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Abstract. Cancer is a histologically and genetically hetero-
geneous population of tumor cells that exhibits distinct 
molecular profiles determined by epigenetic alterations. 
P‑element‑induced wimpy testis (PIWI) proteins in complex 
with PIWI‑interacting RNA (piRNA) have been previously 
demonstrated to be involved in epigenetic regulation in germ-
line cells. Recently, reactivation of PIWI expression, primarily 
PIWI‑like protein 1 and 2, through aberrant DNA methylation 
resulting in genomic silencing has been identified in various 
types of tumors. It has been suggested that the PIWI‑piRNA 
complex contributes to cancer development and progression 
by promoting a stem‑like state of cancer cells, or cancer 
stem cells (CSCs). It has been identified that CSCs represent 
the cells that have undergone epithelial‑mesenchymal transi-
tion (EMT) and acquired metastatic capacities. However, 
the molecular association between the EMT process and the 
stem‑cell state remains unclear. Further extensive character-
ization of CSCs in individual types of tumors is required to 
identify specific markers for the heterogeneous population of 
CSCs and therefore selectively target CSCs. Previous studies 
indicate a reciprocal regulation between PIWI proteins and 
a complex signaling network linking markers characterized 
for CSCs and transcription factors involved in EMT. In the 
present review, studies of PIWI function are summarized, and 
the potential involvement of PIWI proteins in cancer develop-
ment and progression is discussed.
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1. Epigenetic alterations in cancer

Cancer has been described as a set of diseases driven by 
progressive genetic abnormalities, including mutations in 
tumor suppressor genes, oncogenes and chromosomal abnor-
malities, and by aberrant epigenetic alterations (1). Epigenetic 
alterations identified in cancer include global DNA hypometh-
ylation, particularly in repetitive regions, but also in the intronic 
and the coding regions of genes. These alterations may result 
in the reactivation of transposons, the loss of chromosomal 
stability and imprinting patterns. Another epigenetic modi-
fication is gene‑specific DNA hypermethylation, particularly 
in promoter regions of tumor suppressor genes, deregulation 
of histone modification patterns and consequently alterations 
in gene expression. Additionally, small non‑coding RNA 
(ncRNA) deregulation has been studied in detail in various 
types of cancer in recent years (1). All these alterations drive 
the transformation of wild‑type cells into highly malignant 
tumor consisting of neoplastic cells with metastatic potential 
and unlimited proliferation capacities (1,2).

2. P‑element‑induced wimpy testis (PIWI) proteins and 
PIWI‑interacting RNAs (piRNAs)

Currently, three major classes of small regulatory RNAs have 
been identified: microRNAs, small interfering RNAs (siRNAs) 
and piRNAs. The least well investigated class of ncRNAs, 
piRNAs were originally identified in 2006 as ncRNAs that 
interacted with PIWI proteins, which are a subclass of the 
conserved Argonaute family of proteins  (3‑6). The main 
characteristics of piRNAs are that they are single‑stranded 
ncRNAs, with an average length of 24‑32  nucleotides 
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exhibiting highly conserved functions across species (3,7). 
Notably, unlike other ncRNAs, piRNAs are generated from 
a small number of long single‑stranded RNA precursors, 
transcribed from distinct transposons referred to as ‘piRNA 
clusters’ by a Dicer‑independent mechanism (8,9). However, 
certain piRNAs are also encoded in 3'untranslated regions 
of intergenic non‑coding transcripts and protein‑coding 
genes  (10). In Drosophila, piRNAs are primarily derived 
from intergenic repetitive regions in the genome, including 
transposable elements. Two models of piRNA biogenesis have 
been suggested in Drosophila: The primary pathway and the 
secondary ‘ping‑pong cycle’ (11). Certain characteristics of the 
biogenesis of piRNAs have also been described in other organ-
isms (3,4). Cloning of piRNAs in Drosophila revealed that 
this group of small ncRNAs also included repeat‑associated 
siRNAs, which were previously identified in plants (12) and 
trypanosomes (13).

On the basis of phylogenetic analysis, Argonaute proteins 
may be divided into two subclasses: The AGO subfamily, 
based on Arabidopsis thaliana Ago1 proteins, and the PIWI 
subfamily, related to Drosophila melanogaster Piwi proteins. 
The AGO and PIWI subclasses of Argonaute are composed 
of three characteristic domains: the PIWI‑Argonaute‑Zwille 
(PAZ) domain, the middle (MID) domain and the PIWI 
domain (14) (Fig. 1). The PAZ domain of Argonaute proteins 
recognizes the 3' end of the RNA, which, in the case of piRNAs, 
is invariably modified with a 2'‑O‑methyl group (15). The MID 
domain, which is located between the PAZ domain and the 
PIWI domain, is similar to the glucose/galactose‑binding 
protein and the Lac repressor (16). The primary function of the 
MID domain is to provide a binding pocket for the phosphory-
lated 5' end of guide strand RNA. The PIWI domain, which 
is unique to the AGO protein superfamily, adopts a classical 
RNase H fold, and three residues within the PIWI domain form 
a catalytic triad (generally Asp‑Asp‑His) (14,16). A previous 
study has revealed that PIWI proteins, but not AGO, are 
arginine‑methylated by protein arginine methyltransferase 5 
and, as a consequence, symmetric dimethylarginines (sDMAs) 
at their N‑termini are formed (17). Several members of the 
Tudor‑domain‑containing proteins (Tudor family proteins) 
specifically bind to sDMAs and serve a crucial role in PIWI 
function (11,18,19).

The PIWI protein family is highly conserved in a variety 
of organisms  (20,21). PIWI ortholog expression has been 
identified in the sponge Ephydatia fluviatilis (EfPiwiA and 
EfpiwiB), jellyfish (Piwi in Clytia hemisphaerica and Cniwi 
in Podocoryne carnea), planaria Schmidtea mediterranea 
(Smedwi‑1, ‑2 and ‑3), Caenorhabditis elegans (Prg‑1 and ‑2), 
zebrafish (Ziwi and Zili), D. melanogaster (Piwi, Aub and 
Ago3), mouse (Miwi, Mili and Miwi2) and humans. There are 
four human PIWIs: PIWI‑like protein 1 (PIWIL1, also known 
as HIWI), PIWIL2 (HILI), PIWIL4 (HIWI2) and PIWIL3 
(HIWI3) (22). The chromosomal location and molecular mass 
of each PIWI protein is presented in Table I.

Current understanding of PIWI protein function has 
primarily been the result of loss‑of‑function studies carried 
out in mice, D. melanogaster, C. elegans and zebrafish. 
These studies have indicated that the PIWI‑piRNA system is 
involved in germline development, primarily spermatogenesis 
and maintenance of germline and somatic stem cells (20,21). 

Further studies have indicated that the piRNA‑PIWI signaling 
pathway serves a crucial role in transposon repression, epigen-
etic regulation and translation control (20). The epigenetic role 
of PIWI proteins in germ and stem cell regulation has been 
the subject of study in a number of organisms: In Drosophila 
mutants lacking PIWI genes, the inhibition of germline stem 
cell renewal and depletion of gametes in males and females 
were observed (22‑24). Homozygous Miwi, Mili and Miwi2 
knockout male mice exhibited arrested spermatogenesis, 
apoptosis of germ cells and decreased testis size  (25‑27). 
PIWI‑piRNA complexes are involved in maintaining genomic 
integrity in germline stem cells and have been demonstrated 
to be critical for silencing transposon regions in the genome 
by clustering at these elements and by methylating DNA (28).

3. PIWI‑piRNA in cancer development

The functions of PIWI in the germline have been extensively 
studied. The expression of the human PIWI protein PIWIL1 
has been described primarily in germ cells and hematopoietic 
stem cells (29). PIWIL1 has been detected in human cluster 
of differentiation (CD)34+ hematopoietic progenitor cells, 
but not in well‑differentiated cell populations (29). However, 
several lines of evidence have indicated that the human PIWI 
proteins PIWIL1 and PIWIL2 are aberrantly expressed in 
various types of cancer (30,31). Preliminary studies suggest 
that overexpression and ectopic expression of PIWIL1 is 
associated with several types of tumor  (31,32). Primarily 
on the basis of immunohistochemical studies, the increased 
expression of PIWIL1 has been detected in breast  (33,34), 
esophageal  (35), pancreas  (36), gastric  (37) and endome-
trial (38) carcinoma. In the majority of cases, increased levels 
of PIWIL1 were markedly associated with an advanced 
histological tumor grade, advanced clinical stage and a poorer 
clinical outcome for patients. Positive staining of PIWIL1 in 
colorectal cancer tissue has been identified to be a marker 
of poor prognosis for patients with colorectal cancer  (39). 
Increased expression of PIWIL1 in hepatocellular carci-
noma (HCC) was positively correlated with tumor size and 
metastasis and negatively correlated with survival rates (40). 
Liu et al (41) detected an increased level of PIWIL1 expression 
in high‑grade squamous intraepithelial lesions and cervical 
cancer, compared with in wild‑type cervical tissue. The 
alterations in PIWIL1 levels were associated with advanced 
pathological stage and cisplatin resistance of cancer. In vitro 
and in vivo studies demonstrated that PIWIL1 upregulation 
contributes to increased tumorigenesis, resistance to chemo-
therapeutic drugs, acquisition of self‑renewal abilities and 
elevated expression of stem‑cell‑related transcription markers 
including octamer‑binding protein 4 (OCT4), homeobox 
protein NANOG (NANOG) and Polycomb complex protein 
BMI1 (41). The levels of PIWIL1 protein and transcript were 
significantly upregulated in intratumor tissue from patients 
with non‑small cell lung cancer (NSCLC), compared with 
in peritumor tissue (42). In addition, using gain‑of‑function 
and loss‑of‑function strategies, a positive association between 
the expression of PIWIL1 and proliferation of the NSCLC 
cell line A549 was identified  (42). Cao et al  (34) demon-
strated that PIWIL1 affects the cell cycle by regulating the 
expression level of transforming growth factor‑β receptors, 
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cyclin‑dependent kinase (CDK) 4, CDK6 and CDK8 in breast 
cancer (34). PIWIL1 overexpression in colon cancer cell lines 
promoted proliferation and induced global DNA methylation 
in vitro (43).

Previous studies have indicated that PIWIL2 may also serve 
an important role in tumor development. Increased expression 
of PIWIL2 was identified in breast, cervical, gastric, ovarian, 
prostate and colorectal cancer (37,38,44‑49). PIWIL2 expres-
sion has been observed in various stages of breast cancer, and 
its expression was associated with increased expression of the 
estrogen receptor and proliferation marker Ki‑67, as well as 
cancer progression (38,50). Increased levels of PIWIL2 have 
also been observed in testicular seminomas, but not in testic-
ular non‑seminoma tumors  (51,52). Immunohistochemical 
analysis of prostate cancer tissues revealed increased 
expression of PIWIL2 in cancer cells, as compared with in 
non‑tumorous adjacent tissues (48). Using an in vitro model of 
prostate cancer cell lines, it was demonstrated that silencing 
the expression of PIWIL2 significantly decreased cell inva-
sion and migration, downregulated the expression of neuronal 
(N‑)cadherin, protein TWIST (TWIST) and vimentin, and 
upregulated the expression of epithelial (E‑)cadherin, matrix 
metalloproteinase‑9 and factors associated with EMT (48). 
Increased expression of PIWIL2 in colorectal cancer tissue 
was significantly associated with a decreased degree of 
differentiation and invasion, and reduced overall survival time 
(12 months median survival period, vs. 28 months for patients 
with low PIWIL2) (49). Significantly increased expression 
of PIWIL2 was observed in primary tumor of colon cancer 
and lymph node metastasis compared with in non‑tumorous 
colon tissue. An increased level of PIWIL2 was associ-
ated with a decreased degree of differentiation of the tumor 
and invasion, and a lower 5‑year overall survival rate (56.6 
vs. 84.3%) (51,53). PIWIL2 knockdown in colon cancer cells 
significantly decreased proliferation, migration and colony 
formation, increased apoptosis in vitro, and decreased tumor 
cell proliferation in vivo (53). It was suggested that PIWIL2 
acts as an oncogene by inhibiting apoptosis and promoting 
cell proliferation through the signal transducer and activator 
of transcription/B‑cell lymphoma extra‑large signaling 
pathway  (51). Our recent study demonstrated a decreased 
level of PIWIL2 in colon cancer tissue compared with in 
non‑tumorous adjacent tissue (Fig. 2)  (54). Furthermore, a 
marked negative association between PIWIL1 and PIWIL2 
was observed in wild‑type colorectal tissue (Fig. 2). Similarly, 
Nikpour et al (55) reported the absence of PIWIL2 expression 
in several bladder carcinoma cell lines and bladder cancer 
tissues. These authors suggested that that ectopic expression of 
PIWIL2 is not essential for the pathogenesis of human bladder 
carcinoma (55). The contradictory results indicate possible 
reciprocal regulation between PIWIL1 and PIWIL2 in colon 
cancer (54).

With regard to other members of the PIWI protein family, 
PIWIL4 has been identified to be overexpressed in human 
cervical cancer tissue, as compared with in non‑tumorous 
adjacent tissue (56). Furthermore, the expression of PIWIL4, 
but not of PIWIL1, PIWIL2 or PIWIL3, was significantly 
increased in renal cell carcinoma (57). PIWIL2 and PIWIL4 
mRNA were expressed at an increased level in various breast 
cancer cell lines compared with in mammary epithelial 

cells, whereas PIWIL1 and PIWIL3 transcripts were unde-
tectable  (19). In the case of gastric cancer, expression of 
four members of the PIWI protein family was markedly 
increased in tumor tissue compared with in non‑tumorous 
adjacent tissue  (37). Increased expression was associated 
with advanced clinical tumor‑node‑metastasis (TNM) clas-
sification, advanced T‑stage and lymph node metastasis, but 
only PIWIL1 and PIWIL2 levels were associated with poorer 
overall survival (37).

piRNAs have not been extensively studied in cancer; 
however, a limited number of preliminary studies suggest 
that piRNAs are altered in cancer. A specific piRNA‑651 has 
been demonstrated to be aberrantly overexpressed in various 
tumors compared with in wild‑type tissues (58,59). In NSCLC, 
a significant increase in piRNA‑651 levels was identified to 
be associated with cancer progression (58). Furthermore, the 
upregulation of piRNA‑651 in A549 lung cancer cells caused 
a significant increase in cell viability and metastasis, and was 
associated with the upregulation of cyclin D1 and CDK4 in vivo 
and in vitro. Inhibition of piRNA‑651 in gastric cancer cell 
lines was associated with decreased cellular proliferation (59). 
The level of piRNA‑823 was positively associated with tumor 
lymph node metastasis and distant metastasis (60). Conversely, 
upregulated expression of piRNA‑651 was observed in gastric, 
colon, lung and breast cancer tissues (58‑60). Increased levels 
of piRNA‑4987, ‑20365, ‑20485 and ‑20582 were observed in 
breast tumors compared with in non‑cancerous tissues, and 
were associated with lymph node metastasis  (60). In spite 
of these discrepancies, the detection of piRNAs in blood 
and cancer tissues may be a valid biomarker for identifying 
circulating or cancer stem cells within the tumor. Recently, 
Martinez et al (7) described somatic and malignant expression 
patterns of numerous piRNAs. They detected that 273 piRNAs 
of the ~20,000 known piRNAs are expressed in somatic 
non‑malignant tissues; in corresponding tumor tissues, they 
detected a significantly increased number of piRNAs, and 
expression patterns were identified to be specific to malignan-
cies and their clinical features (7).

A PIWI and piRNA model of function in non‑tumorous and 
cancer tissue has been proposed (Fig. 3). piRNAs, along with 
abundant expression of PIWI, in germline stem cells regulate 
transposon silencing through DNA methylation during sper-
matogenesis. In this way, germline cells (expressing PIWI at an 
increased level) develop normally into somatic tissues in which 
PIWI proteins are absent  (28,61). However, in cancer cells, 
PIWI and piRNAs exhibit increased expression, which results 

Table I. Chromosomal location and molecular mass of PIWI 
proteins.

Protein	 Genomic locus	 Molecular mass (kDa)

PIWIL1	 12q24.33	      98.5
PIWIL2	 8p21.3	 110
PIWIL3	 22q11.23	 101
PIWIL4	 11q21	   97

PIWI, P‑element‑induced wimpy testis; PIWIL, PIWI‑like.
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in aberrant DNA methylation, silencing of tumor suppressor 
genes and an abnormal ‘stem‑like’ state of cancer cells (28). 
Furthermore, the hypothesis that PIWIL1 and PIWIL2 in 
cancer contribute to tumorigenesis by transcriptionally silencing 
tumor suppressor genes through epigenetic mechanisms is 
supported by observation of their orthologs in mice and D. 
melanogaster (62‑66). In mice, Mili and Miwi2 mutants fail to 
establish de novo DNA methylation of transposon sequences, 
which is required for transcriptional silencing of transposons 
in the genome (62,63). It has been suggested that piRNAs acts 

as a guide for directing transposon‑specific DNA methyla-
tion (64). In D. melanogaster, Piwi is localized in the nucleus 
and such subcellular localization determines its function during 
transposon silencing (66,67). Additionally, PIWI proteins, by 
suppressing the expression of particular transposons, may be 
involved in genomic instability, one of the most common altera-
tions to occur in cancer (67). Despite the growing attention on 
the PIWI‑piRNA signaling pathway, only a limited number of 
studies have described the underlying molecular mechanism by 
which PIWI proteins contribute to tumorigenesis (28,61).

Figure 1. Schematic representation of PIWI proteins. PIWI, P‑element‑induced wimpy testis; N, N‑terminal domain; PAZ, PIWI‑Argonaute‑Zwille domain; 
MID, middle domain.

Figure 2. Representative immunohistochemical staining of PIWIL1 and PIWIL2 in colorectal and breast cancer tissue samples together with control mastop-
athy and non‑tumorous colorectal tissue samples. Paraffin blocks were prepared, containing mastopathy and invasive ductal breast carcinoma tissue, derived 
from patients who underwent surgery and were treated in the Lower Silesian Oncology Center (Wrocław, Poland) between 1999 and 2002. Paired tissue 
specimens (tumor and adjacent non‑cancerous samples) obtained from patients with colorectal cancer during surgery at the Research and Development Centre, 
Regional Specialist Hospital (Wrocław, Poland) between 2011 and 2014 were used for immunohistochemical studies. Mastopathy and non‑tumorous colorectal 
tissues were resected from non‑malignant tissue adjacent to the primary colorectal and breast tumor.

Figure 3. Summary of cellular functions of the PIWI‑piRNA signaling pathway. PIWI, P‑element‑induced wimpy testis; piRNA, PIWI‑interacting RNA; EMT, 
epithelial‑mesenchymal transition.
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4. Characteristics of cancer stem cells (CSCs)

Cancer consists of a population of genetically and epige-
netically heterogeneous individual cells, exhibiting distinct 
molecular and phenotypic characteristics, and proliferative 
potential. Heterogeneity of the tumor cells within the cancer 
led to the concept of the existence of CSCs, which present 
epigenetic alterations and signaling pathways characteristic 
of stem cells, including self‑renewal capacity, rapid prolif-
eration and multilineage differentiation (68,69). Although 
the CSC hypothesis is still evolving, there is evidence to 
support this model of cancer development and progres-
sion (70). Research based on the CSC model has focused on 
a particular subset of cells that may be explicitly targeted 
for more effective therapies for cancer (70,71). As numerous 
so‑called cancer/testis antigens (CTAs) that are transiently 
expressed in developing germ cells have also been identi-
fied in various tumors in humans, these may be targets for 
immunotherapy  (71). Due to the restricted expression of 
PIWI in testis and in various types of tumors, PIWIs may 
be CTAs. Currently, the most widely used method to identify 
CSCs is through their expression of particular cell‑surface 
markers called CDs; an example is the antigen CD133, also 
known as prominin‑1, originally classified as a marker of 
hematopoietic endothelial progenitor cells and neural stem 
cells  (72‑74). CD133 is also a marker for organ‑specific 
stem cells and CSCs, and several types of tumor, including 
brain, hepatocellular, colon, pancreas and prostate (75‑79). 
However, markers expressed exclusively by CSCs currently 
identified are not specific for cancer stem cells. Therefore, 
characterization of the genetic and epigenetic alterations 
that occur in CSCs may provide important insights into the 
processes of cancer development and metastasis.

To date, certain key signaling pathways have been identi-
fied, which may be aberrantly regulated in CSCs, and thus may 
represent potential targets for cancer diagnostics and thera-
pies (80,81). A number of studies have indicated that several 
fundamental signaling pathways, including Wnt/β‑catenin, 
Notch and Hedgehog, serve critical roles in normal stem 
cells and CSCs (81). Furthermore, it has been identified that 
transcription factors OCT4, SRY‑box 2 (SOX2), NANOG, 
Krüppel‑like factor 4 (KLF4), c‑MYC and LIN28 are respon-
sible for the regulation of pluripotency and self‑renewal of 
embryonic stem cells (ESCs). Expression of these factors, 
known as ESC markers, is restricted to pluripotent stem cells, 
downregulated during embryonic development and undetect-
able in adult wild‑type tissues (82). However, alterations in the 
expression of ESC‑associated proteins have been demonstrated 
in a number of types of cancer: OCT4, also known as POU 
domain, class 5, transcription factor 1, is expressed in ESCs 
and adult stem cells, and has been proposed to be associated 
with the pluripotency, proliferative potential and self‑renewal 
of ESCs and germ cells (83). The transcription factor NANOG, 
a downstream target of OCT4, which contributes to cell fate 
determination of the pluripotent inner cell mass during embry-
onic development, is also specifically expressed in human 
pluripotent ESCs (82).

Patients with co‑expression of OCT4 and NANOG have 
been demonstrated to exhibit significantly worse overall 
survival and poor prognosis of several malignancies, 

including oral  (84), glioma  (85), gastric  (86), rectal  (87) 
and hepatocellular (88) cancer. Overexpression of NANOG 
was markedly associated with poor prognosis, lymph node 
metastasis and Dukes' classification of colorectal cancer (89). 
SOX2, together with OCT4 and NANOG, serves a crucial 
role in the maintenance of ESC pluripotency. Previous studies 
have demonstrated that SOX2 is involved in promoting 
tumorigenesis, proliferation and dedifferentiation of human 
lung squamous cell carcinoma and breast cancer (90,91). In 
ovarian cancer, SOX2 expression increases the expression of 
CSC markers, the potential to form tumor spheres and in vivo 
tumor‑initiating capability. Furthermore, SOX2‑expressing 
cells display enhanced apoptosis resistance in response to 
conventional chemotherapies (92). In pancreatic carcinoma, 
alterations in SOX2 were identified to be associated with 
the invasion and metastatic potential of tumors, suggesting 
that SOX2 is involved in later events of carcinogenesis (93). 
In rectal cancer, the increased levels of CD133, OCT4 and 
SOX2 were significantly associated with tumor recurrence 
and decreased disease‑free survival time (87). Yin et al (88) 
demonstrated that pluripotent stem cell genes are 
associated with HCC progression and poor prognosis. 
Expression of SOX2 and LIN28 in HCC was correlated with 
an increased tumor size, whereas an increased expression 
level of c‑MYC was associated with vascular invasion (88). An 
increased level of KLF4 was associated with the aggressive-
ness of HCC, vascular invasion and cancer differentiation (88). 
Together with OCT4, SOX2 and C‑MYC, KLF4 is a pivotal 
factor in the generation of induced pluripotent cells and is 
involved in the epigenetic reprogramming of a somatic 
genome; KLF4 is required to maintain the cell morphology 
of mammary epithelial cells (94). Notably, Tiwari et al (95) 
observed that downregulation of KLF4 induces EMT through 
alterations in the expression of key genes involved in EMT, 
including those encoding N‑cadherin, vimentin, β‑catenin, 
vascular endothelial growth factor A and c‑Jun N‑terminal 
kinase 1 (95).

PIWI proteins, due to restricted expression during embry-
onic development and aberrant expression in various types of 
cancer, have been suggested to act as oncogenes or constitute 
a marker for CSCs. Reactivated expression of PIWI in cancer 
and association with certain already defined ESC‑associated 
proteins indicates the participation of these proteins in the 
process of tumor growth (28). Positive associations between 
PIWIL1 and OCT4 mRNA levels, as well as PIWIL2 and 
SOX2, in colon cancer tissues have been identified (54). Thus, 
the expression of various CSC markers in various types of 
cancer has been extensively studied; however, the functional 
characteristics of these markers, co‑expression with tran-
scription factors, other signaling pathways and epigenetic 
mechanisms require further study.

5. EMT in CSC development

The alterations in cell motility and adhesiveness, as well 
as the adaptation to the new microenvironment, observed 
during tumor growth appear to be crucial in determining the 
metastatic potential and invasiveness of cancer cells. EMT is 
a critical process enabling the migration, invasion and metas-
tasis of tumor cells from the primary tumor to distant organs. 
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EMT is characterized by long‑lasting morphological and 
molecular alterations in epithelial cells as a result of transdif-
ferentiation towards a mesenchymal cell type (96). During 
this process, epithelial cells acquire fibroblast‑like proper-
ties, and demonstrate decreased adhesion and increased 
motility (96). A number of transcription factors have been 
implicated in the control of EMT, including zinc‑finger 
protein SNAI1 (SNAI1), TWIST, zinc‑finger protein SLUG 
(SLUG) and zinc‑finger E‑box‑binding homeobox (ZEB) 
1 and 2, which directly repress mediators of epithelial cell 
adhesion, including E‑cadherin and components of adherens 
junctions. In addition, the self‑renewal capacity of CSCs 
appears to be essential for EMT during early steps of metas-
tasis (97‑99).

A number of studies have indicated that metastatic cancer 
cells, which have presumably undergone EMT, may exhibit a 
CSC‑like phenotype: For instance, overexpression of SNAI1, 
a central transcription factor that regulates EMT, induces 
a CSC‑like phenotype in colorectal cancer cells by directly 
repressing epithelial markers, including E‑cadherin, and by 
regulating mesenchymal markers  (100). SNAI1 upregula-
tion led to increased cell migration and increased metastasis 
in vivo, and was associated with a more aggressive phenotype, 
increased rates of distant metastases and poorer clinical 
outcomes in breast and ovarian carcinoma, and HCC (100). 
Epithelial breast cancer cells that undergo EMT induced by 
SNAI1 factor, exhibit CD44‑positive and CD24‑negative 
expression, as well as expression of stem‑like genes, including 
NANOG, KLF4 and transcription factor 4  (100). Ectopic 
expression of OCT4 and NANOG in lung carcinoma was 
demonstrated to increase the CD133‑positive cell subpopu-
lation, activate SLUG, promote EMT and enhance drug 
resistance (101). Furthermore, double knockdown of OCT4 and 
NANOG in A549 lung cancer cells suppressed the expression 
of SLUG, reversed the EMT process, inhibited tumorigenic 
and metastatic capacities and significantly increased the 
survival time of transplanted nude mice (101). In nasopharyn-
geal carcinoma, increased expression of OCT4 and NANOG 
was significantly associated with a decreased rate of survival 
(36.1% 5‑year survival rate, compared with 76.7%) (102). OCT4 
and NANOG were primarily located at the invasive front of 
tumors, and were significantly associated with increased levels 
of various aggressive clinical factors, and advanced TNM clas-
sification and clinical stage; furthermore, these proteins were 
positively associated with EMT‑associated markers (102). The 
limited effectiveness of standard anticancer therapies has been 
attributed to the existence of heterogeneous highly drug‑resis-
tant populations of CSCs that are responsible for initiation, 
development and tumor metastasis, as well as response to 
treatment. Chen et al (103) identified stem‑like cancer cells of 
the colon cancer cell line HCT116 that co‑express CD133 and 
CD44 markers. Cells with increased expression of CD133 and 
CD44 were undifferentiated, with self‑renewal and epithelial 
lineage differentiation capabilities in  vitro, and increased 
expression of CSC and EMT markers  (103). Furthermore, 
CD133+/CD44+ cells represented increased invasive abilities 
in vitro and increased tumorigenic properties in vivo (103). 
In addition, alterations in the expression of EMT‑associated 
genes driven by KLF4 downregulation was demonstrated by 
Tiwari et al (95), as aforementioned.

Yang et al (48) identified that PIWIL2 serves an important 
role in determining the invasive abilities of prostate cells. 
The alterations in PIWIL2 expression were associated with 
alterations in the expression of EMT markers. Silencing the 
expression of PIWIL2 significantly decreased cell invasion 
and migration, downregulated the expression of N‑cadherin, 
TWIST and vimentin, and upregulated the expression of 
E‑cadherin, matrix metalloproteinase‑9 and factors associ-
ated with EMT (48). In selected breast CSCs characterized by 
the markers CD44+/CD24‑, expression levels of PIWIL2 and 
piRNA‑932 were significantly increased in the breast cancer 
cells that were induced to undergo EMT (104). Furthermore, in 
head and neck squamous cell carcinoma, increased expression 
of piRNA‑34736 influenced the expression of genes involved 
in EMT and apoptosis, associated with an advanced tumor 
stage (105).

6. Conclusions

Previous studies have identified a direct connection between 
stem cell self‑renewal and cancer development and inva-
sion (68‑70). However, the potential association between CSCs 
and the PIWI‑piRNA signaling pathway remains unexplored. 
Evidence exists concerning the roles of PIWI proteins in 
various types of tumors; however, experimental reports, as 
described, often appear to be contradictory. PIWI proteins in 
complex with piRNA have been demonstrated to be involved 
in epigenetic regulation in germline cells by transposon 
element regulation and in somatic tissue in the activation of 
gene expression by promoting euchromatic histone modifica-
tions and transcription of piRNAs (106,107). Although the 
number of piRNAs expressed in somatic tissue is significantly 
lower than in germline cells, tissue specificity associated with 
the expressed piRNAs has been demonstrated (7).

Aberrant expression of PIWI and piRNAs that target 
mRNA transcripts may serve a driving role through the 
degradation or inhibition of tumor suppressor genes or 
oncogenes (108). Another example of the piRNA‑mediated 
influence on tumorigenesis is by mutagenic retrotranspositions 
and genomic instability initiation (107,108). PIWI‑piRNA 
complexes contribute to cancer development through aber-
rant DNA methylation resulting in genomic silencing and 
promoting a stem‑like state of cancer cells (28,61,108,109). A 
number of studies indicate that stem‑like cancer cells represent 
the cells that have undergone EMT and acquired metastatic 
capabilities. Our previous study indicates a reciprocal regula-
tion between PIWI proteins and complex signaling network 
linking markers characterized for CSCs (54) and transcrip-
tion factors involved in the EMT process; however, further 
research is required to elucidate the underlying molecular 
mechanisms.
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