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Abstract. The objective of the present study was to identify 
altered pathways in breast cancer based on the individual-
ized pathway aberrance score (iPAS) method combined with 
the normal reference (nRef). There were 4 steps to identify 
altered pathways using the iPAS method: Data preprocessing 
conducted by the robust multi‑array average (RMA) algo-
rithm; gene‑level statistics based on average Z; pathway‑level 
statistics according to iPAS; and a significance test dependent 
on 1 sample Wilcoxon test. The altered pathways were vali-
dated by calculating the changed percentage of each pathway 
in tumor samples and comparing them with pathways from 
differentially expressed genes (DEGs). A total of 688 altered 
pathways with P<0.01 were identified, including kinesin 
(KIF)‑ and polo‑like kinase (PLK)‑mediated events. When 
the percentage of change reached 50%, 310 pathways were 
involved in the total 688 altered pathways, which may vali-
date the present results. In addition, there were 324 DEGs and 
155 common genes between DEGs and pathway genes. DEGs 
and common genes were enriched in the same 9 significant 
terms, which also were members of altered pathways. The 
iPAS method was suitable for identifying altered pathways in 
breast cancer. Altered pathways (such as KIF and PLK medi-
ated events) were important for understanding breast cancer 
mechanisms and for the future application of customized 
therapeutic decisions.

Introduction

Breast cancer is characterized by a distinct metastatic pattern 
involving the regional lymph nodes, bone marrow, lungs and 
the liver (1). It is the most common type of cancer diagnosed 
among women and the second leading cause of cancer mortality 
among women following lung cancer (2). A family history of 

breast cancer and several other factors (including female sex, 
old age and exposure to ionizing radiation) increase the risk 
of developing breast cancer (3). In addition, 5‑10% of breast 
cancer cases are caused by inherited gene mutations (4). Several 
gene markers have been identified to predict responses  to 
therapeutic regimens, such as receptor tyrosine‑protein 
kinase erbB‑2 and Stearoyl‑CoA desaturase‑1 (5‑7). However,  
development remains necessary to understanding the mecha-
nisms of breast cancer, in order to customize anticancer 
therapies and to identify altered pathways in an individual 
with breast cancer.

Pathway analysis has become the first choice for gaining 
insight into the underlying biology of genes and proteins, as it 
reduces complexity and has increased explanatory power (8). 
Existing pathway analysis techniques are predominantly 
focused on discovering altered pathways between normal and 
cancer groups and are not suitable for identifying the pathway 
aberrance that may occur in an individual sample  (9). A 
simple way to identify an individual's pathway aberrance is 
to compare normal and tumor data from the same individual. 
However, matched normal data from the same individual is 
often unavailable in clinical situations. Therefore, the present 
study applied a new approach for the personalized identifica-
tion of altered pathways, making special use of accumulated 
normal data in cases when a patient's matched normal data 
were unavailable (10).

The present study identified altered pathways in breast 
cancer based on the individualized pathway aberrance score 
(iPAS) method which included data preprocessing, gene‑level 
statistics, pathway‑level statistics and a significant test. The 
altered pathways were validated by comparison with pathways 
based on differentially expressed genes (DEGs), and by calcu-
lating the percentage of changed pathways in breast cancer 
samples.

Materials and methods

Gene expression data. In the present study, the gene expres-
sion profile with accession number E‑GEOD‑10780 (11) was 
recruited from the ArrayExpress database (http://www.ebi 
.ac.uk/arrayexpress/). E‑GEOD‑10780, which was presented 
on the A‑AFFY‑44‑Affymetrix GeneChip Human Genome 
U133 Plus 2.0 (Affymetrix, Inc., Santa Clara, CA, USA), 
comprised of 143 normal control samples and 42 breast cancer 
samples. The gene expression profile on probe level was 
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converted into gene symbol level. Subsequent to removing 
the duplicated symbols, a total of 20,102 gene symbols were 
obtained for additional analysis.

Pathway data. Information from gene sets representing 
biological pathways was downloaded from the reactome 
pathway database (http://www.reactome.org/) (12). Reactome 
is an online curated resource for human pathway data and 
provides infrastructure for computation across the biological 
reaction network (12). Pathways involving a small number of 
genes are easily understood by researchers. Therefore, for the 
present study pathways with a gene set of >100 were filtered 
out. In addition, the present study also eliminated pathways that 
had a null set with the gene expression profile E‑GEOD‑10780. 
Finally, 1,013 pathways were identified, which consisted of 
5,182 genes.

Individualized analysis for pathways. To identify altered path-
ways in an individual breast cancer sample, the iPAS method 
was employed (10), which includes 4 steps: Data preprocessing 
(Fig. 1A); gene‑level statistics (Fig. 1B); pathway‑level statis-
tics (Fig. 1C); and a significant test (Fig. 1D).

Data pre‑processing. Prior to analysis, a standard pre‑treat-
ment was conducted to control the quality of the gene 
expression profiles. For normal genes, background correc-
tions and normalization were carried out using the robust 
multi‑array average (RMA) algorithm and the quantile 
based algorithm to eliminate the influence of nonspecific 
hybridization  (13,14). The Micro Array Suite 5.0 (MAS 
5.0) algorithm was then applied to revise perfect match and 
mismatch value (15), and median polish method was applied 
to summarize the expression value (13). All normal control 
samples were regarded as references (nRef) in the present 
study. For individual breast cancer cases, the present study 
performed uniformly standardized normalization following 
the combination of the single tumor microarray with all nRef 
samples.

Gene‑level statistics. Standardizing the gene expression on the 
gene‑level via mean and standard deviation (SD) from datasets 
is often used in microarray analysis. In the present study, the 
individual tumor sample gene expression level was standard-
ized based on the mean and SD of the normal references. This 
formula was defined as:

Where mean (Nj) symbolized the mean expression value 
of the genes of the nRef, stdev (Nj) symbolized the SD of the 
normal, Tij symbolized the expression value of i‑th tumor gene 
and Zij symbolized the standardized expression value of i‑th 
tumor gene, where the number of genes belonging to the gene 
was i.

Pathway‑level statistics based on average Z. The average 
Z method was selected to evaluate iPAS by utilizing the nRef. 
A vector Z=(zn) denoted the expression status of a pathway, 
where zi symbolizes the standardized expression value of the 
i‑th gene and is derived from mean and SD of the nRef. n was 

the number of genes belonging to the pathway. The iPAS was 
calculated as following:

Significant measurement. A one sample Wilcoxon‑test was 
conducted for normal and tumor pathway statistics values to 
estimate the significance of the pathways (16). All collected 
normal samples for the nRef were sequentially compared with 
the nRef to yield statistics of the null distribution. A P‑value 
was produced according to comparison between this null 
distribution and a statistic from a single tumor case, and was 
adjusted by false discovery rate (FDR). A pathway with P<0.01 
was considered as altered pathway compared with nRef.

Hierarchical clustering analysis of altered pathways. To 
assess the classification performance of altered pathways, a 
hierarchical clustering analysis was applied across 42 tumor 
samples and 143 normal control samples using the Gene 
Cluster 3.0 (Human Genome Center, University of Tokyo, 
Tokyo, Japan) program. The clustering algorithm was set to 
complete linkage clustering using an uncentered correlation. 
Ideally, the samples should be classified into 2 major clusters: 
Tumor cases and normal controls. The present study tested the 
method by measuring the percentage of test samples that could 
be correctly classified. Accuracy is the fraction of correctly 
classified samples over all samples (17).

TP (true positive) represents the number of positive 
samples correctly predicted as positive, TN (true negative) 
represents the number of negative samples correctly predicted 
as negative, FP (false positive) represents the number of nega-
tive samples incorrectly predicted as positive and FN (false 
negative) represents the number of positive samples incorrectly 
predicted as negative.

Validation of the altered pathways. The present study applied 
2 methods to validate altered pathways obtained from indi-
vidualized analysis using the nRef, one was comparing with 
the traditional approach according to DEGs to identify path-
ways, and the other was by calculating the percentage of each 
changed pathway in tumor samples.

DEGs based pathway analysis. The linear models for micro-
array data (Limma) package  (18) was utilized to explore 
DEGs between the patients with breast cancer and the 
normal controls. Only the genes with FDR adjusted P‑values 
of <0.01 and log fold change of >2 were classed as DEGs. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis for DEGs was conducted based 
on the Database for Annotation, Visualization and Integrated 
Discovery (19), which implemented the expression analysis 
systematic explorer test to selected pathways with the criterion 
P<0.01 (20).

Pathway changed percent. To validate altered pathways in 
tumors which were identified by iPAS method combined with 
nRef, the present study counted the percentage change for 
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each pathway in breast cancer samples. Firstly, by taking the 
distribution character of each pathway statistic value in normal 
and tumor samples, the empirical P‑value of each pathway in 
a tumor individual compared with nRef was detected. The 
amount of P‑values <0.01 were then statistically counted in 
order to obtain the changed percentage for each pathway in all 
breast cancer cases.

Statistical analysis. In the present study, the one sample 
Wilcoxon test (using SPSS v.19.0; IBM SPSS, Armonk, NY, 
USA) was utilized to estimate the significance of the pathways, 
of which P values also were calculated. P<0.05 was considered 
to indicate a statistically significant difference. However, to 
be confident in the validity of these results, P<0.01 was the 
statistically significant threshold in the current study.

Results

Identification of altered pathways. In the present study, 
143 normal control samples in the gene expression profile 
E‑GEOD‑10780 were defined as nRef of 42 tumor samples. 
The present study performed quantile normalization for 
tumor genes to evaluate their gene‑level statistics. A total of 
1,013 pathways were identified from the reactome pathway 
database. The present study extracted gene‑level statistic 
values of all genes enriched in one pathway, and denoted the 
mean value to pathway‑level statistics of this pathway. With 
a threshold value of P<0.01, a total of 688 altered pathways 
were explored for breast cancer. The cluster analysis of using 
Average Z as the iPAS method based on individual breast 
cancer and normal controls was also shown in Fig. 2. As 
presented in Fig. 2, TP=31, FP=11, TN=143, while FN=0, thus 
the accuracy of classification equaled to 94.05%, which indi-
cated that the samples possessed good classification.

In addition, the top 5% of the 688 altered pathways are 
shown in Table I. Polo‑like kinase (PLK) ‑mediated events, 
phosphorylation of proteins involved in G1/S transition by 
active cyclin E/Cdk2 complexes, G2/M DNA replication 
checkpoint, FGFR2b ligand binding and activation and cyclin 

A/B1 associated events during G2/M transition were the most 
significant pathways with a P‑value of 4.38E‑18.

Gene compositions of altered pathways. Pathways involve 
several genes, which work together to perform one biological 
process or to regulate certain biological functions. To addition-
ally identify the functions and properties of altered pathways, 
the present study investigated their gene compositions at the 
gene expression level. The PLK‑mediated events pathway 
was comprised of 13 genes (centromere protein F, CENPF; 
E1A binding protein p300, EP300; forkhead box protein M1, 
FOXM1; MYB proto‑oncogene like 2, MYBL2; polo‑like 
kinase 1, PLK1; lin‑37 DREAM MuvB complex component, 
LIN37; RB binding protein 4, chromatin remodeling factor, 
RBBP4; WEE  1 G2 checkpoint kinase, WEE1; cyclin B1, 
CCNB1; protein kinase, membrane associated tyrosine/threo-
nine 1, PKMYT1; cyclin B2, CCNB2; cell division cycle 25A, 
CDC25A and cell division cycle 25C CDC25C), and Fig. 3 
illustrates expression patterns of genes in this pathway across 
normal and breast cancer samples. The present study identified 
that the gene‑level statistic in tumors was disturbed relative to 
that in normal samples, and in normal samples the gene‑levels 
for the 13 genes were similar in general. Therefore, it may be 
inferred that different gene‑levels lead to the production of 
altered pathways in breast cancer compared with nRef.

Comparison with pathways based on DEGs. The present 
study identified a total of 324 DEGs between breast cancer and 
normal controls with thresholds of P<0.01 and log fold change 
of >2. Taking the intersection with 5,182 genes contained in 
1,013 pathways, only 155 common genes were detected.

Results of the KEGG pathway enrichment analysis showed 
that 324 DEGs were enriched in 9 significant pathways under 
the condition of P<0.01 (Table  II). The most significant 
pathways were focal adhesion (P=4.01E‑05), ECM‑receptor 
interaction (P=4.73E‑05) and cytokine‑cytokine receptor inter-
action (P=2.90E‑04). When performing KEGG enrichment 
analysis for common genes, notably, the 155 common genes 
also enriched in the same 9 pathways, however the properties 

Figure 1. Schematic flow showing the 4 stages of individualized pathway 
analysis based on the iPAS method using normal reference. iPAS, indi-
vidualized pathway aberrance score. (A) Data preprocessing schematic flow. 
(B) Gene‑level statistical analysis. (C) Pathway‑level statistical analysis. 
(D) Statistical significance test.

Figure 2. Cluster of using Average Z as the iPAS method based on individual 
breast cancer and normal controls. iPAS, individualized pathway aberrance 
score.
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were different, such as P‑value, count and enriched genes. 
The most significant term of common genes was the peroxi-
some proliferator‑activated receptor signaling pathway with 
P=3.44E‑04. In addition, cytokine‑cytokine receptor interac-
tions had the largest count of 18, whilst the next was pathways 
in cancer with a count of 14. Although the DEGs are not entirely 
included by 5,182 pathway genes, the 9 KEGG pathways were 
all involved in 688 altered pathways, which indicates that the 
present method was used to identify altered pathways.

Validation of altered pathways based on changed percent. 
The present study calculated percentage of changed pathways 
among 42 breast cancer samples, and listed the 47 pathways 
with changes in >80% tumor samples (Table III). The 47 path-
ways were part of 688 altered pathways. Kinesins (KIFs) and 

PLK mediated events were changed in 39 individuals (92.86%), 
the next were chromosome maintenance, meiotic recombina-
tion, deposition of new centromere protein A‑containing 
nucleosomes at the centromere, nucleosome assembly and 
G2/M (DNA damage) DNA replication checkpoint changed 
in 38 individuals (90.48%). If the changed percentage was 
equal to 50%, a total of 310 terms were obtained, which are 
also involved in 688 altered pathways. This may contribute to 
validation of the present results.

The gene composition of PLK mediated events had been 
analyzed (Fig. 3), and CCNB1 was the common gene. Its 
gene‑level statistic value across different individual had clear 
differences. In KIFs, there were 21 genes, KIF20A, centro-
mere protein E (CENPE), KIF2C, KIF3A, KIFAP3, KIF4A, 
rac GTPase activating protein 1 (RACGAP1), KIF2A, KIF3C, 

Table I. Top 5% of 688 altered pathways with P<0.01 in breast cancer.

Pathway	 P‑value

Polo‑like kinase mediated events	 4.38E‑18
Phosphorylation of proteins involved in G1/S transition by active Cyclin E/Cdk2 complexes	 4.38E‑18
G2/M DNA replication checkpoint	 4.38E‑18
FGFR2b ligand binding and activation	 4.38E‑18
Cyclin A/B1 associated events during G2/M transition	 4.38E‑18
Deposition of new CENPA‑containing nucleosomes at the centromere	 1.27E‑17
Nucleosome assembly	 1.27E‑17
Kinesins	 1.50E‑17
Removal of the flap intermediate from the C‑strand	 3.47E‑17
G1/S‑specific transcription	 4.99E‑17
Phosphorylation of emi1	 4.99E‑17
Removal of the flap intermediate	 8.93E‑17
Chromosome maintenance	 8.93E‑17
G0 and early G1	 8.93E‑17
FGFR1b ligand binding and activation	 1.02E‑16
Cyclin B2 mediated events	 1.05E‑16
CHL1 interactions	 1.24E‑16
Phosphorylation of the APC/C	 1.87E‑16
Meiotic recombination	 1.87E‑16
RNA polymerase I promoter opening	 2.06E‑16
Notch‑HLH transcription pathway	 2.33E‑16
Type I hemidesmosome assembly	 3.41E‑16
E2F mediated regulation of DNA replication	 3.41E‑16
Unwinding of DNA	 3.41E‑16
Telomere Maintenance	 4.00E‑16
Inactivation of APC/C via direct inhibition of the APC/C complex	 4.00E‑16
Inhibition of the proteolytic activity of APC/C required for the onset	 4.00E‑16
of anaphase by mitotic spindle checkpoint components
G2/M checkpoints	 4.00E‑16
Mitotic spindle checkpoint	 4.66E‑16
DNA strand elongation	 4.66E‑16
Processive synthesis on the lagging strand	 4.66E‑16
E2F‑enabled inhibition of pre‑replication complex formation	 5.20E‑16
Telomere C‑strand (lagging strand) synthesis	 5.80E‑16
Activation of the pre‑replicative complex	 5.80E‑16
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kinesin light chain 1 (KLC1), KIF5A, kinesin light chain 2 
(KLC2), KIF5B, KIF5C, KIF11, KIFC1, KIF22, KIF15, 
KIF18A, KIF3B and KIF23, of which KIF20A and KIF11 were 
common genes. The standardized gene expression pattern for 
this pathway differed between tumor and normal (Fig. 4). A 
number of the genes deviated from the mean of the nRef and 
expression pattern of a gene varied markedly between tumor 
and normal samples. For an individual, different genes had 
their own gene‑level statistics.

Discussion

The present study identified altered pathways in breast cancer 
using a new method (iPAS method combined with nRef), and 
validated its feasibility based on the percentage of changed 
pathways in breast cancer samples and comparison with KEGG 
pathways. KEGG pathways and pathways with a changed 
percentage of >50% were parts of the altered pathways, which 
indicated that the iPAS method to identify altered pathways in 
breast cancer was feasible. The present results indicated that a 
total of 688 altered pathways were identified, such as KIF‑ and 
PLK‑mediated events.

KIFs are a superfamily of microtubule‑based motor 
proteins that exhibit diverse functions in the intracellular 
transportation of vesicles, organelles and chromosomes, the 
regulation of microtubule dynamics (21), and of molecular 
motors engaged in key cellular functions including cell divi-
sion, mitosis and migration  (22,23). Previously, additional 
mitotic KIFs have been validated as drug targets for cancer 
drug development particularly for breast cancer, raising the 
possibility that the range of KIF‑based drug targets may 
expand in the future (24). De et al (25) demonstrated that the 
over expression of KIF family member C3 (KIFC3), KIFC1, 
KIF1A, or KIF5A to microtubules opposed the stabilizing 
effect of docetaxel that prevented cytokinesis and led to apop-
tosis. Similarly, the over expression of KIFC3, KIF5A, and 
KIF12 were specific in mediating resistance to docetaxel and 
not vincristine or doxorubicin. This overexpression of KIFC3, 
KIF5A and KIF12 correlated with specific taxane resistance 
in basal‑like breast cancer; this ability was eliminated by 
a mutation of the adenosine triphosphate (ATP)‑binding 
domain of a KIF (26). It had been identified that ANCCA 
(ATPase family, AAA nuclear coregulator cancer associ-
ated) is a key mediator of KIF family deregulation in breast 

Table II. Kyoto encyclopedia of genes and genomes pathways with P<0.01 based on DEGs and common genes.

	 P‑value	 Count
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Pathway	 DEGs	 Common	 DEGs	 Common

Focal adhesion	 4.01E‑05	 5.39E‑03	 17	 11
Extracellular matrix‑receptor interaction	 4.37E‑05	 5.59E‑03	 11	 7
Cytokine‑cytokine receptor interaction	 2.90E‑04	 1.54E‑03	 18	 14
Peroxisome proliferator‑activated receptor signaling pathway	 1.68E‑03	 3.44E‑04	 8	 8
Pathways in cancer	 3.53E‑03	 9.85E‑03	 18	 14
Adipocytokine signaling pathway	 6.68E‑03	 9.41E‑03	 7	 6
Aldosterone‑regulated sodium reabsorption	 7.39E‑03	 7.88E‑03	 5	 5
Chemokine signaling pathway	 8.71E‑03	 9.51E‑03	 11	 10
Oocyte meiosis	 9.05E‑03	 5.31E‑03	 8	 8

DEGS, differentially expressed genes.

Figure 4. Gene level statistics in kinesins. Each line represents a sample. 
Blue, tumor; red, normal.

Figure 3. Gene level statistics in Polo‑like kinase mediated events. Each line 
represents a sample. Blue, tumor; red, normal.
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cancer and the crucial role of multiple KIFs in growth and 
survival of the tumor cells (27). Guerrero‑Preston et al (28) 

suggested that differential promoter methylation of KIF1A 
in plasma was associated with breast cancer and DNA repair 

Table III. Altered pathways with a percentage change >80%.

Altered pathway	 Amount 	 Percent (%)

Kinesins	 39	 92.86
Polo‑like kinase mediated events	 39	 92.86
Chromosome maintenance	 38	 90.48
Meiotic recombination	 38	 90.48
Deposition of new CENPA‑containing nucleosomes at the centromere	 38	 90.48
Nucleosome assembly	 38	 90.48
G2/M DNA replication checkpoint	 38	 90.48
Telomere maintenance	 37	 88.10
Golgi cisternae pericentriolar stack reorganization	 37	 88.10
Nuclear factor‑kB activation through Fas‑associated death domain and receptor	 37	 88.10
interacting protein 1 pathway mediated by caspase‑8 and ‑10
Phosphorylation of proteins involved in G1/S transition by active Cyclin E/Cdk2 complexes	 37	 88.10
Meiosis	 36	 85.71
RNA polymerase I promoter clearance	 36	 85.71
Amyloids	 36	 85.71
Packaging of telomere ends	 36	 85.71
RNA polymerase I promoter opening	 36	 85.71
Cyclin A/B1 associated events during G2/M transition	 36	 85.71
Leading strand synthesis	 36	 85.71
Polymerase switching	 36	 85.71
Polymerase switching on the C‑strand of the telomere	 36	 85.71
Phosphorylation of emi1	 36	 85.71
Meiotic synapsis	 35	 83.33
RNA polymerase I chain elongation	 35	 83.33
G2/M checkpoints	 35	 83.33
Activation of ATR in response to replication stress	 35	 83.33
DNA strand elongation	 35	 83.33
Activation of the pre‑replicative complex	 35	 83.33
Extension of telomeres	 35	 83.33
Telomere C‑strand (lagging strand) synthesis	 35	 83.33
Resolution of AP sites via the multiple‑nucleotide patch replacement pathway	 35	 83.33
Zinc transporters	 35	 83.33
Repair synthesis for gap‑filling by DNA polymerase in TC‑NER	 35	 83.33
E2F‑enabled inhibition of pre‑replication complex formation	 35	 83.33
ER quality control compartment	 35	 83.33
Cyclin B2 mediated events	 35	 83.33
Synthesis of DNA	 34	 80.95
RNA polymerase I transcription	 34	 80.95
Activation of APC/C and APC/CCdc20 mediated degradation of mitotic proteins	 34	 80.95
DNA damage bypass	 34	 80.95
Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template	 34	 80.95
E2F mediated regulation of DNA replication	 34	 80.95
G0 and early G1	 34	 80.95
Synthesis and interconversion of nucleotide di‑ and triphosphates	 34	 80.95
G1/S‑specific transcription	 34	 80.95
Phosphorylation of the APC/C	 34	 80.95
Removal of the flap intermediate	 34	 80.95
Chk1/Chk2(Cds1) mediated inactivation of cyclin B/Cdk1 complex	 34	 80.95
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capacity. A negative correlation was identified between 
KIF2A (KIF family member 2A) expression levels in breast 
cancer and the survival time of patients with breast cancer (29).

To additionally investigate functions of altered pathways, 
gene composition based on gene‑level statistics were studied. A 
number of genes expressed deviated from the mean of the nRef, 
and these fluctuations may cause an alteration between breast 
cancer and normal controls. Among members of KIFs, KIF20A 
(KIF family member 20A) and KIF11 (KIS family member 11) 
were common genes between DEGs and pathway genes. For 
breast cancer patients, FOXM1 regulated KIF20A expression 
to modulate mitotic catastrophe caused by interferences in 
paclitaxel‑mediated cell death and senescence  (30). KIF11 
represented an attractive anticancer target, and the inhibition of 
KIF11 caused mitotic arrest and apoptosis of multiple cancers, 
for example, breast cancer (31). Therefore, the KIF members 
and KIFs pathway had significant effects on breast cancer.

In the PLK mediated events pathway, PLK served a 
dominant role. PLK family members are known to be 
functionally involved in mitotic signaling, and in cytoskel-
etal reorganization in normal and malignant cells (32,33). 
PLKs are also a family of conserved serine/threonine 
kinases involved in the regulation of cell cycle progression 
and in the activation of cyclin‑dependent kinase/cyclin 
complexes during the M‑phase of the cell cycle through G2 
and mitosis (34). Previous studies reported that PLK1 was 
a potential therapeutic option in combination with conven-
tional chemotherapy for the management of patients with 
triple‑negative  breast cancer, and was overexpressed in 
tumors, indicating its involvement in carcinogenesis (35‑37). 
The use of different PLK1 inhibitors has increased knowl-
edge of mitotic regulation and allowed the present study to 
assess their ability to suppress tumor growth in vivo (38). 
The PLK2 and PLK3 acted in concert with cyclin‑dependent 
kinase 1‑cyclin B1 and aurora kinases to orchestrate a wide 
range of critical cell cycle events (39). As for other members 
of PLKs, there was evidence showing that PLK2 and PLK3 
acted as tumor suppressors through their functions in the p53 
signaling network, which guarded the cell against various 
stress signals (40,41). It has been identified that there is a 
significant association between elevated PLK1 and p53 muta-
tion in women with breast cancer (42,43). It has also been 
verified that PLK3 is a novel independent prognostic marker 
in breast cancer, which alluded toward a role for PLK over-
expression in disease progression (44). Therefore, it could 
be inferred that PLK mediated events correlate closely with 
breast cancer.

In conclusion, the iPAS method was suitable for identifying 
altered pathways (such as KIF‑ and PLK‑mediated events), 
which may serve an important role in breast cancer progression 
and are potentially novel predictive and prognostic markers for 
breast cancer.
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