 
biomarker of clinical outcome and disease progression (54). 
Moreno‑Aspitia et al (55) evaluated sHER2 levels at the time 
of relapse using a sample from the N9831 clinical trial and 
found that DFS was lower in patients with sHER2 levels 
>15 ng/ml, compared with patients with lower levels of sHER2 
(HR=2.36; 95% CI=1.19‑4.70; P=0.01). Therefore, in early 
stage HER2‑positive breast cancer, sHER2 was found to be 
a suitable prognostic biomarker for relapse, and survival in 
relapsed patients.

Mitotic arrest deficient like 1 (MAD1L1). MAD1L1 is a 
checkpoint gene associated with chromosomal instability. 
Abnormalities in MAD1L1 have been observed in a number 
of cancer types, including colon and lung cancer  (56). 
Sun et al (57) analyzed MADL1 expression in breast cancer 
tissues from 461 patients and normal breast tissue to iden-
tify correlations between MAD1L1 expression and clinical 
pathological characteristics. The results of the aforementioned 
study revealed that OS was particularly worse in the high 
MAD1L1 expression group (HR=1.825; 95% CI=1.073‑3.107; 
P=0.027). In patients with high nuclear MAD1L1 expression 
subsequent to taxol treatment, prognosis was poorer in the 
non‑treated patients (P=0.026). Nuclear MAD1L1 expression 
therefore appears to have enhanced the treatment resistance 
and affected the prognosis of breast cancer, demonstrating that 
MAD1L1‑positive breast cancer was not susceptible to taxol 
treatment.

Methylation of paired‑like homeodomain 2 (PITX2P2). 
C‑phosphate‑G islands located within the gene regulatory site 
are associated with the suppression of gene expression. The 
methylation of DNA dinucleotides in this gene is a common early 
event subsequent to the onset of cancer (58‑60). Methylation 
patterns specific to tumor subtypes, including breast cancer, are 
reportedly associated with clinical outcomes (61‑63). Several 
studies reported that PITX2 DNA methylation was associated 
with a high risk of relapse in lymph node metastasis‑positive, 
hormone receptor‑positive breast cancer patients undergoing 
whole body adjuvant tamoxifen therapy (64,65). In a cohort 

Table II. List of biomarkers that presented <2 risk ratios compared to the control populations (low and moderate reliable markers).

	 Result
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Authors	 Biomarker	 Endpoint	 Condition	 HR	 95% CI	 No.	 Sample	 Periods	 (Refs.)

Jézéquel et al	 FTL	 MFS	 <2.4	 1.0	 ‑	 198	 Biopsy	 1980‑2000	 (40)
			   >2.4	 1.3	 1.10‑1.50 (P=0.001)			 
Harbeck et al	 uPA/PAI‑1	 DFS	 Low	 1.0	‑	  409	 Blood	 1993‑1998	 (43)
			   High	 1.84	 1.1‑3.0 (P=0.017)			 
		  OS	 Low	 1.0	‑			  
			   High	 1.85	 1.1‑3.1 (P=0.02)			 
Villaseñor et al	 CRP	 OS	 <1 mg/l	 1.0	 ‑	 2,919	 Blood	 1995‑2000	 (46)
			   ≥10 mg/l	 1.96	 1.22‑3.13 (P<0.001)			 
Earl et al	 Ch17CEP	 OS	 Normal	 1.0	 ‑	 1,762	 Biopsy	 1996‑2001	 (50)
			   Duplication	 0.80	 0.68‑0.95 (P=0.009)			 
Moreno‑Aspitia	 sHER2	 DFS	 <15	 1.0	 ‑	 2,318	 Blood	 2004‑2005	 (55)
et al			   ≥15	 2.36	 1.19‑4.70 (P=0.01)			 
Sun et al	 MAD1L1	 OS	 Low	 1.0	 ‑	 461	 Biopsy	 2006	 (57)
			   High	 1.825	‑ (P=0.027)			 
Hartmann et al	 PITX2P2	 TDM	 TDM	 1.66	 1.21‑2.28 (P=0.002)	 241	 Biopsy	 NA	 (66)
	 Methylation

MFS, metastasis‑free survival; uPA/PAI‑1, urokinase‑type plasminogen activator and plasminogen activator type 1 inhibitor; CRP, C‑reactive 
protein; Ch17CEP, Chromosome 17 centromere enumeration probe; sHER2, soluble human epidermal growth factor receptor 2; MAD1L1, 
mitotic arrest deficient like 1; PITX2P2, methylation of paired‑like homeodomain 2; TDM, time to distant metastasis; DFS, disease free 
survival; OS, overall survival.
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study of 241 lymph node metastasis‑positive breast cancer 
patients with a history of anthracycline treatment, PITX2P2 
methylation (a subtype of PITX2 methylation) was associ-
ated with an increased long‑term relapse (HR=1.66; 95% 
CI=1.21‑2.28; P=0.002) and reduced survival rates (HR=1.47; 
95% CI=1.11‑1.96; P=0.0084) (66).

5. Conclusions

In the present review of studies between 2009 and 2014, 
biomarkers were grouped according to reliability (high, 
medium, or low). A total of 3 studies were retrieved from the 
literature that classified Ki‑67 as a high reliability biomarker. 
The utility of Ki‑67 as a biomarker has been re‑evaluated in 
the present study.

Of the high reliability biomarkers referred to in the 9 studies 
included in the present review, 0 were assessed by bioassays 
and only 1 mentioned biomarker measurement in peripheral 
blood. Although the evaluation of proteins in peripheral blood 
is relatively simple, in 2013, Johansson (7) reported that the 
identification of biomarkers is difficult, as measurements of 
biomarkers require too much quantification data. Therefore, 
the development of biomarkers from peripheral blood presents 
a challenge for future studies.

Although a number of molecules were identified in the 
present review, other markers, such as hormone receptors, 
were not widely evaluated. The ratio of ER‑α/ER‑β expression, 
βIII‑tubulin and thyroid‑stimulating hormone were identified as 
oncological indicators in breast cancer. Thus, additional studies 
of the correlations between the aforementioned biomarkers and 
prognosis and treatment response may be useful.

This study hypothesizes that the most important biomarkers 
of breast cancer are found in the blood, and that RARA, 
uPA/PAI‑1, CRP, sHER2 are good biomarkers in routine 
examination. The authors highlight RARA in particular as 
an important biomarker in breast cancer. Future studies on 
biomarkers are likely to progress the understanding of the 
topic. For all biomarkers, reliability is important, but for the 
development of useful biomarkers, cost and ease of monitoring 
are crucial considerations.
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