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Abstract. MicroRNAs (miRNAs) are short non‑coding 
RNAs that regulate the expression of protein‑coding genes by 
partially binding to specific target sites of mRNAs. miRNAs 
perform important functions in complicated cellular biological 
processes and their abnormal expression is involved in various 
disorders, including cancer. Among the miRNAs, differential 
expression of miR‑139‑5p serves a significant role in tumori-
genesis, metastasis and recurrence, thus suggesting that it 
may potentially be used as a promising biomarker for cancer 
diagnosis, prognosis and therapy. miR‑139‑5p is expected to 
serve as a biomarker to eventually be implemented in a clinical 
setting. In the present review, we focus on the importance of 
miR‑139‑5p in cancer, summarize the association between 
miR‑139‑5p expression level and diagnosis and prognosis, and 
discuss the potential therapeutic implications for the future.
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1. Introduction

MicroRNAs (miRNAs), a class of small, highly conserved, 
non‑coding RNAs of ~22 nucleotides, regulate the expression 
of protein‑coding genes (1,2). Lin‑4 was initially discovered in 
Caenorhabditis elegans as a short non‑coding RNA ~20 years 
ago, and was observed to be essential to regulate developmental 
timing as a heterochronic switch gene (3). Then, miR‑15a and 
miR‑16‑1 were demonstrated to be tumor suppressors, which 
was the first association between miRNAs deregulation and 
cancer (4). These observations contributed to the additional 
investigation of underlying mechanisms. In general, mature 
miRNAs negatively regulate their gene targets by binding to 
specific target sites within the 3'‑untranslated region (UTR) 
of mRNAs for either translation repression or degradation (5). 
The interaction between miRNAs and mRNAs is complex: 
A single miRNA has multiple targets mRNAs, while a 
single mRNA has multiple conserved target sites for miRNA 
binding (6,7).

Previously, much attention was paid to these miRNAs in 
cancers (8‑11). For instance, miR‑27a is involved in activating 
the expression of P‑glycoprotein in ovarian cancer, and is there-
fore indirectly associated with drug susceptibility (8); miR‑21 
expression has a direct correlation with tumor invasion and 
metastasis (9); miR‑139‑5p serves a role in inhibiting tumor 
metastasis and progression in colorectal cancer (CRC) (10) 
and hepatocellular carcinoma (HCC)  (11). This previous 
research has provided evidence of the association between 
miRNA abnormality and cancer. miRNAs perform important 
functions in diverse cellular biological processes, including 
proliferation, apoptosis, migration and invasion (12,13).

miR‑139‑5p aberration is observed to be a frequent event 
in various disorders, including cancer. miR‑139‑5p was first 
characterized in neurodegeneration, and it was observed to be 
downregulated during the disease processes (5). Subsequently, 
miR‑139‑5p was identified to be responsible for cancer diag-
nosis, prognosis and therapy (14,15). miR‑139‑5p has been 
investigated in various types of human cancer, including 
head and neck/oral cancer (HNOC) (7), breast cancer, gastric 
cancer  (14), endometrial serous adenocarcinomas  (16), 
CRC (17), bladder cancer (18), HCC (19), ovarian cancer (20), 
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esophageal squamous cell carcinoma (ESCC) (21,22), thyroid 
carcinomas (23), glioblastoma (24), basal cell carcinoma (25), 
renal cell carcinoma (RCC) (26), laryngeal squamous cell 
carcinoma (LSCC) (27), non‑small cell lung cancer (28) and 
pancreatic cancer  (29). Previous researches indicated that 
miR‑139‑5p is widely recognized as a tumor suppressor (16‑29). 
Recently, however, miR‑139‑5p was identified to inhibit 
preadipocyte differentiation by targeting notch homolog 1 
(NOTCH1), and insulin receptor substrate 1  (30), and to 
negatively regulate myoblast proliferation and differentiation 
by suppressing the Wnt1‑mediated Wnt/β‑catenin signaling 
pathway (31). These results provided a potential therapeutic 
target of obesity, associated metabolic diseases  (30) and 
myogenesis (31). In addition, miR‑139‑5p was demonstrated 
to exhibit an inverse correlation with receptor membrane 
component 1 (PGRMC1) in granulosa cells (32). All of these 
results indicate that miR‑139‑5p may be of crucial importance 
to cancer and other diseases.

miRNAs are stably expressed in human plasma and 
serum and easily measured in blood samples, making them 
good candidates for the non‑invasive detection of disease; 
thus miR‑139‑5p may be a novel endogenous control for 
cancer (33,34). Subsequently, the inherent regulatory function 
of miRNAs makes it likely that numerous miRNAs expressed 
in tumors may influence the biological behavior and clinical 
phenotype of the tumor (34). Furthermore, identification of 
miRNAs may be a more suitable and viable cost‑effective 
alternative compared with other expensive commercial immu-
nohistochemical profiling techniques (35). Considering these 
superiorities of miRNAs, miR‑139‑5p may be a promising 
biomarker in clinical practice.

A number of studies have identified that miR‑139‑5p serves 
a significant role in cancer biology, diagnosis, prognosis and 
therapy. As summarized in a previous review, miR‑139‑5p is 
involved in diverse biological processes and miRNA‑regulated 
protein interaction networks (36). Increasing our understanding 
of the miRNA‑mRNA regulatory mechanisms may also 
provide a novel individual‑based therapeutic strategy (17). In 
the present review, we focus on the importance of miR‑139‑5p 
in cancer, summarize the association between miR‑139‑5p 
expression level and diagnosis and prognosis, and discuss the 
potential therapeutic implications for the future.

2. The biology of miR‑139‑5p

miR‑139 is located within the second intron of the phos-
phodiesterase 2A gene on chromosome 11q13.4 (37,38), and 
miR‑139‑5p is a common type of mature miRNA generated 
from a miR‑139 precursor  (39). Similar to the biogenesis 
of other miRNAs, the miR‑139 gene is transcribed by the 
RNA polymerase II to produce a long RNA molecule, 
primary‑miR‑139 (pri‑miR‑139) in the nucleus. The primary 
transcript is similar to protein‑coding mRNAs with a 
5'7‑methylguanosine cap and poly‑adenylated at the 3'end. 
Subsequently, pri‑miR‑139 is processed into a hairpin‑shaped 
stem‑loop precursor (pre‑miR‑139) by the action of a RNase III 
endonucclease, Drosha and a cofactor, DGCR8/Pasha (7,13). 
Pre‑miR‑139 is additionally cleaved in the cytoplasm by Dicer, 
a second RNase III endonuclease. Subsequently, two mature 
forms of miR‑139 are formed: miR‑139‑3p processed from 

the 3'arm and miR‑139‑5p processed from the 5'arm of the 
stem loop sequence (39). Mature miRNAs are incorporated 
into the RNA‑induced silencing complex (RISC) and guide 
the RISC to binding 3'‑UTR of the target gene mRNA, 
leading to the degradation or translational inhibition of target 
mRNA  (13,40). Consistent with this, miR‑139‑5p target 
sites were observed to be located in the 3'‑UTR of targeted 
mRNA in a number of previous studies (26,39). However, it is 
notable that complementarity between the miRNA and its 
target site on the mRNA is partial. Therefore, there is the 
possibility for a single miRNA to regulate hundreds of 
potential targets (5,41).

Notably, miR‑139‑5p and miR‑139‑3p expression profiles 
and levels vary in various types of cancer. For example, 
miR‑139‑5p and miR‑139‑3p were observed to be down-
regulated in tumor tissues compared with non‑tumor tissues. 
However, miR‑139‑5p expression was gradually reduced during 
the development of CRC, while the expression of miR‑139‑3p 
demonstrated no significant difference in the various tumor 
stages of CRC (10). Furthermore, miR‑139‑3p was undetectable 
in HCC and adjacent non‑tumor tissues (42). Abnormality of 
miR‑139‑5p is more common and significant than miR‑139‑3p 
expression in cancer, and demonstrates preferable research 
value and widely applicable prospects in clinical practice.

3. miR‑139‑5p in cancer diagnosis

Accurate and reliable results of diagnosis serve a critical role 
in guiding treatment and estimating prognosis. However, the 
present classification of certain types of cancer according 
to available clinical markers remains unreliable  (43). As 
numerous tumors are not diagnosed until the disease is at the 
advanced stages, there is an urgent need to search for highly 
sensitive and minimally invasive biomarkers for diagnosis. 
Several years of experiments have demonstrated the potential 
role of miR‑139‑5p as a biomarker for screening and detec-
tion in tumors  (21,26,40,44). Clinicopathological analysis 
proved that downregulation of miR‑139‑5p was associated 
significantly with aggressive pathological features, including 
advanced tumor stages (P<0.001), presence of venous inva-
sion (P=0.002) and tumor microsatellite formation (P=0.014), 
absence of tumor encapsulation (P=0.005), and poorer tumor 
cellular differentiation (Edmondson grade III/IV) (P=0.005) 
in HCC (42). Therefore, miR‑139‑5p could potentially be used 
as a screening tool to identify individuals who would benefit 
from additional diagnostic assessment.

Differential expression of miR‑139‑5p has been observed 
between cancer patients and healthy individuals. For example, 
miR‑139‑5p was reported to be expressed at lower levels 
in breast cancer samples vs. healthy controls  (35,44,45). 
Mammography, now as the standard screening tool worldwide 
for early breast cancer, has certain limitations (44). miR‑139‑5p 
may be useful to improve early detection of breast cancer. In 
addition, miR‑139‑5p expression was significantly reduced 
in bladder cancer cell lines compared with normal human 
bladder epithelium (P<0.0001) (18). Another study confirmed 
the downregulation of miR‑139‑5p in malignant bladder tissue 
samples (P<0.0001) (46).

ESCC is generally diagnosed at the terminal stages. 
Reduced levels of miR‑139‑5p at this stage of ESCC imply a 
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latent capacity to improve early diagnosis (22). Conditional 
logistic regression analysis has demonstrated a close correla-
tion between reduced miR‑139‑5p expression and increased 
risk for esophageal cancer (odds ratio=2.024) (21). miR‑139‑5p 
expression levels were significantly depleted in patients with 
lymph node metastasis compared to those without lymph 
node metastasis (P=0.040) (21), which may indicate be value 
for differential diagnosis. Furthermore, miR‑139 expression 
demonstrated a significant decrease during HCC progres-
sion from normal liver to late‑stage HCC when samples were 
categorized into 5 groups: Normal livers and those with no 
background liver disease, non‑tumorous livers with chronic 
hepatitis, non‑tumorous livers with cirrhosis, early HCC, and 
advanced HCC (42). Additionally, the expression of miR‑139 
was reduced along with the progression of primary to meta-
static LSCC (27). Thus, miR‑139‑5p may be a novel marker to 
reflect the development of tumors.

miR‑139‑5p is involved in breast cancer, bladder cancer, 
ESCC, HCC, LSCC and others (20‑23,29); it is supposed to be 
used for molecular diagnosis of these forms (29). miR‑139‑5p 
may be helpful to decrease misdiagnosis rates and judge 
correctly the stage of cancer according to the reduced extent of 
miR‑139‑5p expression. More notably, quantitative polymerase 
chain reaction molecular testing is sensitive and powerful (35), 
and exosome‑based diagnostic techniques have the potential 
for high reproducibility and require only a blood sampe, 
without any damage to patients  (47). Besides, miR‑139‑5p 
appears to be a feasible and inexpensive marker for cancer 
diagnosis.

4. miR‑139‑5p in cancer prognosis

Enhancement of migration and invasion, as phenotypes of cell 
transformation, are involved in the process of metastasis of 
cancer cells (48), thus making it essential for improved stratifi-
cation of cancer patients to predict disease recurrence risk and 
to guide therapy (17). Pathological features including tumor 
size, stage, grade, lymph‑node metastasis, vascular invasion 
and metastasis are prognotic factors, but do not reflect the 
status of tumor progression and treatment efficacy (49). There-
fore, a number of studies have indicated that the expression of 
miR‑139 may act as an independent prognostic factor that is 
significantly associated with overall survival rates of cancer 
patients.

To investigate the mechanism by which miR‑139‑5p exerts 
anti‑metastatic functions in cancer, the online resources 
miRanda (http://www.microrna.org/microrna/home.do), 
TargetScan (http://www.targetscan.org//vert_50/seedmatch.
html), and PicTar (http://pictar.mdc-berlin.de/) were used to 
predict potential miR‑139 targets (48,50). miR‑139‑5p possible 
targets, including topoisomerase II α (TOP2a), insulin‑like 
growth factor 1 receptor (IGF‑1R), Rho‑kinase 2 (ROCK2), 
are involved in cancer progression and metastasis.

There is evidence that loss of miR‑139‑5p expression indi-
rectly increases cell proliferation and inhibits apoptosis (Fig. 1), 
and exerts positive effects on the occurrence and progression 
of tumors. A previous study indicated that IGF‑1R, ROCK2 
and Ras‑related protein 1 B (RAP1B) are involved in the 
same mechanism of miRNA‑mediated regulation, regulating 
each other in a miR‑139‑5p‑dependent manner in CRC (38). 

Overexpression of RAP1B, tetraspanin 5 (TSPAN5) and fork-
head box protein O1in (FOXO1A) CRC may result from the 
underexpression of miR‑139 (50). As a critical mediator of the 
miR‑139 anti‑proliferative effect in cell lines, RAP1B encodes 
a member of the Ras super family of G‑proteins  (50) and 
negatively accommodates the activity of p38 mitogen‑activate 
protein kinase signaling  (51). miR‑139‑5p is able to cause 
aberrant cell cycle arrest in G0/G1 phase (P<0.01), with 
upregulation of two cyclin dependent kinase (CDK) inhibi-
tors, p21Cip1/Waf1 and p27Kip1 (52), which inhibit the activity of 
cyclin D‑CDK2/4 complexes, therefore inhibiting E2F tran-
scriptional activity and cell cycle progression to S‑phase (53). 
Apoptosis is concomitant with cell cycle arrest induced by 
miR‑139‑5p. The extrinsic apoptosis pathway is initiated by 
the binding of extracellular death ligands, including tumor 
necrosis factor α, to transmembrane death receptors, inducing 
aggregation of adaptor proteins, including Fas‑associated 
death domain protein, which in turn promotes activation of 
apoptosis executors caspase‑8, caspase‑3 and caspase‑7 to 
initiate the proteolytic cleavage of nuclear poly (ADP‑ribose) 
polymerase, thus causing loss of DNA repair, cellular disas-
sembly and apoptosis  (52). miR‑139‑5p was identified as a 
tumor suppressor inhibiting cell proliferation, migration and 
invasion in lung cancer, partially via downregulating IGF‑1R 
expression (28). Positive correlations between IGF‑IR/matrix 
metallopeptidase‑2 (MMP‑2) expression and negative correla-
tions between MMP‑2/miR‑139 expression were also observed 
in primary CRC tissues, indicating that miR‑139 may inhibit 
IGF‑IR expression and downregulate MMP‑2 synthesis via 
MEK/extracellular signal‑regulated kinase (ERK)/nuclear 
factor (NF)‑κB signaling (10).

Overexpression of miR‑139‑5p is able to inhibit cell 
migration and invasion in  vitro and metastasis in  vivo. 
Fig. 2 summarizes the signaling pathways of miR‑139 that 
suppress cell migration and invasion. Endogenous autocrine 
motility factor receptor (AMFR) and NOTCH1 protein levels 
were decreased in miR‑139‑5p‑overexpressing CRC cells 
and could be restored in miR‑139‑5p‑depleted cells  (54). 
Autocrine motility factor (AMF) has been demonstrated to 
stimulate endothelial motility and to function as an angiogenic 
factor (55). The ligand of AMF, AMFR, also known as gp78, 
is able to target itself for proteasomal degradation in a RING 
finger‑ and MmUBC7‑dependent manner  (55), resulting in 
signaling cascades relying on protein kinase C and activating 
Ras homolog (Rho)‑like GTPase, Rho gene family, member A 
and Ras‑related C3 botulinum toxin substrate 1, thereby 
enhancing cell motility (56). Activation of AMFR by AMF has 
been demonstrated to alter cell adhesion, motility and angio-
genesis (57). NOTCH1 was observed to be directly regulated 
by miR‑139‑5p at the post‑transcriptional level and promoted 
CRC invasion; in addition, significant association was observed 
between NOTCH1 expression and survival (54). In accordance 
with previous findings, ectopic expression of miR‑139‑5p 
significantly suppressed oncogenic NOTCH1 downstream 
effectors, including hairy and enhancer of split‑1, cyclin D1 
and Fas‑associated protein with death domain‑like apoptosis 
regulator transcription (52). Furthermore, miR‑139‑5p inhib-
ited cellular migration and invasion through the inhibition of 
MMP7 and MMP9 (52). miR‑139 was inferred to be a key 
tumor suppressor in early CRC development by targeting 
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ETS1 (58). Therefore, miR‑139‑5p has the possibility to serve 
as a molecular therapeutic target and prognostic marker.

Expression levels of miR‑139‑5p in HCC tissues and cell 
lines were significantly reduced compared to control groups 
in a number of previous studies (59,60). A previous study 
demonstrated that knockdown of zeste homolog 2 (EZH2) 
suppressed HCC motility in  vitro and pulmonary metas-
tasis in a nude mouse model, and EZH2 was hypothesized 
to promote cancer metastasis through tumor suppressor 
miR‑139‑5p by effectively and extensively regulating a 
variety of signaling pathways, particularly those involved 
in cell motility and metastasis (59). Another previous study 
revealed that ROCK2 served a significant role in HCC 
migration, invasion and progression  (60). Furthermore, 
miR‑139 was identified to suppress HCC cell migration 
in vitro and pulmonary metastasis in vivo by targeting the 
prometastatic protein ROCK2 in the Rho‑dependent actin 
cytoskeleton remodeling signaling pathway  (42). Mecha-
nistic investigation revealed that overexpression of miR‑139 
inhibits cell proliferation and invasion through suppressing 
β‑catenin/T‑cell factor‑4 (TCF‑4) transcriptional activity, 
lessening the relative expression of β‑catenin, cyclin D1, 
c‑Myc, MMP‑2 and MMP‑9 (11). miR‑139‑5p was confirmed 

to negatively regulate Zinc finger E‑box binding homeobox1 
(ZEB1) and ZEB2 expression (61). ZEB1 and ZEB2 contain 
two C2H2‑type zinc fingers that mediate their binding 
to paired CAGGTA/GE‑box‑like promoter elements, and 
function as transcriptional repressors (62). These repressors 
induce epithelial mesenchymal transition by suppressing the 
expression of E‑cadherin and contribute to the progression of 
malignant cancer (63).

Activated protein‑1, a heterodimeric transcription activator, 
is composed of c‑Jun and c‑Fos to regulate the expression of 
genes essential for cell proliferation and differentiation (48). 
Jun was reported to be in the center of target‑pathway and 
target‑function networks  (64). A previous study indicated 
that miR‑139 was able to inhibit Jun expression by targeting 
a conserved site on its 3'‑UTR, and in turn Jun was able to 
induce miR‑139 expression in a dose‑dependent manner via 
a distant upstream regulatory element, thus forming a nega-
tive feedback loop to fine‑tune tissue homeostasis (64). c‑Fos 
has also been reported to be an oncogene involved in HCC 
metastasis (65,66). In vitro cell migration analysis demon-
strated that depletion of c‑Fos or overexpression of miR‑139 in 
HCC cell sublines transfected with miR‑139 mimics reduced 
cell migration, whereas overexpression of c‑Fos or depletion 
of miR‑139 in HCC cell sublines transfected with miR‑139 
inhibitor increased cell migration (67). These findings imply 
that miR‑139‑5p is closely associated with the development 
and metastasis of malignant tumors, therefore it may be an 
independent prognostic predictor for HCC.

TOP2a, known as a gene encoding an enzyme involved in 
transforming DNA topology, including chromosome conden-
sation, chromatid separation and the relief of torsional stress 
occurring in transcription and replication (20), was identified 
to be a target of miR‑139‑5p in breast cancer, and may mediate 
transcriptional activation function of E2F3 to control the rate of 
cell proliferation (68). H2A histone family member V, HRAS, 
NF‑κB1, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase 
catalytic subunit α, RAF and RhoT1 were also shown to be 
targets of miR‑139‑5p underlying cellular processes involved 
in metastasis in breast cancer (35,69). A significant functional 
role has been suggested for miR‑139‑5p in breast cancer cell 

Figure 2. MicroRNA‑139 as an inhibitor of cell migration and invasion.

Figure 1. Regulation of cell proliferation and apoptosis by microRNA‑139.
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motility and invasion, and it has potential to be used as a prog-
nostic marker for aggressive forms of breast cancer (69).

miR‑139‑5p exerts a growth‑ and invasiveness‑suppressing 
function in human ESCCs by targeting the oncogenic nuclear 
receptor subfamily 5 group A member 2 (NR5A2)  (21). 
NR5A2, also known as liver receptor homolog‑1, enhances cell 
cycle progression through the G1 phase and cell proliferation 
by inducing the expression of cyclins D1 and E1, and prevents 
cells from apoptosis (70,71). A previous study demonstrated 
that its overexpression resulted in the post‑translational trun-
cation of E‑cadherin and increased expression of MMP‑9 (72), 
consequently contributing to cancer motility and invasion.

Notably, hyaluronic acid has been reported to downregulate 
miR‑139‑5p expression via histone deacetylation  (32), and 
hyaluronic acid is involved in cell migration, proliferation, 
differentiation and apoptosis (73,74). miR‑139‑5p was demon-
strated to promote apoptosis and inhibit functioning of 
granulosa cells by regulating the expression of progesterone 
receptor membrane component (PGRMC) 1 (32), which is able 
to participate in P4 signaling transduction in the reproductive 
system and mediates the anti‑apoptotic effects of P4 on granu-
losa cells (75). Furthermore, it was reported that PGRMC1 
regulates cell viability through increasing protein kinase G 
activity and suppressing ERK1/2 activity, as well as decreasing 
intracellular free calcium levels (75) and activating enzymatic 
activity of cytochrome P450 involved in sterol biosynthesis (76).

By contrast, miR‑139‑5p expression was upregulated by 
>20‑fold in pancreatic cancer endothelial cells compared with 

normal endothelial cells, which may be due to cell type‑specific 
differences (29). In addition, miR‑139 demonstrated a positive 
impact on endothelial cell migration and vasculature forma-
tion during angiogenesis (29). Angiogenesis is an important 
step in the development of tumors and is necessary for 
primary tumor growth, invasion and metastasis. miR‑139 is of 
potential therapeutic value for suppression of tumor invasion 
and metastasis by inhibiting angiogenesis (77,78). The study 
revealed that miR‑139‑5p overexpression may assist with the 
spread of cancer, while others have demonstrated its inhibition 
of expansion and metastasis (29).

Univariate analysis demonstrated that reduced expres-
sion of miR‑139‑5p was significantly correlated with shorter 
overall survival time (log‑rank test, P=0.043) in patients with 
endometrial serous adenocarcinoma (16). Additional studies 
demonstrated that miR‑139 reduced expression of C‑X‑C 
chemokine receptor type 4 (CXCR4), and CXCR4 was directly 
targeted by miR‑139 in LSCC (27) and gastric cancer (79). 
miR‑139‑5p is also associated with metastasis and prognosis 
of clear cell RCC (26). However, additional research in this 
field is required to investigate the mechanisms and clinical 
potential of miR‑139‑5p.

The data discussed in this section indicate the tumor‑ 
suppressive role of miR‑139‑5p reflecting the status of tumor 
growth and spread; therefore, miR‑139‑5p may be a possible 
therapeutic target and prognosticator of cancer. Based on the 
results of previous studies, it appears that miR‑139‑5p serves as 
a pivotal mediator in regulation of progression and metastasis. 

Table I. Abnormal expression and target genes of miR‑139‑5p in different types of cancers.

	 miR‑139‑5p
Cancer type	 expression	 Target gene	 (Refs.)

Head and neck/oral cancer	 Downregulated	 Unknown	 (6,7)
Breast cancer	 Downregulated	 TOP2a, H2AFV, HRAS, RAF, NFKB1, 	 (20,35,69)
		  PIK3CA, RHOT1
Gastric cancer	 Downregulated	 CXCR4, c‑Jun	 (79)
Endometrial serous	 Downregulated	 Unknown	 (16)
adenocarcinoma
Colorectal cancer	 Downregulated	 IGF‑1R, ROCK2, RAP1B, TSPAN5, FOXO1A,	 (38,48,50,52,53,56)
		  TNFα, Fas, AMFR, NOTCH1, ETS1
Bladder cancer	 Downregulated	 Unknown	 (18)
Hepatocellular carcinoma	 Downregulated	 EZH2, ROCK2, ZEB1/2, c‑Fos	 (57‑59,63‑65)
Ovarian cancer	 Downregulated	 TOP2a, RACGAP1, DNAH9, E2F3	 (20)
Esophageal squamous	 Downregulated	 NR5A2 	 (21,22)
cell carcinoma
Thyroid carcinoma	 Downregulated	 Unknown	 (23)
Glioblastoma	 Downregulated	 Mcl‑1	 (24)
Basal cell carcinoma	 Downregulated	 Unknown	 (25)
Renal cell carcinoma	 Downregulated	 Unknown	 (26)
Lung squamous cell carcinoma	 Downregulated	 CXCR4	 (27)
Non‑small cell lung cancer	 Downregulated	 IGF‑1R	 (28)
Pancreatic cancer	 Upregulated	 Unknown	 (29)
Granulosa cell tumor	 Upregulated	 PGRMC1	 (32)

miR, microRNA.
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miR‑139‑5p may have substantial clinical significance and 
implications in the clinical setting, but additional research 
is required to indicate the critical role of miR‑139‑5p in the 
prognosis of various types of cancer.

5. miR‑139‑5p in cancer therapy

Availability of potent prognostic and predictive factors serves 
a crucial function for clinical decisions on cancer treat-
ment, guiding patient decision‑making and the selection of a 
therapeutic schedule (80). miR‑139‑5p may serve as a tumor 
suppressor and is significantly downregulated in various types 
of cancer, including HNOC  (7), breast cancer  (45,81) and 
gastric cancer (79). Furthermore, the miR‑139‑5p expression 
signature has been reported to be associated with the clinical 
outcome of cancer patients (82,83), and may serve as a thera-
peutic target for novel strategies for prevention and therapy.

A study identified that Mcl‑1 is one of meaningful 
targets of miR‑139 in glioblastoma (24). Mcl‑1 serves as an 
anti‑apoptotic factor, preserves mitochondrial membrane 
integrity by binding to mitochondrial porin channels (82) and 
protects mitochondria by sequestering proapoptotic B‑cell 
lymphoma 2 (Bcl‑2) family members, Bcl‑2 associated X, 
apoptosis regulator and Bcl‑2 antagonist/killer  (84), thus 
inhibiting initiation of apoptosis and conferring a survival 
advantage to tumor cells. In addition, it has been reported 
that miR‑139 suppresses proliferation and enhances apoptosis 
in coordination with an anticancer drug temozolomide via 
negative regulation of Mcl‑1 in glioma (24). Notably, Mcl‑1 
has also been reported to mediate resistance to rituximab in 
chronic lymphocytic leukemia (83) and enhance the efficacy 
of rituximab therapy (82), further supporting Mcl‑1 as a viable 
therapeutic target for the treatment of cancer.

As a recombinant monoclonal antibody to human 
epidermal growth factor (HER2), trastuzumab is among the 
most successful therapeutics for metastatic breast cancer (85). 
Bao et al (79) demonstrated in gastric cancer that trastuzumab 
treatment restores the expression of a CXCR4‑targeted 
miRNA, miR‑139, which is suppressed by upstream HER2 
signaling.

The results in two clinical studies revealed that miR‑139 
was significantly downregulated in early cancer pathological 
stages compared with adjacent non‑cancerous tissues, and it 
remained at a very low expression level in advanced patholog-
ical stages (58,86). Subsequently, it was indicated that miR‑139 
was able to directly suppress ETS1 activity via the conserved 
binding site (58). ETS1 is an oncogenic transcription factor, 
and is able to promote cell cycle G1/S transition by transcrip-
tionally upregulating the cyclin E and CDK2 genes, the master 
regulators of G1/S‑phase transition (87).

Whether Mcl‑1, CXCR4 and ETS1 are involved in sensi-
tization of cancer cells to anticancer drugs remains to be 
determined. miR‑139‑5p targeting represents a plausible thera-
peutic approach (Table I). Increasing the level of miR‑139‑5p in 
tumor cells using chemically synthesized oligonucleotides or 
artificially engineered expression vectors may suppress cancer 
cell proliferation through the regulation of endogenous targets 
of miR‑139‑5p (50). Furthermore, apoptosis resistance is an 
important characteristic of tumor cells (24). Consequently, 
extrinsic induction of apoptosis has been considered to be 

an important antitumor mechanism. Therapeutic interven-
tions that simultaneously target these targets, such as Mcl‑1, 
CXCR4 and ETS1, and restore tumor suppressor miR‑139‑5p 
may lead to improved treatments for aggressive malignancies. 
In addition, considerable studies of the underlying molecular 
mechanisms will be necessary to additionally investigate puta-
tive miR‑139‑5p targets and elucidate the role of miR‑139‑5p 
as a tumor inhibitor.

6. Conclusion and prospects

In the present review, we focused on the differential expression 
of miR‑139‑5p in numerous types of cancer and its potential 
role in cancer diagnosis, prognosis and therapy. Downregula-
tion of miR‑139‑5p may be measured and used to accurately 
assess cancer condition, leading to evaluation of prognosis 
and guiding of appropriate therapy. Restoring the expression 
of miR‑139‑5p exerts tumor suppression mediated by targets 
of miR‑139‑5p through regulating proliferation, apoptosis, 
migration and invasion of cancer cells. However, it should 
be noted that loss of expression of miR‑139‑5p may prevent 
cancerous tumor growth by halting the formation of new 
blood vessels needed for tumor growth and extension. It may 
be hypothesized that miR‑139‑5p can serve as a biomarker 
to be implemented in a clinical setting. Though research 
into miR‑139‑5p has provided insight into our knowledge of 
human cancer, the molecular mechanisms underlying meta-
static migration and invasion are only partially understood and 
require additional investigation.
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