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Abstract. Gliomas are serious primary brain tumors. The 
aim of the present study was to identify potential key genes 
associated with the progression of gliomas. The GSE31262 
gene expression profile data, which included 9 glioblastoma 
stem cells (GSCs) samples and 5 neural stem cell samples 
from adult humans, were downloaded from Gene Expression 
Omnibus (GEO) database. limma package was used to identify 
differentially expressed genes (DEGs). Based on STRING 
database and Pearson Correlation Coefficient (PCC), a 
co-expression network was constructed to comprehensively 
understand the interactions between DEGs, and function 
analysis of genes in the network was conducted. Furthermore, 
the DEGs that were associated with prognosis were analyzed. 
A total of 431 DEGs were identified, including 98 upregulated 
DEGs and 333 downregulated DEGs. Genes including PDZ 
binding kinase, topoisomerase (DNA) II α (TOP2A), cyclin 
dependent kinase (CDK) 1, cell division cycle 6 and NIMA 
related kinase 2 had a relatively high degree in the co-expres-
sion network. A set of genes including cyclin D1, CDK1 and 
CDK2 were significantly enriched in the cell cycle and p53 
signaling pathway. Additionally, 69 DEGs were identified 
as genes involved in glioblastoma prognosis, such as CDK2 
and TOP2A. The genes that had a higher degree and were 
associated with cell cycle and p53 signaling pathway may play 
pivotal roles in the progress of glioblastoma.

Introduction

Gliomas are serious primary brain tumors arising from glial 
cells. According to the type of cells, they are histologically 

classified into astrocytomas, oligodendrogliomas and oligoas-
trocytomas. Gliomas are further categorized into grades I 
to IV, according to the World Health Organization (WHO) 
grading system (1). The most common form of gliomas are 
WHO grade IV tumors (glioblastoma and its variants), which 
account for 82% of cases of malignant glioma (2). Incidence 
rates of gliomas vary significantly with histological type, 
age at diagnosis, gender, ethnicity and nationality (3-7). 
High-grade gliomas typically recur after an average period 
of only 6.9 months, resulting in a median patient survival of 
just 12-15 months following diagnosis (8). Despite having 
an improved prognosis compared with increased grade glial 
tumors, 50‑75% of patients with low‑grading glioma also 
eventually succumb to the disease. Median survival times have 
been reported to range between 5 and 10 years, and estimates 
of 10‑year survival rates range between 5 and 50% (9).

The last decade has witnessed a significant improve-
ment in the understanding of the molecular mechanisms 
of glioma progress. For example, integrin inhibition leads 
to inactivation of the transforming growth factor (TGF)-β 
pathway, which controls features of malignancy, including 
immunosuppression, invasiveness and stemness in human 
glioblastoma (10). A previous study has reported that Crk-like 
protein efficiently regulates cell proliferation, migration and 
invasion induced by the TGF-β pathway in glioblastoma (11). 
Additionally, zinc finger E‑box binding homeobox 1 expres-
sion is responsible for the invasion and chemoresistance of 
glioblastoma cells by regulating the downstream effectors 
roundabout, axon guidance receptor, homolog 1 (Drosophila), 
v-Myb avian myeloblastosis viral oncogene homolog and 
O-6-methyl-guanine-DNA methyl transferase (MGMT ). 
Furthermore, previous studies have identified that epigenetic 
modifications occur in gliomas (12), and hypermethylated 
genes in gliomas include pithelial membrane protein 3, throm-
bospondin 1, excitatory amino-acid transporter 2 and 
MGMT (13-15). Based on the microarray dataset GSE31262, 
Sandberg et al have identified 423 upregulated and 414 down-
regulated genes in glioblastoma stem cells (GSCs) using the 
Rank Product algorithm, comparing adult human neural stem 
cells (ahNSCs), and inhibition of the Wnt-signaling pathway 
reduces proliferation and sphere forming capacity in GSCs; 
additionally, they also identified a 30‑gene signature which 
is highly overexpressed in GSCs (16). Despite this, dysregu-
lated gene networks and pathways associated with glioma 
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progression remain undetected, and the molecular mecha-
nisms of glioma remain elusive.

To further identify the potential key gene networks and 
pathways implicated in gliomas, based on the microarray 
data GSE31262 deposited by Sandberg et al (16), the differ-
entially expressed genes (DEGs) were identified using the 
linear models for microarray data (limma) package, which is a 
popular choice for DEGs identification using microarray and 
high-throughput PCR data (17). Furthermore, co-expression 
interactions of DEGs were analyzed and a co-expression 
network was constructed. Functional and pathway enrich-
ment analyses of DEGs in the co-expression network were 
also performed. Additionally, drugs closely associated with 
DEGs in the network were identified. The present study 
may provide more novel information for the investigation 
of the molecular mechanisms underlying gliomas, which 
contributes to a better understanding of the pathogenesis of 
gliomas.

Materials and methods

Obtaining and preprocessing of mRNA expression profile 
data. The mRNA expression profile dataset GSE31262 
was downloaded from the GEO database (http://www.ncbi. 
nlm.nih.gov/geo/), which derived from 9 individual samples 
of GSCs and 5 individual samples of ahNSCs taken from 
the adult human brain (16). The annotation platform used 
here was GPL2986 ABI Human Genome Survey Microarray 
Version 2 (Applied Biosystems; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). The probe ID was first converted into a 
gene symbol. For probes being mapped to the same gene, the 
average expression value was calculated as the final expres-
sion value. Then, the data were translated into log2 logarithms, 
and the median normalization was performed using the robust 
multichip averaging method (18).

DEG screening. The limma package (19) in R language 
(http://www.bioconductor.org/packages/release/bioc/html/limma. 
html) was applied to identify DEGs between GSC samples 
and normal NSC samples. The false discovery rate (FDR) for 
each gene was obtained by adjusting the raw P-value with the 
Benjamini Hochberg method (20). FDR ≤0.01 and |log2 fold 
change (FC)| ≥1 were set as the thresholds.

Hierarchical clustering analysis of DEGs. To identify the 
sample‑specificity of DEGs, hierarchical clustering (21) was 
conducted. Euclidean distance (22) was chosen as a measure 
of distance for DEGs between GSC samples and normal NSC 
samples. Pheatmap package (23) in R was used to visualize the 
result of hierarchical clustering.

Co‑expression network of predicted target genes. An essen-
tial prerequisite for understanding cellular functions at the 
molecular-level is to correctly uncover all functional interac-
tions among various proteins in the cells. The Search Tool 
for the Retrieval of Interacting Genes (STRING) database 
(http://string‑db.org/) (24) was used to select co-expression 
interactions of DEGs, with a co‑expression coefficient >0.6 
as the cut-off. Based on the expression values of DEGs, the 
Pearson Correlation Coefficient (PCC) (25) between DEGs 

were calculated and only pairs with |PCC| >0.6 were retained. 
Then, the common pairs obtained by the two aforemen-
tioned methods were retained to construct the co-expression 
network, which was visualized using the Cytoscape software 
(http://www.cytoscape.org/) (26). In the network, a node repre-
sents a protein (gene), and lines represent the interactions of 
the proteins. The degree of each node represents the number 
of nodes that interact with this node.

Functional and pathway enrichment analyses. To reveal the 
functions of DEGs in the co-expression network, the online 
biological tool Database for Annotation, Visualization and 
Integrated Discovery (27) was used to perform Gene Ontology 
(GO) (28) functional enrichment analysis in biological process 
(BP). Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Orthology-based Annotation System (KOBAS) was used 
to identify the pathways that were significantly enriched 
by genes. KOBAS provides the most comprehensive set of 
functionalities, including input by both IDs and sequences, 
identifying both frequent and statistically enriched pathways, 
offering the choices of four statistical tests and the option of 
multiple testing correction (29). P<0.05 was selected as the 
cut-off for the enrichment analysis.

Analysis of DEGs associated with glioblastoma prognosis. 
Preprocessed RNA-sequencing data and clinical data of glio-
blastoma were downloaded from the The Cancer Genome Atlas 
(TCGA) database (https://cancergenome.nih.gov/). Based on 
the clinical data, sample files that provided survival time and 
status of patients were chosen for subsequent analysis.

Cox proportional hazard model (30,31) was utilized to 
predict the association of DEGs and patient prognosis. In 
the present study, each DEG was defined as a covariant, and 
survival time of each chosen glioblastoma sample was defined 
as a dependent variable. Multivariate Cox proportional hazard 
regression analysis was performed for all DEGs. The obtained 
probability value for each covariant <0.005 was set as the 
cut-off, indicating that the DEG was associated with glioblas-
toma prognosis. The analysis was conducted using SPSS 19.0 
software (IBM Corp., Armonk, NY, USA).

Identification of small‑molecule drugs based on DEGs. 
Web-based Gene Set Analysis Toolkit (WebGestalt) incor-
porates information from different public resources and 
provides an easy way for biologists to make sense out of gene 
lists (32). The current version of WebGestalt includes disease 
and drug-associated genes. In the present study, drugs associ-
ated with genes in the co-expression network were obtained 
from WebGestalt. The raw P-value for the association between 
drugs and genes was calculated by the hypergeometric test, 
and adjusted using the multiple test adjustment. An adjusted 
P-value <0.05 was set as the cut-off.

Results

Identification of DEGs and hierarchical clustering analysis. 
Subsequent to preprocessing, standard DEG expression 
profile data was illustrated (Fig. 1). Based on the criteria of 
FDR <0.05 and |log2 FC| ≥1, a total of 431 DEGs were identi-
fied in the GSC samples, including 98 upregulated DEGs and 
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333 downregulated DEGs. Hierarchical clustering analysis 
illustrated that the GSCs samples and normal samples can be 
distinguished using the identified DEGs, according to their 
differential expression status (Fig. 2).

Furthermore, comparing with DEGs that identified by 
Sandberg et al (16), 73 upregulated DEGs and 232 downregu-
lated DEGs were common in the present study and the study 
by Sandberg et al (16) (Fig. 3).

Co‑expression network of the predicted target genes. To 
analyze the interactions of DEGs, STRING database and PCC 
were used to predict co-expressed interactions of DEGs. A 
total of 678 pairs of co‑expression genes with co‑expression 
score >0.6 were identified from the STRING database. In 
addition, 3,973 gene pairs with |PCC| >0.6 were extracted. 
Subsequent to comparison, the 100 common gene pairs were 
selected. The Cytoscape software was used to visualize the 
co-expression network (Fig. 4), which includes a total of 
33 genes and 100 interactions. Notably, all genes in this 
network were upregulated, and the genes PDZ binding kinase 
(PBK), topoisomerase (DNA) II α (TOP2A), cyclin dependent 
kinase (CDK) 1, cell division cycle (CDC) 6 and NIMA 
related kinase 2 (NEK2) had a higher degree that was >10. 
PBK, TOP2A and CDK1 were co-expressed with each other.

Functional and pathway enrichment analyses of genes in the 
co‑expression network. To further reveal the functions of DEGs 
in the co-expression network, the GO functional and KEGG 

pathway enrichment analyses were conducted. The majority of 
the GO BP terms were associated with the cell cycle, including 
cell cycle procession, nuclear division and chromosome 
segregation (Table I). Additionally, two significantly enriched 
pathways (cell cycle and p53 signaling pathway) were obtained 
(Table II). The upregulated genes involved in the cell cycle 
pathway included cyclin B1 (CCNB1), CDK1, CDC6, CDC45, 
DBF4, proliferating cell nuclear antigen, cyclin A2 and CDK2. 
Genes enriched in the p53 signaling pathway were CCNB1, 

Figure 1. The boxplots for gene expression of each samples. (A) The boxplot showing gene expression of each sample prior to data normalization. (B) The 
boxplot showing gene expression of each sample subsequent to data normalization. The ordinate represents gene expression value, and the abscissa represents 
glioblastoma stem cell samples and normal controls. White columns represent normal samples, and gray columns represent glioblastoma stem cells samples. 
The X-axes represent the name of each sample, while the Y-axes represent the gene expression values of each sample and the horizontal lines in each column 
of the plot represents the mean gene expression value.

Figure 2. Hierarchical clustering analysis of differentially expressed genes. 
Each row represents a single gene; each column represents a sample. Red 
represents a high expression value; blue represents a low expression value.
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CDK1, ribonucleotide reductase regulatory subunit M2 and 
CDK2.

Screening of DEGs associated with glioblastoma prognosis. 
To further analyze whether the identified DEGs were associ-
ated with the prognosis of patients with glioblastoma, the 
survival data from the TCGA database were used in the present 
analysis. Among the sample files obtained from TCGA, a total 
of 107 files provided survival time and status of patients. Based 
on the Cox proportional hazard regression analysis, 69 DEGs 
identified in the present study were significantly associated 
with glioblastoma prognosis, 4 of which were present in the 
co-expression network, including CDK2, kinesin family 
member 15, kinesin family member 18A and TOP2A.

Identification of small‑molecule drugs based on DEGs. To 
investigate potential drugs that may be used to treat human 
glioblastoma, WebGestalt was used in the present study to iden-
tify the drugs associated with the DEGs in the co-expression 

network. A total of 9 drugs were obtained, including paclitaxel 
(for genes including TOP2A, BIRC5 and CDK1) and etoposide 
(for genes including TOP2A and CDC6) (Table III).

Discussion

Malignant gliomas are the most frequently occurring primary 
brain tumors, and they have a poor survival rate (8). The 
present study aimed to investigate the potential crucial genes 
correlated with glioblastoma. Based on the microarray data, a 
total of 98 upregulated DEGs and 333 downregulated DEGs 
were identified from the GSCs, of which, 33 upregulated genes 
had co-expression interactions. In the co-expression network, 
genes including PBK, TOP2A, CDK1, CDC6 and NEK2 had a 
higher degree. A set of genes including CCNB1, CDK1, CDC6 
and CDK2 were significantly enriched in the cell cycle.

The PBK gene encodes PBK, and it has been previously 
suggested that mitotic phosphorylation is required for its cata-
lytic activity (33,34). The present results illustrated that PBK 
expression is upregulated in gliomas. Multiple previous studies 
have shown the present results (35-37). A previous study has 
demonstrated that gene knockdown of PBK leads to decreased 
viability and sphere formation of glioma initiating cells (GICs), 
and the PBK inhibitor HITOPK-032 abolishes growth and 
elicits a large increase in apoptosis of GICs, indicating an 
important role of PBK in the cell growth of glioma (38). As 
a result, the present study speculated that PBK may play a 
pivotal role in glioblastoma via the regulation of the cell cycle. 
The TOP2A gene encodes TOP2A which controls and alters 
the topologic states of DNA during transcription (39). The 
present results showed an upregulated expression of TOP2A 
protein in glioma, which has also been identified in numerous 
cancers (40-42). In addition to its roles in DNA synthesis and 
transcription, and chromosomal segregation during mitosis, 
Tsavaris et al (43) has reported that TOP2A is also a sensi-
tive and specific marker of actively proliferating cells. In the 
present study, TOP2A was found to be significantly involved in 
the prognosis of patients with glioblastoma, which was consis-
tent with numerous previous studies (44-46). NEK2 encodes a 
serine/threonine‑protein kinase, which is involved in mitotic 
regulation (47). Laakso and Hautaniemi (48) has previously 

Figure 3. Venn diagrams of differentially expressed genes. (A) Venn diagram of upregulated differentially expressed genes identified in the present study 
and the study by Sandberg et al (16). Up‑1 represents the number of upregulated genes identified in the present study, and Up‑2 represents the number of 
upregulated genes identified the study by Sandberg et al (16). (B) Venn diagram of downregulated differentially expressed genes identified in the present study 
and the study by Sandberg et al (16). Down‑1 represents the number of downregulated genes identified in the present study, and Down‑2 represents the number 
of downregulated genes identified in the study of Sandberg et al (16).

Figure 4. Co-expression network of differentially expressed genes. Triangles 
represent upregulated differentially expressed genes.
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reported that NEK2 is upregulated in glioblastoma, which is 
consistent with the present findings. The overexpression of 
NEK2 has also been found in human breast and liver cancer, 
and colorectal carcinoma (49). Cappello et al (50) identified that 
NEK2 knockdown induced aneuploidy and cell cycle arrest that 

further led to cell death in various human breast cancer cell 
lines. Therefore, inhibiting the expression of the PBK, TOP2A 
and NEK2 genes may be a novel approach for glioma therapy.

According to the pathway enrichment analysis, the 
majority of significantly altered pathways were involved 

Table III. The significant drugs associated with differentially expressed genes in co‑expressed genes.

Drug ID Parameters Genes

Paclitaxel DB_ID:PA450761 O=5; rawP=9.99x10‑9; adjP=1.90x10-7 TOP2A, BIRC5, CDK1, TACC3, CENPF
Etoposide DB_ID:PA449552 O=5; rawP=4.20x10‑8; adjP=3.99x10-7 TOP2A, CDC6, BIRC5, CDK1, DBF4
Hydroxyurea DB_ID:PA449942 O=4; rawP=1.86x10-7; adjP=8.83x10-7 RRM2, PCNA, CDK2, RAD51
Mechlorethamine DB_ID:PA450336 O=3; rawP=1.85x10-7; adjP=8.83x10-7 CCNB1, CDK2, CDK1
Podofilox DB_ID:PA450993 O=4; rawP=7.57x10-7; adjP=2.88x10-6 TOP2A, CDC6, BIRC5, DBF4
Progesterone DB_ID:PA451123 O=4; rawP=3.61x10-6; adjP=9.80x10-6 TOP2A, CCNA2, CCNB1, RAD51
Cisplatin DB_ID:PA449014 O=4; rawP=3.50x10-6; adjP=9.80x10-6 TOP2A, RRM2, BIRC5, RAD51
Docetaxel DB_ID:PA449383 O=3; rawP=4.93x10-6; adjP=1.17x10-5 TOP2A, RRM2, BIRC5
Adenosine DB_ID:PA448049 O=5; rawP=2.98x10-5; adjP=5.66x10-5 TOP2A, PCNA, CDK2, RAD51, NCAPG

O, number of genes in the gene set and in the category; rawP, P-value from hypergeometric test; adjP, P-value adjusted by the multiple test 
adjustment.

Table II. Pathway enrichment analysis of the differentially expressed genes enriched in the co-expression network.

ID Pathway P-value FDR Genes

hsa04110 Cell cycle 6.96x10‑9 1.39x10-7 CCNB1, CDK1, CDC6, CDC45, DBF4, PCNA,
    CCNA2, CDK2
hsa04115 p53 signaling pathway 5.94x10-4 5.93x10-3 CCNB1, CDK1, RRM2, CDK2

FDR, false discovery rate.

Table I. Biological processes of differentially expressed genes in the co-expression network.

Term Process Count P-value FDR

GO:0022403 Cell cycle phase 21 2.02x10-23 2.79x10-20

GO:0007049 Cell cycle 24 1.03x10-22 1.42x10‑19

GO:0000278 Mitotic cell cycle 20 1.31x10-22 1.80x10‑19

GO:0022402 Cell cycle progression 22 2.23x10-22 3.08x10‑19

GO:0000279 M phase 19 8.50x10-22 1.17x10‑18

GO:0007067 Mitosis 17 3.30x10-21 4.56x10‑18

GO:0000280 Nuclear division 17 3.30x10-21 4.56x10‑18

GO:0000087 M phase of mitotic cell cycle 17 4.43x10-21 6.12x10‑18

GO:0048285 Organelle fission 17 6.35x10-21 8.77x10‑18

GO:0007059 Chromosome segregation 10 1.13x10-13 1.57x10-10

GO:0051301 Cell division 13 9.02x10-13 1.25x10‑9

GO:0051726 Regulation of cell cycle 13 3.51x10-12 4.85x10‑9

GO:0006260 DNA replication 10 2.72x10-10 3.75x10-7

GO:0051276 Chromosome organization 11 7.20x10‑8 9.95x10-5

GO:0006259 DNA metabolism 10 1.29x10-6 1.78x10-3

FDR, false discovery rate.
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in the cell cycle, which is consistent with the BP analysis, 
and genes involved in this pathway included CDK1, CDC6, 
DBF4, CCNB1 and CDK2. Cancer cells differ from normal 
cells by numerous important characteristics, including loss 
of differentiation, increased invasiveness and decreased drug 
sensitivity. The conversion of normal cells into cancer cells 
is facilitated by the loss of fidelity in cell cycle progression, 
which under normal conditions is achieved by the coordinated 
activity of CDKs, checkpoint controls and repair pathways 
in the cell cycle (51-53). Furthermore, numerous studies 
have shown that this fidelity can be abrogated by specific 
genetic changes (54-56). Both CDK1 and CDK2 encode 
CDKs, which are highly conserved proteins functioning as 
a serine/threonine kinase (57,58). Overexpression of CDK1 
and CDK2 promotes oncogenesis and progression of human 
gliomas, whereas downregulation of CDK1 and CDK2 expres-
sion inhibits the proliferation activities of human malignant 
gliomas (59,60). Furthermore, CDK2 was identified as a prog-
nostic gene in the present study, which was consistent with 
the study by Zhang et al (61). Additionally, CDK2 is involved 
in the expression of other prognostic markers, including p27 
and c-Met (62,63). CDC6 encodes CDC6, which is a protein 
essential for the initiation of DNA replication (64). It has been 
demonstrated that CDC6 expression is a marker of prolifera-
tive activity in brain tumors, including gliomas (65). CCNB1 
encodes CCNB1, which is a regulatory protein of cdk1 in 
mitosis (66). An abnormally high expression level of CCNB1 
has been reported to be correlated with high grades and 
advanced stages of gliomas (67,68). Collectively, genes such 
as CDK1, CDK2, CDC6 and CCNB1 may exert critical roles 
in the progress of glioblastoma through mediating cell cycle.

In the present study, CDK1, CDK2 and CCNB1 were also 
markedly enriched in the p53 signaling pathway. P53 signaling 
pathway is the most commonly mutated pathway in tumori-
genesis (69). As a well-known tumor suppressor, p53 responds 
to DNA damage and various genotoxic and cytotoxic stresses 
by inducing cell cycle arrest and apoptosis (70). Overall, the 
p53 pathway is disrupted in ~80% of high‑grade gliomas 
(WHO Grades III and IV) (71). Therefore, in the progress of 
glioblastoma, CDK1, CDK2 and CCNB1 may also regulate the 
p53 signaling pathway.

Additionally, the present study used the limma package 
to identify DEGs, comparing the method (Rank Product 
algorithm) used by Sandberg et al (16). Among the identi-
fied DEGs in the present study, 73 upregulated genes and 
232 downregulated DEGs were common with those screened 
by Sandberg et al (16), indicating the potentially significant 
roles of these common DEGs in glioblastoma. However, 
another 25 upregulated and 101 downregulated DEGs, which 
were not found by Sandberg et al (16), were also screened. 
The results suggest that it is necessary to reanalyze the 
public microarray data using different methods. The roles of 
these DEGs identified in the present study in glioblastoma 
require additional investigation. Additionally, the expression 
levels and functions of the genes associated with the cell 
cycle and the p53 signaling pathway in glioblastoma require 
validation by experiments, which will be conducted and 
reported later.

In conclusion, a total of 98 upregulated DEGs and 333 down-
regulated DEGs were identified from the GSCs compared with 

the ahNSCs. The upregulated hub genes in the co-expression 
network (including PBK, TOP2A, CDK1, CDC6 and NEK2) 
and the DEGs (including CCNB1, CDK1, CDC6, and CDK2) 
that correlated with cell cycle and the p53 signaling pathway 
may have essential roles in the progress of glioblastoma. These 
genes may be potentially therapeutic targets of gliomas, and 
the findings may be helpful to identify the molecular mecha-
nisms of the pathogenesis of glioblastoma.
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