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Abstract. Breast cancer is one of the leading causes of 
mortality in females. A number of prognostic markers have 
been identified, including single genes, multi‑gene signatures 
and network modules; however, the robustness of these 
prognostic markers is insufficient. Thus, the present study 
proposed a more robust method to identify breast cancer prog-
nostic modules based on weighted protein‑protein interaction 
networks, by integrating four sets of disease‑associated expres-
sion profiles. Three identified prognostic modules were closely 
associated with prognosis‑associated functions and survival 
time, as determined by Cox regression and Kaplan‑Meier 
survival analyses. The robustness of these modules was veri-
fied with an independent profile from another platform. Genes 
from these modules may be useful as breast cancer prognostic 
markers. The prognostic modules could be used to determine 
the prognoses of patients with breast cancer and characterize 
patient recovery.

Introduction

Breast cancer is one of the leading causes of female 
mortality (1‑3). Prognosis reflects the outlook and chance of 
recovery from breast cancer. It is therefore critical to acquire 
prognostic information that represents the physical condition 
of the patients. Understanding prognostic information assists 
in increasing the survival rate and prolongs the life expectancy 
of patients (4).

With the advent of microarray and next‑generation 
sequencing technology, an increased volume of genomic data 

is available, including data relevant to breast cancer prognosis. 
In recent decades, a number of prognostic marker identifica-
tion methods based on a single gene have been proposed (5). 
However, the detection of the expression of a single gene 
does not effectively characterize the expression of a gene 
cluster composed of tens or hundreds of genes. It has been 
demonstrated that prognostic information from multi‑gene 
signatures, including network modules, can reduce the hetero-
geneity of diseases with greater accuracy than data of a single 
gene (6). For example, a classifying system for breast cancer 
profiles was constructed based on 70 genes in a study by van 
de Vijver et al (7). A treatment response prediction method for 
patients with breast cancer was developed based on 64 genes 
by Pawitan et al  (8). The 21‑gene signature has now been 
intensively studied and is widely used in clinical decisions 
regarding breast cancer (9).

Prognostic marker identification methods have the 
problem of low robustness (10), and prognostic information 
obtained from certain patients may not be applicable to other 
patients  (11). Thus, the present study aimed to develop a 
method to identify robust prognostic modules based on four 
breast cancer expression profiles and protein‑protein interac-
tion networks (PPINs). Experimental detection based on 
these prognostic modules could aid clinicians in the diagnosis 
of patients who are at risk of developing malignant disease, 
and allow the provision of prevention and treatment for these 
patients as early as possible.

Materials and methods

Expression profile data. In total, 5 human breast cancer 
expression profiles, with survival time data, were downloaded 
from the Gene Expression Omnibus (GEO) database (12). 
GSE1456 (159 samples)  (8), GSE2034 (286 samples)  (13), 
GSE3494 (251 samples) (14) and GSE4922 (249 samples) (15) 
were all originally created using the Affymetrix, Inc., Hu133A 
and Hu133B platform (Affymetrix, Santa Clara, CA, USA). 
The GSE1456 dataset was selected as a training set, with the 
others were used as validation sets, to identify prognostic 
modules. GSE9893 (155 samples) (16), a profile created with 
MLRG Human 21K V12.0 (IGMM, Montpellier, France), was 
used to assess the validity and robustness of the prognostic 
modules.
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The protein interaction data was obtained from the Human 
Protein Reference Database  (17). Weighted PPINs were 
constructed using Pearson correlation coefficients (PCCs) as 
weights between interacting proteins X and Y using expression 
values from the expression profiles, as follows:

n represents the number of samples and Xi and Yi are the expres-
sion values of proteins X and Y in the ith sample, respectively. 
P<0.05 was considered to represent a statistically significant 
difference.

Identif ication of candidate prognostic modules. The 
network modules were mined from the PCC‑weighted 
PPINs using clusterONE software, version 1.0 (18), which 
detected modules from weighted networks. Genes in each  
module were connected topologically and associated with 
expression.

Supervised principal component analysis  (19) was 
applied to obtain candidate prognostic modules, taking the 
associated survival time and status (succumbed to disease 
or alive) into account. The mean expression value for each 
network module was calculated according to the expres-
sion profiles. The modules were screened against matrices 
composed of the mean expression values of network modules.  
The optimal feature threshold in supervised principal compo-
nents was estimated by 10‑fold cross‑validation. Candidate 
prognostic modules were determined according to the optimal 
threshold.

Functional and survival analysis of candidate prognostic 
modules. Functional and pathway enrichment analyses 
were conducted to assess candidate prognostic modules, 
using functions from the Gene Ontology (GO) database (20) 
and pathways from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (21). The significance threshold was set 
as P<0.05.

A univariate Cox regression analysis was performed to 
evaluate the association between survival time and the mean 
expression level of genes in candidate prognostic modules by 
statistical significance. Survival risks associated with candi-
date prognostic modules were evaluated by age‑weighted 
hazard ratios.

Kaplan‑Meier survival analysis was performed to assess 
the significance of modules, classifying patients according to 
the mean expression value of the module. Patients were sepa-
rated into two classes, ‘high’ and ‘low’ expression, depending 
on whether their expression value was higher or lower than 
the mean of the module. Kaplan‑Meier survival analysis was 
performed according to the survival time of patients in each 
class, to assess the significance of the effect of each module 
on survival time. The difference between the survival times 
of the two classes was compared with a log‑rank test (22). 
P<0.05 was considered to represent a statistically significant 
difference.

A hypergeometric test was performed on each module pair 
in the network to identify modules that overlapped with each 
other more than expected by chance.

where N is the total number of genes in two modules, M is the 
number of genes in one module, B is the number of genes in 
the other module, b is the number of common genes. A cut‑off 
value of 0.05 was set to screen out significantly overlapped 
modules.

Identification of prognostic modules. Four sets of candidate 
prognostic modules were identified for the four Affymetrix 
expression profiles. To ensure the robustness of prognostic 
modules, ‘overlapping’, i.e. recurring, genes from the four 
sets of candidate prognostic modules were extracted. Cox 
regression, Kaplan‑Meier survival and functional enrichment 
analyses using GO and KEGG were then conducted to screen 
for significant modules, which were defined as breast cancer 
prognostic modules.

Results

Candidate prognostic modules. PCCs were calculated for 
expression values from the expression profile GSE1456. A 
weighted PPIN was constructed based on pairs with PCC>0.01 
and P<0.05. ClusterONE identified 28 network modules that 
contained >4 genes, which were used for further analysis. 
These modules were designated as ‘Module 1‑28’.

There were a large number of overlapping genes in modules 
1‑28. A hypergeometric test was performed to assess the 
significance of overlapping in the modules. Modules overlap-
ping significantly were merged, yielding 18 merged modules, 
designated as ‘oModule 1‑18’.

The optimal feature threshold in supervised principal 
components, estimated by 10‑fold cross‑validation, was 1.8. A 
total of 12 candidate prognostic modules (Table I) and 6 candi-
date prognostic merged modules (Table II) containing 46 and 
48 genes, respectively, were produced according to the optimal 
threshold. All candidate prognostic merged modules were 
produced from the union of candidate prognostic modules, 
with the exception of Module 9.

Functional and survival analysis of candidate prognostic 
modules. Functional enrichment analysis was performed for 
the candidate prognostic merged modules. It was identified 
that 6 candidate prognostic merged modules (oModules 1, 
2, 3, 4, 6 and 9) were enriched for GO functions or KEGG 
pathways, including cell cycle (a hallmark of malignancy) and 
DNA replication (P<0.05). For candidate prognostic modules 
that were not enriched in any function, e.g., Module 4, 7 and 
18, the corresponding merged module, e.g., oModule 2, may 
be enriched in certain functions, including the cell cycle (23). 
Therefore, candidate prognostic merged modules were more 
significant at the functional level.

Candidate prognostic modules and merged modules were 
compared by hazard ratios and P‑values calculated with univar-
iate Cox regression analysis. P‑values from Kaplan‑Meier 
survival analysis were additionally computed to compare these 
types of modules. All modules were significantly associated 
with survival time (Cox, P<0.0002), and could significantly 
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classify patients according to the mean expression values of 
genes in the module (Kaplan‑Meier, P<0.02). Candidate prog-
nostic merged modules were thus identified as more significant 
than the corresponding candidate prognostic modules with 
regard to analyzing survival time (Tables I and II).

The results indicated that 6 candidate prognostic merged 
modules were better than the candidate prognostic modules, as 
they represented candidate prognostic modules with improved 
functional enrichment, lower Cox hazard ratios and better 
classifying performance for survival time.

To verify the effectiveness of the 6 candidate prog-
nostic merged modules identified based on the analysis of 
profile GSE1456, univariate Cox regression analysis and 
Kaplan‑Meier survival analysis were performed for the 
modules using expression data from the other three Affymetrix 
profiles, GSE2034, GSE3494 and GSE4922. The 6 candidate 
prognostic merged modules were identified as significantly 
associated with survival time for the 3 expression profiles 
(P<0.05); the association with GSE3494 and GSE4922 exhib-
ited particular significance (both P<0.01). Thus, the candidate 

prognostic merged modules were verified with other profiles 
from the same platform.

Breast cancer prognostic modules. The same process as for 
GSE1456 was performed with the profiles GSE2034, GSE3494 
and GSE4922 to generate three sets of candidate prognostic 
merged modules. As overlapping genes represented the core 
characterization of the four sets of expression profiles, they 
were selected for their significance with a hypergeometic test, 
and five prognostic overlapping modules were obtained and 
designated as ‘olapModule 1‑5’.

To screen for significant modules that correlated with 
survival time from these prognostic merged modules, univar-
iate Cox regression and Kaplan‑Meier survival analyses were 
performed (Table III). OlapModules 1, 2 and 4 were selected 
as they were significantly associated with the survival time 
of patients in the two analyses (P<0.05). These modules were 
defined as breast cancer prognostic modules, and may be 
suitable for use as prognostic markers for patients with breast 
cancer.

The effectiveness of the 3 breast cancer prognostic 
modules was assessed by Kaplan‑Meier survival analysis for 
all patients, integrating all four Affymetrix expression profiles 
(Fig. 1). This analysis demonstrated that the breast cancer 
prognostic modules could distinguish likely patient survival 
time based on their mean expression values, with statistical 
significance, when all Affymetrix expression profiles were 
integrated (P<0.0001).

The functional association between the prognostic modules 
and breast cancer prognosis was assessed by functional enrich-
ment analysis. Genes in olapModule 1 were enriched in GO 
functions and KEGG pathways including DNA replication, 
nucleoside binding and cell division (P<0.05). All 3 prognostic 
modules were enriched for the ‘cell cycle’ GO function and the 
‘cell cycle’ KEGG pathway (P<0.05). The majority of genes 
in olapModule 1 were associated with the G1 and S phase, 
whereas the genes of olapModule 2 and 4 were associated with 
the M and G2 phase, respectively (Fig. 2). OlapModule 1 was 
enriched for DNA replication and nucleotide binding, while 
olapModule 2 was enriched in cell division. The deregulation of 
cell cycle progression is one of the causes of breast cancer (22). 
It was previously demonstrated that cell cycle abnormalities 
in G1/S or G2/M phases are frequently observed in breast 
cancer (24‑26). For example, deregulation of cell cycle events 
leads to uncontrolled cell proliferation, and cell proliferation 
dysfunction is the main cause of cancer, and nuclear division is 
significantly associated with breast cancer (27‑29). A number 
of studies have implicated the modulation of the cell cycle 
and cell cycle regulatory proteins as markers for breast cancer 
prognosis (30,31). Therefore, the expression genes from these 
prognostic modules may reflect prognostic information, poten-
tially providing guidance in the treatment of breast cancer.

A total of 23 genes were contained in the 3 prognostic 
modules. All these genes have been verified to be associated 
with breast cancer in previous studies, including 13 that have 
been verified to be breast cancer prognostic markers and 6 which 
are prognostic markers for other types of cancer (Table IV). 
The genes minichromosome maintenance complex component 
2‑7 (MCM2‑7) in olapModule 1 form the mini‑chromosomal 
maintenance protein complex, an important structure in 

Table I. Hazard ratio and significance of 12 candidate 
prognostic modules as assessed by Cox regression and 
Kaplan‑Meier survival analyses.

Module	 Genes, n	 HR	 Cox	 Kaplan‑Meier

  1	 15	 3.95	 7.8x10‑5	 1.9x10‑2

  4	   5	 3.7	 2.2x10‑4	 8.0x10‑4

  7	   5	 3.72	 2.0x10‑4	 3.2x10‑3

10	   6	 3.91	 9.4x10‑5	 7.6x10‑6

13	   6	 3.73	 1.9x10‑4	 1.1x10‑5

15	   5	 4.06	 4.8x10‑5	 9.0x10‑5

16	   5	 3.81	 1.4x10‑4	 4.5x10‑5

17	   5	 3.82	 1.3x10‑4	 2.5x10‑5

18	   5	 3.63	 2.8x10‑4	 2.9x10‑3

19	   6	 3.91	 9.2x10‑5	 2.2x10‑6

20	   5	 3.77	 1.6x10‑4	 9.9x10‑6

27	   5	 4.07	 4.8x10‑5	 5.5x10‑5

HR, hazard ratio.

Table II. HR and significance of 6 candidate merged prognostic 
modules by Cox regression and Kaplan‑Meier survival 
analyses.

olapModule	 Genes, n	 HR	 Cox	 Kaplan‑Meier

1	 17	 4.05	 5.2x10‑5	 1.9x10‑2

2	   7	 3.76	 1.7x10‑4	 6.3x10‑6

3	   7	 3.86	 1.1x10‑4	 2.8x10‑7

4	   6	 3.91	 9.4x10‑5	 3.1x10‑5

6	   6	 3.87	 1.1x10‑4	 4.6x10‑6

9	   5	 4.07	 4.8x10‑5	 5.5x10‑5

HR, hazard ratio.
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DNA replication and extension. These genes could reflect the 
prognosis of patients and have been used as effective targets 
for cancer therapy (32‑34) origin recognition complex subunit 
1 (ORC1) and ORC6 in olapModule 1 are components of 

the DNA replication initiation complex, and have been used 
as breast cancer prognostic markers (35,36). The genes cell 
division cycle 20 (CDC20), ribonucleotide reductase regula-
tory subunit M2 (RRM2), cyclin dependent kinase inhibitor 3 

Figure 1. The Kaplan‑Meier survival curve for all patients in four sets of expression profiles, based on three breast cancer prognosis modules: (A) olapModule 1, 
(B) olapModule 2 and (C) olapModule 4. Gray and black lines indicate the survival time for patients with low‑ and high‑expression, respectively.

Table III. Assessment of the prognostic significance of olapModules for sets of expression profiles, as assessed by Cox regression 
and Kaplan‑Meier survival analyses.

Profile set	 olapModule	 HR	 Cox	 Kaplan‑Meier

GSE1456 (training set)	 1	 4.0	 6.10x10‑5	 6.40x10‑4

	 2	 3.9	 6.90x10‑5	 9.10x10‑5

	 3	 3.8	 1.10x10‑4	 4.60x10‑6

	 4	 3.7	 2.20x10‑4	 8.00x10‑4

	 5	‑ 1.9	 5.10x10‑2	 3.20x10‑1

GSE2034	 1	 2.2	 2.20x10‑3	 2.00x10‑2

	 2	 3.4	 5.20x10‑4	 2.10x10‑3

	 3	 1.8	 6.40x10‑2	 5.50x10‑2

	 4	 3.3	 9.70x10‑4	 1.50x10‑2

	 5	‑ 1.4	 1.40x10‑1	 6.40x10‑1

GSE3493	 1	 3.2	 1.30x10‑3	 1.00x10‑2

	 2	 3.5	 4.40x10‑4	 1.40x10‑3

	 3	 3.5	 3.30x10‑4	 3.10x10‑2

	 4	 3.8	 1.20x10‑4	 1.10x10‑4

	 5	‑ 2.9	 3.40x10‑3	 4.20x10‑2

GSE4922	 1	 3.6	 2.60x10‑4	 4.20x10‑4

	 2	 4.0	 4.90x10‑5	 5.40x10‑4

	 3	 3.9	 8.70x10‑5	 1.20x10‑3

	 4	 4.2	 2.50x10‑5	 3.00x10‑4

	 5	‑ 2.8	 3.80x10‑3	 1.80x10‑2

HR, hazard ratio.
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(CDKN3) and MAD2 mitotic arrest deficient‑like 1 (yeast) 
(MAD2L1) in olapModule 2 and 4 serve important roles in 

the regulation of cell proliferation, the cell cycle and chromo-
some segregation (37), whose abnormalities could cause breast 

Figure 2. Genes in olapModules 1, 2 and 4 are involved in cell cycle regulation. Nodes with a wide, black border are from olapModule 1. Nodes with a gray 
background are from olapModule 2. Nodes with a wide, gray border are from olapModule 4.

Table IV. Literature verification for genes included in prognostic modules.

olapModule	 Breast cancer marker	 Cancer marker	 Breast cancer‑associated

1	 MCM4 (25628920)	 DBF4 (24287290)	 MCM10 (25046975)
	 MCM7 (19360293)	 CDC7 (20724597)	 CDC45 (17887956)
	 CCNB2 (23282137)	 MCM6 (21478909)	 ORC6 (22333897)
	 MCM2 (16278669)	 MCM5 (20334671)	 ORC1 (24097061)
	 MCM3 (22699783)		
2	 PTTG1 (23704896)	 PKMYT1 (21042722)	
	 MAD2L1 (25012665)	 KIF11 (25193695)	
	 CDC20 (17388661)		
	 BUB1B (20569502)		
	 CENPE (19470724)		
4	 RRM2 (25016594)		
	 CDK1 (25218592)		
	 CDKN3 (20569502)		

Each number in brackets is a PubMed identifier to describe the marker or association status of the gene.
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cancer. Genes in these modules that were not verified as asso-
ciated with breast cancer prognosis could be novel prognostic 
markers for breast cancer.

Discussion

In the present study, a method has been proposed to identify 
robust breast cancer prognostic modules of multiple genes, 
based on weighted PPINs. Three prognostic modules were 
identified from the analysis of four sets of breast cancer‑asso-
ciated expression profiles using GO and KEGG functional 
enrichment, Cox regression and Kaplan‑Meier survival anal-
yses. These prognostic modules were significantly enriched in 
various prognosis‑associated terms, including terms associated 
with the regulation of the cell cycle, which demonstrated the 
effectiveness of these modules from a functional perspective. 
The breast cancer prognostic modules are able to distinguish 
between patients based on their expression profiles not only 
from a single profile but also from a set of profiles integrating 
four sets, which demonstrated the robustness of the identified 
prognostic modules.

To further verify the robustness of prognostic modules, a 
set of expression profiles created with an alternative platform, 
GPL5049, was analyzed. Cox regression and Kaplan‑Meier 
survival analyses were performed. A total of 3 prognostic 
modules were significantly associated with survival time for 
patients in this independent profile, which demonstrated the 
robustness of the 3 breast cancer prognostic modules.

Weighted PPINs were constructed based on PCCs by 
evaluating the correlation between protein pairs and their 
corresponding P‑values. To confirm the advantages of 
utilizing weighted PPINs, unweighted PPINs were constructed 
to perform the same analysis. A total of 11 modules were 
detected using clusterONE and supervised principal compo-
nent analysis, which were designated as ‘nModule1‑11’. No 
genes were overlapped between nModule 10‑11, while a 
number of genes overlapped between the breast cancer prog-
nostic modules. A total of 12 genes were common between 
nModule1 and olapModule 1, and there were 3 genes in 
common between nModule 4 and olapModule 2. Functional 
enrichment analysis was conducted for these 11 modules. 
Only nModules 1‑4 were significantly enriched in biological 
functions, whereas only nModule1 and 4 were significantly 
enriched in the same functions as the breast cancer prognostic 
modules. In nModule 1, the genes were enriched in the same 
functions, including the cell cycle. The robustness of nModule 
4 was not verified by the independent profile from another 
platform, as analyzed by Cox regression and Kaplan‑Meier 
survival analyses (P>0.100). In addition, a greater number 
of genes in nModule 1 and 4 were not enriched in these 
functions, which indicated that olapModules 1 and 2 were 
more robust than nModule 1 and 4. Thus, modules based on 
unweighted PPINs were not effective as prognostic modules 
for breast cancer.

Breast cancer prognostic modules from the present study 
were compared with cancer prognostic signatures identified 
from another weighted network module‑based method proposed 
by Wu and Stein (38). In the study by Wu and Stein (38), a 
single module was significant for Cox regression analysis 
across multiple datasets and was used as a prognostic signature. 

Kaplan‑Meier survival analysis was subsequently employed. 
The prognostic signatures in Wu and Stein and in the present 
study were significant (P<0.05). However in the present study, 
the genes in these modules were different from the study by  
Wu and Stein. In the present study, all 23 genes in the modules 
have been verified to be associated with breast cancer in 
previous studies, 13 of which have been verified to be breast 
cancer prognostic markers (Table IV).

The widely used 21‑gene signature (39) was assessed by 
Cox regression analysis and Kaplan‑Meier survival analysis 
for the aforementioned expression profiles. The results for only 
2 of 4 profile sets, GSE1456 and GSE4922, were significant 
(Table V), which indicated that the robustness of the 21‑gene 
signature was not sufficient for certain patients.

By contrast, the robustness of the prognostic modules 
from the present study means that genes in these modules 
may be suited to become novel breast cancer prognostic 
markers. From a total of 23 genes contained in the 3 breast 
cancer prognostic modules, which have been previously veri-
fied as associated with breast cancer, 13 have been identified 
as prognostic markers for breast cancer, including ORC1, 
ORC6, CDC20, RRM2, CDKN3 and MAD2L1  (35‑37) 
(Table  IV). The remaining 10 genes may be novel breast 
cancer prognostic markers. Cox regression analysis and 
Kaplan‑Meier survival analysis were performed for these 
genes. The majority of these genes were significantly asso-
ciated with the survival time of patients (P<0.05) for four 
profiles, while particular genes that have been previously 
verified to be cancer prognostic markers, including ORC6, 
MCM3 and MCM7  (32‑34,36), were not prognostic for 
certain expression profiles. These results demonstrated the 
advantage of using prognosis information from modules 
compared with using single genes.

In summary, the present study proposed an effective 
method to identify robust breast cancer prognostic modules. 
The proposed prognostic modules could be used to determine 
the prognosis of patients with breast cancer and characterize 
patient recovery. Genes in these modules may additionally act 
as breast cancer prognostic markers. This method may provide 
a novel perspective for the research of other types of cancer.
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