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Abstract. Breast cancer is one of the most common malig-
nant tumors with a high case‑fatality rate among women. The 
present study aimed to investigate the effects of mesenchymal 
stem cells (MSCs) on breast cancer by exploring the potential 
underlying molecular mechanisms. The expression profile of 
GSE43306, which refers to MDA‑MB‑231 cells with or without 
a 1:1 ratio of MSCs, was downloaded from Gene Expression 
Omnibus database for differentially expressed gene (DEG) 
screening. The Database for Annotation, Visualization and 
Integrated Discovery was used for gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis for DEGs. The protein‑protein inter-
actional (PPI) network of DEGs was constructed using the 
Search Tool for the Retrieval of Interacting Genes/Proteins. 
The data was subsequently analyzed using molecular complex 
detection for sub‑network mining of modules. Finally, DEGs in 
modules were analyzed using GO and KEGG pathway enrich-
ment analyses. A total of 291 DEGs including 193 upregulated 
and 98 downregulated DEGs were obtained. Upregulated 
DEGs were primarily enriched in pathways including 
response to wounding (P=5.92x10‑7), inflammatory response 
(P=5.92x10‑4) and defense response (P=1.20x10‑2), whereas 
downregulated DEGs were enriched in pathways including the 
cell cycle (P=7.13x10‑4), mitotic cell cycle (P=6.81x10‑3) and 
M phase (P=1.72 x10‑2). The PPI network, which contained 
156 nodes and 289 edges, was constructed, and Fos was the 

hub node with the degree of 29. A total of 3 modules were 
mined from the PPI network. In total, 14 DEGs in module A 
were primarily enriched in GO terms, including response to 
wounding (P=4.77x10‑6), wounding healing (P=6.25x10‑7) and 
coagulation (P=1.13 x10‑7), and these DEGs were also enriched 
in 1 KEGG pathway (complement and coagulation cascades; 
P=0.0036). Therefore, MSCs were demonstrated to exhibit 
potentially beneficial effects for breast cancer therapy. In addi-
tion, the screened DEGs, particularly in PPI network modules, 
including FN1, CD44, NGF, SERPINE1 and CCNA2, may be 
the potential target genes of MSC therapy for breast cancer.

Introduction

Breast cancer is one of the most common malignant tumors 
and has a high case‑mortality rate among women, accounting 
for ~1/3 cancer cases diagnosed in the United States (1). Breast 
cancer has a heredity element and frequently occurs during 
menopause  (2). Signs of breast cancer include changes in 
breast shape and skin, a breast lump and cyst fluid discharged 
from the nipple  (3). At present, the treatments for breast 
cancer primarily include tumor resection, radiation treatment 
and chemotherapy (4,5). However, these treatment methods 
are associated with a high risk of recurrence (6). Therefore, 
the identification, development and study of novel treatment 
methods is required.

Mesenchymal stem cells (MSCs) are an important type of 
adult stem cells, which serve a role in the processes of tumor 
growth and metastasis (7). In vitro, MSCs are able to arrest the 
cell cycle progression of tumor cells in the G1 phase and reduce 
their apoptotic rate  (8). In addition, previous studies have 
revealed that MSCs possess a number of functions, including 
hematopoietic support, immunoregulation, multilineage 
differentiation and specific migration (9,10). Studeny et al (11) 
demonstrated that MSCs are able to form an effective platform 
for the local production of interferon (IFN)‑β, suppressing the 
process of pulmonary metastasis. Furthermore, MSCs may be 
used as carriers of a number of therapeutics, including inter-
leukin (IL)‑2, IFNs and C‑X3‑C motif chemokine receptor 1, 
in order to induce apoptosis and inhibit tumor cell differentia-
tion (12‑14).
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A previous study revealed that MSCs are able integrate 
into the tumor‑associated stroma and to affect the develop-
ment of breast cancer (15). In co‑culture with breast cancer 
cells, MSCs secreted a series of factors, including chemokine 
C‑C motif chemokine ligand 2, IL‑6 and tissue inhibitor of 
metalloproteinase 1 (TIMP‑1), restricting the growth of cancer 
cells (16,17). Furthermore, MSCs were able to inhibit the prolif-
eration of breast cancer cells by secreting Dickkopf‑related 
protein 1, a novel inhibitor of Wnt signaling (18). In addition, 
MSCs are able to arrest cells at the G0/G1 phase of the cell 
cycle through upregulation of tumor protein 21 (p21) and 
caspase‑3, further inhibiting cell growth (19). Furthermore, 
breast cancer‑associated lymphedema of the arm can be effec-
tively treated using autologous bone MSC transplantation (20).

However, certain opposing studies have revealed that MSCs 
are able to promote breast cancer metastasis (21,22). Therefore, 
the objective of the current study was to further examine this 
controversial issue by analyzing the underlying molecular 
mechanisms of the effect of MSCs in breast cancer. In the 
present study, to further explore the molecular mechanisms of 
MSCs in breast cancer, the GSE43306 gene expression dataset 
was downloaded from the Gene Expression Omnibus (GEO) 
database for differentially expressed gene (DEG) screening, 
pathway enrichment analysis and protein‑protein interaction 
(PPI) network construction. Finally, PPI network modules 
were screened and analyzed.

Materials and methods

Microarray data. The GSE43306 expression profile dataset 
was downloaded from the GEO database (http://www.ncbi 
.nlm.nih.gov/geo/). This dataset was collected using Illumina 
HiSeq 2000 (23). A total of nine tissue samples consisting of 
MDA‑MB‑231 cells comprised this dataset, including five 
samples supplemented with a 1:1 ratio of bone marrow MSCs 
(M) to MDA‑MB‑231 cells and four samples without MSC 
supplementation (A), which were compared in the current 
study to elucidate the effect of MSCs in breast cancer.

Data pre‑processing and DEG analysis. The raw data were 
converted into a FASTQ format, subsequently the Next 
Generation Sequencing Quality Control Toolkit (24) was used 
for quality control and filtering of high‑quality reads. Reads 
with ≥20 bases (70% read length) were selected as high‑quality 
reads. By default, the high‑quality reads were aligned to the 
full Human Genome (version 19) (https://www.ncbi.nlm.nih 
.gov/genome/51) using TopHat2 (25). Based on the results of 
comparison and genome annotation profiles, gene expression 
levels were calculated and genes with an expression value of 
0 were removed. Subsequently, a gene expression matrix was 
produced through the removal of repeated gene symbols. The 
NOISeq R/Bioc package (bioconductor.org) (26) was applied 
to screen for DEGs between the M and A groups with the 
threshold of q≥0.05.

Functional and pathway enrichment analysis. The Database 
for Annotation, Visualization and Integrated Discovery, 
which uses analytical tools to extract biological functions for 
numerous genes (27), was used for Gene Ontology (GO) (28) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) (29) 

functional and pathway enrichment analysis, respectively, of 
the DEGs identified. The cut‑off criteria were determined as 
P<0.05 and an enriched gene count >2.

PPI network construction. A PPI network of the DEGs 
was constructed using the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) database, with a 
threshold combined score of >0.4. In the PPI network, the 
nodes and edges (lines) represent proteins and their interac-
tions, respectively. Nodes with an average node connective 
degree ≥9 were regarded as hub proteins (30).

PPI network analysis. The PPI network was analyzed 
using Molecular Complex Detection (31), which mines for 
sub‑network modules. The sub‑networks were screened with 
the following default cut‑off thresholds: Degree, 2; node 
score, 0.2; K‑core, 2; maximum depth, 100. Subsequently, 
the nodes with the average node degree ≥3 and combined 
score (consisting of neighborhood, fusion, co‑occurrence, 
co‑expression, experimental database and text mining) were 
screened, and DEGs in these modules were used for pathway 
enrichment analysis.

Results

Screening of differentially expressed genes. Following 
pre‑processing of the GSE43306 dataset, a total of 291 DEGs, 
including 193 upregulated and 98 downregulated DEGs, were 
identified (data not shown).

Functional and pathway enrichment analysis. As presented 
in Table I, upregulated DEGs were primarily enriched in the 
following two types of GO terms: The first type included 
wound response (P=5.92x10‑7), the inflammatory response 
(P=5.92x10‑4) and the immune response (P=1.20x10‑2); and the 
second type included wound healing (P=4.97x10‑6), regulation 
of body fluid levels (P=6.82x10‑4), coagulation (P=6.83x10‑4), 
blood coagulation (P=6.83x10‑4) and hemostasis (P=9.23x10‑4). 
Simultaneously, the upregulated DEGs were enriched in a 
number of other functions, including the mitogen‑activated 
protein kinase signaling pathway (P=4.56x10‑2) and hemato-
poietic cell lineage (P=2.13x10‑2). The downregulated DEGs 
were also enriched in two types of GO term, as follows: The 
first type included the cell cycle (P=7.13x10‑4), mitotic cell 
cycle (P=6.81x10‑3), M phase (P=1.72x10‑2), M phase of the 
mitotic cell cycle (P=1.93x10‑2), cell cycle phase (P=4.08x10‑2) 
and cell cycle process (P=4.41x10‑2); the second type included 
RNA processing (P=3.35x10‑3), RNA splicing (P=9.61x10‑3), 
mRNA processing (P=1.57x10‑2) and mRNA metabolic 
process (P=2.70x10‑2).

PPI network. The PPI network constructed contained 156 
proteins and 289 interactions (Fig. 1). Based on the average 
degree of the nodes, the following 12 nodes with degrees 
≥9 were obtained: Fos proto‑oncogene AP‑1 transcription 
factor subunit (FOS), vascular endothelial growth factor A 
(VEGFA), fibronectin 1 (FN1), cluster of differentiation 44 
(CD44), nerve growth factor (NGF), activating transcription 
factor 3 Serpin Family E Member 1 (SERPINE1), cyclin 
A2 (CCNA2), PBZ binding kinase, tissue factor F3, heme 
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oxygenase‑1 and ferritin heavy chain 1. Among them, FOS 
and VEGFA were the hub proteins with the highest node 
degree (29).

Analysis of PPI network modules. Through module analysis 
of the PPI network, a total of 3 modules, including modules 
A, B and C, were obtained (data not shown). The number of 
nodes in modules A, B and C were 14, 5 and 6, respectively. 
While the number of interactions in modules A, B and C 
were 33, 8 and 9, respectively. Module A is illustrated in 
Fig. 2. Amongst the three modules, module A had the highest 
enriched score. Therefore, module A was further analyzed 
with GO functional and KEGG pathway enrichment anal-
yses, respectively (Table II). The 14 DEGs in module A were 
primarily enriched in GO terms such as wound response 
(P=4.77x10‑6), wound healing (P=6.25x10‑7) and coagulation 
(P=1.13x10‑7). In addition, these DEGs were enriched in one 
KEGG pathway, the complement and coagulation cascade 
(P=0.0036).

Discussion

The effect of MSCs on the development and progression 
of tumors, including breast cancer, remains a subject of 
debate (19). It is important to study the effects of MSCs on 
tumor growth in order to develop novel therapies for the treat-
ment of cancer (32). In the current study, a PPI network was 
constructed from DEGs in breast cancer. An important module 
with 14 nodes, including FN1, CD44, NGF, SERPINE1 and 
CCNA2, was identified through mining for modules in this 
network.

FN1 encodes the protein fibronectin 1, which is involved 
in cell adhesion and migration processes, including wound 
healing, embryogenesis, blood coagulation, host pathogenic 
defense and metastasis (33). FN1 is upregulated during the 
chondrogenic differentiation of MSCs and in various meta-
static chondrosarcomas  (34). In addition, FN1 expression 
has been demonstrated to be closely associated with various 
migration processes, including wound healing, embryogenesis 

Table I. Top two types of functional and pathway enrichment analysis for upregulated and downregulated DEGs through GO 
and KEGG.

Category	 GO or KEGG term	 Description	 Number of nodes	 P‑value	 Enrichment score

Up 1					     3.792
  BP	 GO:0009611	 Wound response	 21	 5.918x10‑7	
  BP	 GO:0006954	 Inflammatory response	 12	 5.948x10‑4	
  BP	 GO:0006952	 Defense response	 14	 1.199x10‑2	
Up 2					     3.567
  BP	 GO:0042060	 Wound healing	 12	 4.970x10‑6	
  BP	 GO:0050878	 Regulation of body fluid levels	 8	 6.818x10‑4	
  BP	 GO:0050817	 Coagulation	 7	 6.834x10‑4	
  BP	 GO:0007596	 Blood coagulation	 7	 6.834x10‑4	
  BP	 GO:0007599	 Hemostasis	 7	 9.229x10‑4	
  P	 hsa04010	 MAPK signaling pathway	 8	 4.562x10‑2	
  P	 hsa04640	 Hematopoietic cell lineage	 5	 2.132x10‑2	
Down 1					     1.758
  BP	 GO:0007049	 Cell cycle	 12	 7.129x10‑4	
  BP	 GO:0000278	 Mitotic cell cycle	 7	 6.808x10‑3	
  BP	 GO:0000279	 M phase	 6	 1.724x10‑2	
  BP	 GO:0000087	 M phase of mitotic cell cycle	 5	 1.932x10‑2	
  BP	 GO:0022403	 Cell cycle phase	 6	 4.085x10‑2	
  BP	 GO:0022402	 Cell cycle process	 7	 4.415x10‑2	
Down 2					     1.758
  BP	 GO:0006396	 RNA processing	 9	 3.355x10‑3	
  BP	 GO:0008380	 RNA splicing	 6	 9.611x10‑3	
  BP	 GO:0006397	 mRNA processing	 6	 1.566x10‑2	
  BP	 GO:0016071	 mRNA metabolic process	 6	 2.702x10‑2	
  BP	 GO:0000375	 RNA splicing, via transesterification reactions	 4	 3.303x10‑2	
  BP	 GO:0000377	 RNA splicing, via transesterification reactions	 4	 3.303x10‑2 	
		  with bulged adenosine as a nucleophile			 
  BP	 GO:0000398	 Nuclear mRNA splicing, via the spliceosome	 4	 3.303x10‑2	

Up, upregulated; down, downregulated; BP, biological process; P, pathway; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; MAPK, mitogen‑activated protein kinase; DEG, differentially expressed gene.
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and the metastasis of cancer cells  (35). In addition, in the 
PC3 prostate cancer cell line, FN1 was able to interact with 
the cell membrane reporter(s), inhibiting focus formation and 
tumorigenesis (36). Similarly, the mRNA expression of FN1 
in renal cancer cells is significantly increased compared with 
that in normal renal tissue (37). In the current study, FN1 was 
enriched in mRNA metabolism signaling pathways, which 
indicated that FN1 may have an important inhibitive role in the 

development of breast cancer via increased mRNA or protein 
expression levels.

CD44, which encodes a receptor for hyaluronic acid, 
participates in various cellular functions including hemato-
poiesis, lymphocyte activation and tumor cell metastasis (38). 
Furthermore, CD44, which is widely used as a MSC marker, has 
been demonstrated to serve a role in the migration of MSCs via 
migration assays and small interfering RNA experiments (39). 

Figure 1. DEG protein‑protein interaction network. Red and green nodes represent upregulated and downregulated DEGs, respectively. The shades of color 
represent the strength of this regulation. DEG, differentially expressed gene.

Figure 2. Protein‑protein interactions network of module A DEGs. Red and green nodes represent upregulated and downregulated DEGs, respectively. The 
shades of color represent the strength of this regulation. DEG, differentially expressed gene.
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In addition, during the development and progression of breast 
cancer, hyaluronic acid‑CD44 signaling was able to inhibit 
breast cancer cell metastasis through epithelial‑stromal 
interactions (40). The results of the current study are in agree-
ment with these previous studies, demonstrating that CD44 
was upregulated in cancer tissue samples supplemented with 
MDA‑MB‑231 cells and MSCs. Furthermore, the results of the 
current study suggest that CD44 serves a role in the metastasis 
of breast cancer, as CD44 was observed to be enriched in the 
pathway of hemostasis. In addition, these results indicate that 
CD44 is a potential therapeutic target for the treatment of 
breast cancer with MSCs.

NGF is a member of the NGF‑β family that encodes a 
secreted protein with nerve growth stimulating activity (41). 
In a previous study of glioma, MSCs were able to produce 
NGF, thus having an antitumor effect (42). In addition, NGF 
has been demonstrated to be an important regulator of breast 
cancer progression, inhibiting the progression of breast cancer 
through interactions with the p75 neurotrophin receptor and 
p140 tropomyosin receptor kinase A (43). In the current study, 
NGF was upregulated in samples supplemented with MSCs, 
suggesting that is a potential target gene for the treatment of 
breast cancer with MSCs.

SERPINE1, a member of the serine proteinase inhibitor 
superfamily, encodes a protein that inhibits urokinase‑type plas-
minogen activator (uPA) (44). In breast cancer, tumor severity 
may be associated with polymorphism of the plasminogen 
activator inhibitor type 1 4G/5G gene (45). In addition, uPA 
has been revealed to be associated with poor patient prognosis 
and tumor metastasis in breast cancer via various signaling 
pathways, including extracellular matrix breakdown  (46). 
In addition, uPA may stimulate MSC migration via the ERK 
signaling pathway (47). These results indicate that uPA is a 
potential therapeutic target for MSC‑mediated breast cancer 
treatment.

CCNA2 is a member of the highly conserved cyclin 
family, which binds to and activates cyclin‑dependent kinases 
(CDKs) 1 and 2 in order to promote G1/S and G2/M cell cycle 
progression (48). Lysine‑specific demethylase 1 promotes the 

development and aggressiveness of breast cancer through 
regulating CCNA2 expression levels (49). In addition, overex-
pression of CCNA2 was demonstrated to be associated with the 
poor prognosis of patients with breast cancer (50). However, 
few studies have investigated the expression of CCNA2 in 
breast cancer cell samples supplemented with MSCs. In the 
current study, CCNA2 was identified to be a downregulated in 
breast cancer cell samples supplemented with MSCs compared 
with cells without supplementation. Furthermore, CCNA2 
was demonstrated to be enriched in the cell cycle signaling 
pathway and was a node in the PPI network constructed for the 
DEGs. These results suggest that CCNA2 may be a potential 
target gene for the treatment of breast cancer with MSCs.

In conclusion, the results of the present study indicate 
that MSCs have beneficial effects for the treatment breast 
cancer. The DEGs identified, particularly those in PPI network 
modules, including FN1, CD44, NGF, SERPINE1 and CCNA2, 
may be the potential target genes for the treatment of breast 
cancer with MSCs. However, these results require confirma-
tion through further study.
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