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Abstract. The present study aimed to identify the regula-
tory mechanisms associated with the metastasis of prostate 
cancer (PC). The microRNA (miRNA/miR) microarray 
dataset GSE21036 and gene transcript dataset GSE21034 were 
downloaded from the Gene Expression Omnibus database. 
Following pre‑processing, differentially expressed miRNAs 
(DEMs) and differentially expressed genes (DEGs) between 
samples from patients with primary prostate cancer (PPC) 
and metastatic prostate cancer (MPC) with |log2 fold change 
(FC)| >1 and a false discovery rate <0.05 were selected using 
the Linear Models for Microarray and RNA‑seq Data  4 
package of R. Next, a DEM‑DEG regulatory network was 
constructed by downloading miRNA‑DEG pairs from the 
miRNA.org database. Finally, functional annotation of each 
DEM‑DEG module was performed using the Database for 
Annotation, Visualization and Integrated Discovery based 
on the Gene Ontology database. The upregulated miRNAs, 
including miR‑144, miR‑494 and miR‑181a, exhibited a higher 
degree of connections compared with other nodes, including 
in the DEM‑DEG regulatory network, and regulated a number 
of downregulated DEGs. According to the functional anno-
tation of the DEM‑DEG modules, miR‑144 and its targeted 
DEGs enriched the highest number of biological process 
terms (36 terms), followed by miR‑494 (24 terms), miR‑30d 
(18  terms), miR‑181a (15 terms), hsa‑miR‑196a (8 terms), 
miR‑708 (7 terms) and miR‑486‑5p (2 terms). Therefore, these 
miRNAs may serve roles in the metastasis of PC cells via 
downregulation of their corresponding target DEGs.

Introduction

Prostate cancer (PC) is the most common cancer in men and 
the second leading cause of cancer‑associated mortality in 

USA (1). PC is challenging to treat due to its high metastasis 
rate (2); despite considerable advances in the treatment of PC, 
metastatic prostate cancer (MPC) remains incurable (3). The 
molecular mechanisms underlying the metastasis of PC cells 
remain largely unknown and require further study.

MicroRNAs (miRNAs/miRs) are a group of non‑coding 
RNAs of 17‑27 nucleotides in length that regulate gene expres-
sion by binding to the 3'untranslated regions of messenger 
RNAs (mRNAs)  (4). miRNAs have been demonstrated to 
serve important roles in a number of cellular processes as 
post‑transcriptional regulators, in addition to roles in cancer 
development and progression (5,6). Dysregulation of miRNAs 
has been demonstrated to contribute to tumorigenesis by 
stimulating proliferation, angiogenesis and invasion  (7,8). 
Previous studies have investigated miRNA expression profiles 
in primary prostate cancer (PPC) or MPC and several miRNAs 
have been suggested as diagnostic markers for PC  (9,10). 
However, the molecular mechanisms underlying the roles 
of miRNAs and their target differentially expressed genes 
(DEGs) in PC metastasis remain unclear.

Based on 218 prostate tumor samples (181 primaries and 
37  metastases), Taylor  et  al  (11) conducted an integrated 
analysis (including concordant assessment of DNA copy 
number, mRNA expression and focused exon resequencing), 
and revealed that nuclear receptor coactivator NCOA2 func-
tions as an oncogene in ~11% of PC tumors, and FOXP, RYBP 
and SHQ1 serve as potential cooperative tumor suppressors 
in human PC. Using the same microarray datasets, the aim 
of the present study was to identify miRNAs and DEGs that 
are associated with the metastasis of PC cells by screening 
miRNAs and genes that are differentially expressed between 
MPC and PPC samples, with the objective to further under-
stand the molecular mechanisms of MPC.

Materials and methods

Source of microarray data. The raw microarray datasets 
GSE21036 and GSE21034 were downloaded from the Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) data-
base. The miRNA expression dataset GSE21036 was collected 
from 141 patients with PC treated by radical prostatectomy, 
including 14 metastatic samples, 99 primary non‑metastatic 
tumor samples and 28 normal adjacent benign prostate 
samples. The annotation platform was the Agilent‑019118 
Human miRNA Microarray 2.0 G4470B (miRNA ID version) 
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(Agilent Technologies, Inc., Santa Clara, CA, USA). The 
GSE21034 transcript dataset was collected form 179 samples, 
including 29 normal samples, 131 primary samples and 
19 metastatic samples. The annotation platform was the 
Affymetrix Human Exon 1.0 ST Array (Affymetrix, Inc., 
Santa Clara, CA, USA). As illustrated in Table I, 139 samples 
from datasets of GSE21036 and GSE21034 were overlapped 
and used for the following analyses.

Microarray data pre‑processing. Using the AgiMicroRna 
Bioconductor  l ibra r y of  R (ht tp: // bioconductor 
.org/help/search/index.html?q=AgiMicroRna), the GSE21036 
raw data were subject to pre‑processing as previously 
described  (12), including removing the probes with a low 
detection rate (failure in >75% samples), background adjust-
ment and quantile normalization by the Robust Multiarray 
Averaging (RMA) method (13). The GSE21034 gene transcript 
data had been pre‑processed (by background adjustment 
and quantile normalization using the RMA method) prior 
to being downloaded, and were subsequently subjected to 
log2‑transformation.

Differential expression analysis of miRNA and genes. The 
differential expression analyses of miRNAs and gene tran-
scripts between patients with MPC and patients with PPC 
were performed using the Linear Models for Microarray 
and RNA‑Seq Data 4 package of R (14). miRNAs or genes 
with |log2 fold change (FC)| >1 and a false discovery rate 
(FDR) value <0.05 were selected as differentially expressed 
miRNAs (DEMs) or DEGs. The FDR value was obtained by 
adjusting the raw P‑values with the Benjamini and Hochberg 
method (15).

Construction of a DEM‑DEG regulatory network. First, 
miRNA‑gene pairs predicted by the miRanda method were down-
loaded from the miRNA.org database (16). Then, miRNA‑gene 
interaction pairs of upregulated DEM to downregulated DEG, 
and downregulated DEM to upregulated DEG were screened 
to construct a DEM‑DEG regulatory network. Cytoscape 
(version 3.2.0; http://www.cytoscape.org/release_notes_3_2_0.
html) was used to visualize the resulting network (17).

Functional annotation of DEM‑DEG modules. In the 
constructed DEM‑DEG network, a miRNA and its target genes 
were defined as a module. For the DEGs in each module, func-
tional annotation analysis was performed using the Database 

for Annotation, Visualization and Integrated Discovery online 
tool based on the Gene Ontology database (P<0.01) (18).

Results

Differentially expressed miRNA and genes between patients 
with MPC and PPC. Based on the analytical threshold, 
DEMs/DEGs between MPC and PPC were screened out. 
The numbers of DEMs/DEGs between patients with MPC 
and those with PPC are presented in Table II, in addition to 
the numbers of up‑ and downregulated DEMs/DEGs. The 
number of downregulated DEMs/DEGs was markedly greater 
compared with the number of upregulated DEM/DEGs 
identified between patients with MPC and PPC. DEGs with 
|log2 FC| >2 are presented in Table III.

DEM‑DEG regulatory network. The resulting DEM‑DEG 
regulatory network is illustrated in Fig.  1. The average 
connection degree of DEM was 12.4 (523/43), and that of 
DEG was 3.2 (523/166) (Table IV). Compared with that of the 
downregulated miRNAs, upregulated miRNAs had a higher 
degree of connection, that is, the latter regulate more down-
regulated DEGs, including miR‑144, miR‑494 and miR‑181a. 
Certain DEGs were regulated by several miRNAs, including 
glutamate ionotropic receptor NMDA type subunit  3A 
(GRIN3A), topoisomerase II alpha (TOP2A) and caldesmon 1 
(CALD1). GRIN3A and TOP2A were upregulated by 14 and 
13 downregulated miRNAs, respectively, while CALD1 was 
downregulated by 8 upregulated DEMs.

Functional annotation of DEM‑DEG modules. Seven 
modules were obtained (P<0.01), and their enriched biolog-
ical processes (BPs) are presented in Fig. 2. DEGs regulated 

Table I. Microarray datasets used from the Gene Expression Omnibus database, and the proportions of metastatic, primary and 
normal samples in each dataset.

Microarray dataset	 Metastatic	 Primary	 Normal	 Total

miRNA (GSE21036)	 14	 99	 28	 141
Transcript (GSE21034)	 19	 131	 29	 179
miRNA and transcript (common 	 13	 98	 28	 139
to GSE21036 and GSE21034)

miRNA, microRNA.

Table II. Overview of differentially expressed microRNAs and 
genes.

Differential
expression	 Upregulated	 Downregulated	 Total

DEM	 25	   48	 73
DEG	 22	 191	 213

DEM, differentially expressed miRNA; DEG, differentially expressed 
gene.
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by miR‑144 enriched the most BP terms (36), followed by 
miR‑494 (24), miR‑30d (18), miR‑181a (15), miR‑196a (8), 
miR‑708 (7) and miR‑486‑5p (2). All these miRNAs were 
upregulated.

Discussion

In the present study, DEMs and DEGs between patients with 
PPC and MPC may function as biomarkers for the occurrence 
of MPC. Furthermore, miRNAs and genes (particularly those 
with large differential expression values) involved in the seven 

resulting DEM‑DEG regulatory modules may serve significant 
roles in the metastasis of PC cells.

The target DEGs of miR‑144 were enriched in the most 
BP terms, implying that this integrated analysis of multidi-
mensional data miRNA and its targeted DEGs may perform 
important roles in the occurrence of MPC. miR‑144 has been 
reported to improve the growth of HeLa cells (19), suggesting its 
role in tumor cell proliferation. Zhang et al (20) have proposed 
that miR‑144 promotes the malignant progression of nasopha-
ryngeal carcinoma cells by targeting the tumor‑suppressor 
gene phosphatase and tensin homolog; however, its role in PC 

Figure 1. The DEM‑DEG regulatory network. The rhombi represent upregulated DEMs; the circles represent DEGs. The green color indicates downregulation 
of a miRNA or gene; the red color indicates upregulation of a miRNA or gene. DEM, differentially expressed miRNA; DEG, differentially expressed gene; 
hsa, Homo sapiens; miR/miRNA, microRNA.

Table III. Differentially expressed genes with |log2 FC| >2 between metastatic and primary prostate cancer samples.

Gene transcript	 log2 FC value	 Adjusted P‑value	 Gene transcript	 log2 FC value	 Adjusted P‑value

TAGLN	‑ 2.4964	 1.1987x10‑31	 SORBS1	‑ 2.24347	 1.4898x10‑23

SLC22A3	‑ 2.0225	 5.9268x10‑10	 SLC14A1	‑ 2.0417	 4.5910x10‑12

SERPINA3	‑ 2.1640	 1.0787x10‑08	 PI15	‑ 2.5879	 1.0048x10‑13

PGM5	‑ 2.1181	 5.0371x10‑23	 PDE5A	‑ 2.1878	 5.7525x10‑19

PCP4	‑ 2.3182	 1.0747x10‑24	 MYLK	‑ 2.5515	 1.9944x10‑29

MYH11	‑ 3.7948	 1.5295x10‑42	 MYBPC1	‑ 2.3552	 1.8570x10‑12

MSMB	‑ 3.1696	 1.6542x10‑15	 LTF	‑ 2.5535	 4.2645x10‑07

IGJ	‑ 2.0615	 2.2689x10‑07	 PAM3B	‑ 2.1011	 5.5298x10‑11

DDP4	‑ 2.4582	 1.0125x10‑12	 CSRP1	‑ 2.0686	 7.1619x10‑22

CNN1	‑ 2.7962	 1.4001x10‑35	 CHRDL1	‑ 2.2994	 1.2660x10‑22

AZGP1	‑ 2.1882	 2.8966x10‑18	 ACTG2	‑ 3.2887	 3.1041x10‑33
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has not been reported thus far, to the best of our knowledge. In 
the present study, numerous DEGs were observed to be down-
regulated by miR‑144. Among them, myosin heavy chain 11 
(MYH11), solute carrier family 22 member 3 (SLC22A3) and 
dipeptidyl peptidase 4 (DPP4) exhibited large |log2 FC| values. 
MYH11 (also known as SMMHC) encodes the smooth muscle 
myosin heavy chain, which serves a key role in smooth muscle 
contraction  (21). Its downregulation has been reported by 
Lin et al (22) in proliferating smooth muscle cells of human 
prostate tissue. SLC22A3 is one of three similar cation trans-
porter genes located in a cluster on chromosome 6 and has 
previously been suggested to be associated with PC pathogen-
esis (23). DPP4 encodes a serine exopeptidase that has been 
implicated in cell‑extracellular matrix interactions and bioac-
tive peptide/cytokine/growth factor metabolism (24,25). DPP4 
activity is elevated in PC and adjacent benign hyperplastic 
glands (26). Taken together, miR‑144 may serve roles in the 
metastasis of PC cells by downregulating a number of target 
genes, including MYH11, SLC22A3 and DPP4.

The regulator miR‑494 may also serve an important role 
in the metastasis of PC. MYH11 was the only target gene with 
|log2 FC| >2 among the downregulated DEGs of miR‑494 in the 
present study. In a previous study, using multiple experimental 
methods, Shen et al (27) demonstrated that miRNA‑494‑3p 
could suppress the proliferation, invasion and migration of 
PC by downregulating C‑X‑C motif chemokine receptor 4 

(CXCR4), which was overexpressed in PC. This is consistent 
with the upregulation of this miRNA observed in the present 
study, although differential expression of CXCR4 was not 
observed.

miR‑30d downregulated a number of genes in the present 
study. Kobayashi et al (28) observed significantly higher expres-
sion levels of miR‑30d in three PC cell lines compared with 
those in two normal prostate cell lines using miRNA micro-
array and quantitative polymerase chain reaction analysis (28). 
Furthermore, the authors suggested that miR‑30d mediated 
its effects in PC by downregulating suppressor of cytokine 
signaling 1. In the present study, among the target DEGs of 
miR‑30d, sorbin and SH3 domain containing 1 (SORBS1), 
phosphodiesterase‑5 (PDE5) and myosin light chain kinase 
(MYLK) exhibited large |log2 FC| values. SORBS1 encodes a 
Cbl‑associated protein involved in the formation of actin stress 
fibers and focal adhesions (29). The observed downregula-
tion of SORBS1 in the present study was consistent with that 
reported by Vanaja et al (30) in PC tissues. PDE5 encodes an 
enzyme that hydrolyzes the 3',5'‑phosphodiester bond in the 
second messenger molecule cyclic guanosine monophosphate 
(GMP) to form 5'‑GMP (31). Its expression has been observed in 
the smooth muscles of the prostate, and PDE5 inhibitors (such 
as sildenafil) are able to relax the prostate (32). Therefore, the 
upregulation of PDE5 is suggested to be disadvantageous for 
patients with PC. MYLK has been demonstrated to be neces-
sary for the invasiveness of MPC cells (33). However, PDE5 
and MYLK were observed to be downregulated in the present 
study; therefore, further studies are required to elucidate the 
roles of PDE5 and MYLK in PC metastasis.

In addition to their observed downregulation by miR‑144 
MYH11 and SLC22A3 were downregulated by miR‑181a, 
which was upregulated in the present study. miR‑181a has 
been reported in previous studies to induce apoptosis in a 
number of cancer types by downregulating the apoptosis 
regulator B‑cell lymphoma 2 (11,34), and it has been observed 
to mediate bufalin‑induced apoptosis in PC‑3 PC cells by 
Zhai et al  (35). However, the implications of upregulation 
of miR‑181a in MPC samples remains unclear. Additionally, 
Su et al (36) reported that the downregulation of miR‑30d 
and miR‑181a in prostate tumors cooperatively suppresses the 
expression of glucose‑regulated protein, 78 kDa (GRP78), a 
major endoplasmic reticulum chaperone and signaling regu-
lator that is typically overexpressed in cancer (37). Differential 
expression of GRP78 was not observed in the present study; 
however, MYH11 was revealed to be another common target of 
miR‑30d and miR‑181a, indicating that miR‑30d and miR‑181a 
may cooperate to regulate the metastasis of PC cells.

A previous study suggested that miR‑196a regulates 
homeobox (Hox) gene expression during vertebrate embryo-
genesis (38). In addition, a correlation between aberrant HoxC8 
expression and a malignant phenotype in human PC has been 
reported (39,40). Therefore, it can be inferred that miR‑196a 
may serve a role in the occurrence of MPC. In the present 
study, one of the target genes of miR‑196a, actin, gamma 2 
(ACTG2), exhibited |log2 FC| >2, in agreement with the signifi-
cant downregulation in metastatic and primary tumor samples 
observed by Chandran et al (41). The findings from the present 
study further suggest that miR‑196a may serve a role in the 
metastasis of PC cells by downregulating ACTG2.

Table IV. Nodes and regulation pair statistics of the DEM‑DEG 
regulatory network.

	 Nodes
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Regulation	 DEM	 DEG	 Edges	 Total

Up	 11	 13	 DEM.up‑DEG.down	 442
Down	 32	 153	 DEM.down‑DEG.up	 81

DEM, differentially expressed miRNA; DEG, differentially expressed 
gene; up, upregulated; down, downregulated.

Figure 2. The number of enriched biological process terms of each differen-
tially expressed miRNA‑differentially expressed gene module, as analyzed 
using the Database for Annotation, Visualization and Integrated Discovery 
online tool. hsa, Homo sapiens; miR, microRNA.
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Regarding miR‑708 and miR‑486‑5p, no DEGs with 
a |log2 FC| >2 were observed among their target genes in 
the present study, implying that these two miRNAs do not 
perform crucial roles in the occurrence of MPC. According 
to Watahiki et al (10), miR‑708 exhibited a >5‑fold decrease in 
an MPC cell line following comparative analysis of miRNAs 
libraries between MPC and PPC cell lines. This was not 
consistent with the upregulation of miR‑708 observed in the 
present study. Therefore, the expression changes and role of 
miR‑708 in MPC require further investigation. Additionally, 
Watahiki et al (10) also reported that elevated miR‑486 level 
enhanced the invasiveness of MPC cells, which is consistent 
with its upregulation in the present study.

In conclusion, the significantly upregulated miR‑144, 
miR‑494, miR‑30d, miR‑181a, miR‑196a, miR‑708 and 
miR‑486‑5p screened in the present study may participate in 
the metastasis of PC cells via the downregulation of their corre-
sponding target DEGs, particularly those with large |log2 FC| 
values, including MYH11, SLC22A3, DPP4, SORBS1, PDE5, 
MYLK and ACTG2. The effects on these target DEGs require 
further experimental verification. A number of these DEMs or 
DEGs have been associated with the occurrence of PC; however, 
the molecular mechanisms underlying their roles in the occur-
rence of MPC remain unclear and require further investigation.
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