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Abstract. Lung cancer was demonstrated to be the most 
lethal type of malignant tumor amongst humans in the global 
cancer statistics of 2012. As one of the primary treatments, 
radiotherapy has been reported to induce remission in, and 
even cure, patients with lung cancer. However, the side effects 
of radiotherapy may prove lethal in certain patients. In past 
decades, the transforming growth factor β1 (TGFB1) signaling 
pathway has been revealed to serve multiple functions in 
the control of lung cancer progression and the radiotherapy 
response. In mammals, this signaling pathway is initiated 
through activation of the TGFB1 receptor complex, which 
signals via cytoplasmic SMAD proteins or other downstream 
signaling pathways. Multiple studies have demonstrated that 
TGFB1 serves important functions in lung cancer radio-
therapy. The present study summarized and reviewed recent 
progress in elucidating the function of the TGFB1 signaling 
pathway in predicting radiation pneumonitis, as well as current 
strategies for targeting the TGFB1 signaling pathway in lung 
cancer radiotherapy, which may provide potential targets for 
lung cancer therapy.
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1. Introduction

Lung cancer was the most lethal type of malignant tumor 
amongst humans in the global cancer statistics of 2012 (1). By 
morphological type, lung cancer is primarily divided into small 
cell lung cancer (SCLC) and non‑SCLC (NSCLC) (2). Lung 
cancer cells are sensitive to radiotherapy, and thoracic radio-
therapy can eradicate chemotherapy‑resistant tumor cells (3,4). 
A retrospective study demonstrated that clinical outcomes 
following stereotactic body radiotherapy are equal or superior 
to surgery alone for overall survival in patients with stage I‑II 
NSCLC (3). Two meta‑analyses have indicated a statistically 
significant advantage with respect to overall survival associ-
ated with limited‑disease SCLC following radiotherapy (5,6). 
However, radiation‑induced pulmonary injury, local recurrence 
and distant metastasis have become substantial challenges to the 
successful management of lung cancer (7).

Due to its non‑specificity, radiation kills rapidly mitosing 
cells, irrespective of whether they are cancerous or normal, 
resulting in damage to tissues that have an increased turnover 
rate, including skin, lung, bone marrow and gut epithelium (8). 
At present, the prognostic factors of lung cancer therapy 
are widely studied  (9‑12). A prior study revealed that the 
DiAcSpm/cutoff ratio (DASr) is significantly increased in 
NSCLC, and the DASr was revealed to be an independent 
negative prognostic indicator in patients with NSCLC who 
underwent complete resection  (13). The overexpression 
of SRY‑box 2 may serve as a positive prognostic factor in 
patients with stage III squamous cell lung cancer receiving 
adjuvant radiotherapy (14). Although understanding of the 
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molecular mechanisms underlying the development of normal 
lung tissue injury and tumor tissue response in radiotherapy 
has improved, transforming growth factor β1 (TGFB1) is 
the most important factor among the numerous cytokines 
and growth factors that contribute to the radiation‑induced 
injury process (15). The present study reviewed the function 
of TGFB1 in radiation‑induced pulmonary injury and lung 
cancer response to radiotherapy, aiming to discuss the clinical 
use of this cytokine in lung cancer radiotherapy.

2. TGFB1 signaling pathway

The TGFB family is a group of pleiotropic growth factors that 
activate signal transduction cascades that serve important func-
tions in carcinogenesis and tumor progression (16). TGFB1, a 
ligand of the TGFB signaling pathway, is present in numerous 
cell types. TGFB1 is most highly concentrated in healing 
wounds, where it is released in large quantities from plate-
lets (17). TGFB1 then recruits monocytes and macrophages 
to the injury site (18), inhibits epithelial cell proliferation and 
enhances fibroblast maturation into post‑mitotic fibrocytes that 
increase fibrous tissue production (19,20), thereby accelerating 
angiogenesis and extracellular matrix formation (21‑23). In 
cancer cells, TGFB1 serves a dual role. Initially, it functions 
as a tumor suppressor by inhibiting cell growth and inducing 
apoptosis (24). However, during the later stages of tumor devel-
opment, TGFB1 functions as a tumor promoter by inducing 
the epithelial‑mesenchymal transition (EMT) in cancer cells, 
resulting in increased invasion and metastasis (24,25).

The signal transduction initiates with the TGFB1 ligand 
binding to and activating TGFB receptor II (TGFBRII), 
which then phosphorylates TGFBRI through activating its 
kinase. Phosphorylated TGFBRI phosphorylates the down-
stream elements of the signaling pathway via the regulatory 
SMADs (R‑SMADs) SMAD2 and SMAD3, in the C‑terminus 
of these R‑SMADs. Phosphorylated SMAD2 may form a 
stable complex with SMAD3 and the co‑SMAD SMAD4 
and the resulting SMAD complex is then translocated into 
the nucleus (Fig.  1). This SMAD complex interacts with 
multiple transcription factors, which further increases their 
binding affinity and specificity for the target gene promoters, 
resulting in gene transcription alterations (24,25). Inhibitory 
SMAD may bind TGFBRI and attenuate signaling pathway 
activation (26). TGFB1 may also signal via multiple alterna-
tive cascades, including the mitogen‑activated protein kinase 
and protein kinase B signaling pathways (27,28), which may 
further mediate growth by inhibiting cell cycle progression 
and inducing apoptosis (27).

3. TGFB1 serves as a predictor of radiation pneumonitis 
(RP) in lung cancer radiotherapy

Radiotherapy is the primary treatment for patients with 
inoperable, locally advanced lung cancer. This conventional 
treatment has been reported to induce remission in and cure 
patients with the disease  (29). However, with conformal 
treatment planning, the side effects can prove lethal and radio-
therapy may be ineffective due to the limitations imposed by 
normal tissue. This is particularly true in tumors that require 
increased doses of radiation or are located within or adjacent 

to sensitive organs (30). RP is considered the most serious, 
dose‑limiting complication of radiotherapy  (30). Growth 
factors are synthesized and secreted between a few h and 
days following irradiation, and may then continue for months. 
Cytokine plasma levels, including those of tumor necrosis 
factor, interleukin (IL)‑1β, IL‑6, and TGFB1 serve a predic-
tive function for RP; the influence of tumor‑derived cytokine 
production on circulating plasma levels in irradiated patients 
with NSCLC was evaluated in a previous study  (30). The 
expression of TGFB1 increased in a dose‑dependent manner 
following exposure to ionizing radiation  (31). TGFB1 was 
reported as one of the most important growth factors among 
the molecules expressed in tissues following radiation expo-
sure, and is associated with the incidence of RP (32). Multiple 
studies have established the positive association between the 
severity of radiation‑induced lung injury and TGFB1 signaling 
activation (33,34). In a rat model of radiation‑induced lung 
injury, fibrosis developed and was accompanied by increased 
expression of TGFB1 and activation of the TGFB1 signaling 
pathway (35). Furthermore, TGFB1 activation by radiation 
has been demonstrated to occur at decreased doses and in an 
approximately dose‑dependent manner between 10 cGy and 
5 Gy (36). Serially measuring plasma TGFB1 levels has been 
proposed to estimate the risk of RP and to assist in determining 
whether additional dose escalation may be safely applied in 
chemotherapy (37,38). Anscher et al (38) assessed whether 
TGFB1 may also be used to predict the risk of developing 
pulmonary injury following radiotherapy. Anscher et al (39) 
performed a small clinical trial and determined that it was 
feasible to use TGFB1 to guide radiation dose selection for 
patients with lung cancer. Furthermore, the expression of 
TGFB1 in the sputum was reported to be a factor for predicting 
RP (40). TGFB1 may be expressed in the sputum of patients 
with lung cancer, in whom macrophages are the main sources 

Figure 1. TGF‑β1 signaling pathway. TGF‑β receptors phosphorylate intracel-
lular SMAD proteins following ligand‑binding. SMAD2 is phosphorylated 
by TGF‑β receptor I and subsequently forms a complex with SMAD3 and 
the co‑SMAD SMAD4. This complex is then transported into the nucleus 
where it binds an SBE and induces the transcription of TGF‑β‑dependent 
genes. I‑SMAD may bind TGF‑β receptor I and attenuate pathway activation. 
TGF‑β, transforming growth factor β; I‑SMAD, inhibitory SMAD; SBE, 
SMAD binding element; P, phosphorylated.
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of TGFB1 expression (40). Patients with increased TGFB1 
expression in the sputum following radiotherapy were associ-
ated with an increased incidence of RP compared with those 
with decreased TGFB1 expression (40). All the aforementioned 
approaches resulted in decreased expression and activation of 
TGFB1 and decreased activation of the SMAD‑dependent 
TGFB1 signaling pathway  (37‑40). The observations of 
Anscher et al (38,39) suggests that plasma TGFB1 measure-
ments may assist in identifying whether patients with lung 
cancer are candidates for radiation dose escalation or decrease. 
A previous study also revealed that the serum expression of 
TGFB1 increased significantly four weeks, and reached the 
highest recorded level eight weeks, following irradiation in a 
rat model (41). Furthermore, downregulating TGFB1 protected 
against radiation‑induced lung injury in the rat model (41).

Meanwhile, circulating TGFB1 levels in lung cancer 
patients are elevated compared with people without cancer (42). 
The reason for the higher levels of TGFB1 appears to be 
associated with greater production and altered bioavailability 
of this cytokine (43). The mannose‑6‑phosphate/insulin‑like 
growth factor receptor type II (M6P/IGF2R) was reported 
to serve a crucial function in these feedback process (44). 
Kong et al (45) demonstrated that if patients with lung cancer 
exhibited a loss of heterozygosity in M6P/IGF2R, they were 
significantly more likely to exhibit increased plasma TGFB1 
levels and to develop radiation‑induced lung injury compared 
with those with heterozygosity in M6P/IGF2R. Reactive 
oxygen species (ROS) are produced following radiation expo-
sure (46), and have been revealed to activate latent TGFB1 

expression (Fig.  2)  (47). Mice genetically engineered to 
overexpress one of the isoforms of superoxide dismutase have 
been demonstrated to resist radiation‑induced lung injury (48). 
Similarly, the administration of superoxide dismutase mimetic 
has been revealed to decrease the severity of lung injury in 
rats, in vivo (49).

However, the results of using TGFB1 levels to predict the 
risk of lung injury have been inconsistent among studies (50). A 
previous study reported that the return of plasma TGFB1 levels 
to the normal range following radiotherapy accurately predicted 
that patients would not develop RP (38). Another study failed 
to confirm that TGFB1 serves as a predictor of RP in lung 
cancer radiotherapy (51). Jaeger et al (37) did not confirm that 
increased levels of TGFB1 following the end of radiotherapy 
represented an independent additional risk factor for developing 
symptomatic RP. Further study revealed that CT/CC genotypes 
of the TGFB1 rs1982073:T869C gene were associated with a 
decreased risk of RP in patients with lung cancer treated with 
definitive radiotherapy compared with the other genotypes, and 
therefore may serve as reliable predictors of RP (52).

4. Predictive function of TGFB1 in lung cancer radiotherapy

Multiple studies have demonstrated that increased serum levels 
of TGFB1 following the initiation of radiation therapy were 
associated with radiation‑induced lung injury, as aforemen-
tioned (32‑34). Changes in circulating TGFB1 levels during 
radiation therapy may also be associated with the prognosis of 
patients with locally advanced NSCLC (53). In locally advanced 
NSCLC, decreased expression of TGFB1 during radiotherapy is 
associated with a more favorable prognosis (54).

Radiation may trigger the synthesis and secretion of 
TGFB1, and the activation of the intracellular TGFB signaling 
pathway, as evidenced by the phosphorylation of SMAD and 
transcriptional activation of a TGFB‑responsive reporter gene 
in lung cancer cells (54). Radiation induced cells to increase 
their migration in response to recombinant TGFB1, and this was 
accompanied by the upregulation of TGFBR expression (54). 
An increasing slope of the dose‑response curve was associated 
with the C‑509T single nucleotide polymorphism, suggesting 
that a polymorphism within the promoter region of the TGFB1 
gene is associated with radiation sensitivity (55). Breast cancer 
cells pre‑treated with the TGFB1 small molecule inhibitor 
LY364947 were radiosensitized, irrespective of sensitivity 
to TGFB1‑induced growth inhibition (56). Consistent with 
increased clonogenic cell death, DNA damage was signifi-
cantly decreased in breast cancer cells pretreated in vitro or 
in vivo with a TGFBRI kinase inhibitor (56). Furthermore, 
TGFB1‑neutralizing antibodies increased radiation sensitivity 
and significantly delayed tumor growth in response to single 
and fractionated radiation exposure (56). These results suggest 
that inhibiting TGFB1 activity prior to radiation attenuates the 
DNA damage response and increases the radiosensitivity of 
breast cancer cells (56). However, whether TGFB1 may serve 
as an effective sensitizer in lung cancer radiotherapy has not 
yet been reported.

The signaling pathway induced by TGFB1 serves an impor-
tant function in lung cancer cell growth and differentiation, and 
this pathway is associated with a significant predictive value in 
lung cancer radiotherapy. The present study further reviewed 

Figure 2. Function of TGF‑β1 in normal lung and lung cancer cell responses 
to radiotherapy. In normal lung cells: ROS are produced following exposure 
to radiation; ROS subsequently activate the TGF‑β1 signaling pathway 
and stimulate TGF‑β1 secretion into the plasma, a potential risk factor for 
radiation‑induced lung injury (47). In lung cancer cells: Regulation of the 
expression of certain miRs follows TGF‑β1 signaling pathway activation; 
the TGF‑β1 signaling molecules diffuse to and activate bystander cells (61); 
miR‑183 may transcriptionally be regulated by the TGF‑β1 signaling pathway 
to silence NK cells by repressing DAP12 transcription, which is critical for 
surface NK receptor stabilization and downstream signal transduction (62); 
TGF‑β1 exposure induces EMT and radiotherapy resistance (67). TGF‑β, 
transforming growth factor β; EMT, epithelial‑mesenchymal transition; NK, 
natural killer; ROS, reactive oxygen species; RP, radiation pneumonitis; 
I‑SMAD, inhibitory SMAD; SBE, SMAD binding element; P, phosphory-
lated; miR, microRNA.
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reports on TGFB1‑associated microRNAs (miRNA/miR) and 
the mechanisms underlying EMT in lung cancer radiotherapy.

TGFB1 signaling pathway‑associated miRNAs may influence 
lung cancer development and anti‑metastatic treatment. 
Multiple studies have demonstrated that miRNAs are associ-
ated with cancer development, invasion and metastasis (57,58), 
suggesting they may serve a function in lung cancer treatment. 
Previously, SMAD proteins of the TGFB1 signaling pathway 
were revealed to regulate miRNA expression through tran-
scriptional and post‑transcriptional mechanisms (25). Animal 
studies with transgenic mouse models supported the conclu-
sion that activating TGFB1 increased the incidence of lung 
metastases from breast cancer (59), whereas blocking TGFB1 
activity decreased metastatic potential (60). An in vitro study 
demonstrated that the TGFB1‑miR‑21‑ROS signaling pathway 
in bystander cells was critical for bystander responses to mani-
fest in NSCLC (Fig. 2) (61). Jiang et al (61) demonstrated that 
when NSCLC cells were irradiated with 5 Gy X‑rays, the TGFB1 
signaling pathway was activated and the cells released certain 
signaling molecules, including TGFB1, into the surrounding 
medium. These signaling molecules diffused to bystander 
cells and activated the TGFB1‑miR‑21‑ROS signaling pathway 
in these bystander cells (61). A prior study also revealed that 
TGFB‑induced miR‑183 silenced tumor‑associated natural 
killer (NK) cells (Fig. 2) (62). However, the tumor cells evaded 
NK cell surveillance by generating an immunosuppressive 
environment through multiple factors, including TGFB1 (63). 
NK cells and cytotoxic T lymphocytes exposed to TGFB1 
did not kill tumor cells in humans or mice, indicating that 
TGFB1 exhibited an immunosuppressive function  (64). 
Consequently, elevated serum TGFB1 levels were associated 
with poorer prognosis, and observed in the metastatic stage 
of numerous types of cancer (65). In vivo depletion of TGFB1 
or blockade of the TGFB1 signaling pathway may restore the 
NK cell‑mediated anti‑tumor response.

TGFB1 exposure results in EMT and the inhibition of growth 
arrest and apoptosis. To improve understanding of the dual 
tumor‑suppressive and tumor‑promoting function of TGFB1 in 
cancer cells, Gal et al (66) assessed the response of mammary 
epithelial cancer cells to short and long‑term TGFB1 expo-
sure. Cell proliferation was arrested and apoptosis was 
induced following exposure to TGFB1 for 2‑5 days, whereas 
the surviving cells underwent EMT and became resistant to 
proliferation arrest and apoptosis  (66). EMT was reversed 
using a pharmacological TGFBRI kinase inhibitor or by 
ceasing TGFB1 exposure. In addition, the downregulation of 
TGFB‑dependent signaling pathways in the transdifferentiated 
(TD) cells was reversed, and proliferation arrest and apoptosis 
induced, upon ceasing TGFB1 exposure (66). This previous 
study concluded that suppressing the anti‑proliferative TGFB1 
signaling pathway in TD cells may permit TGFB‑dependent 
survival and EMT‑enhancing signaling pathways to function 
to stimulate proliferation, survival and EMT at low, but suffi-
cient, levels (66). Therefore, the TGFB1 signaling pathway 
may be modulated to facilitate switching from tumor suppres-
sion to progression (66).

EMT is a determinant of radiotherapy sensitivity in NSCLC 
(Fig.  2)  (67). Yasushi  et  al  (67) evaluated the association 

between EMT and radiotherapy sensitivity using NSCLC cells 
induced to undergo EMT with TGFB1. The expression of EMT 
markers in tumor specimens obtained from patients with lung 
cancer were immunohistochemically analyzed. EMT resulted 
in increased malignant potential and reduced sensitivity to 
radiation, and further altered certain cells into therapy‑resistant 
sub‑lines with TGFB1 (67). In addition, increased evidence of 
EMT was detected in surgically resected specimens following 
radiotherapy compared with biopsy specimens prior to radiation 
treatment (66). The patients with EMT marker‑positive tumors 
were associated with a decreased disease‑free survival rate 
compared with those with EMT marker‑negative tumors (67). It 
was concluded that the TGFB1 signaling pathway was associated 
with insensitivity to radiotherapy due to EMT induction (67). 
Novel therapeutic combinations using TGFB1 inhibitors or 
EMT‑signaling inhibitors may be required to circumvent the 
resistance of lung cancer to radiotherapy. Furthermore, another 
study suggested that radiation induced a migratory or invasive 
phenotype in carcinoma, including lung cancer cells in vitro, 
through hyper‑activation of the TGFB1 signaling pathway (54).

However, a major challenge in developing accurate models 
of radiation‑induced lung toxicity is inter‑patient variation in 
inherent radiation sensitivity. The predictive value of TGFB1 
in lung cancer radiotherapy and the mechanism underlying 
how the activation of the TGFB1 signaling pathway during 
radiotherapy contributes to metastasis, cancer stem cell forma-
tion and resistance to therapy via EMT induction, require 
further study.

5. Preclinical and clinical strategies for targeting the 
TGFB1 signaling pathway in lung cancer radiotherapy

Radiation oncologists have focused on tolerating tissue injury 
by limiting the dose or volume of the normal tissue receiving 
radiation (68,69). Although these dose‑volume associations 
have received attention to more precisely correlate dose, 
volume and the risk for normal tissue injury, certain disad-
vantages that may influence the risk of treatment‑associated 
complications remain  (70). TGFB1 represents a target for 
molecular therapies designed to prevent or inhibit normal 
tissue injury following cancer radiotherapy (71). The evidence 
supporting the critical function of TGFB1 in the development 
of normal tissue injury following cancer therapy was afore-
mentioned. The present study further reviewed the strategies 
aimed at preventing normal tissue injury and sensitizing tumor 
cells by targeting the TGFB1 signaling pathway.

Due to the vast number of potential targets in the TGFB1 
signaling pathway, multiple approaches have been adopted 
in  vitro to prevent the binding of TGFB1 to its receptor, 
including specific antibody‑mediated neutralization of soluble 
TGFB, or dominant‑negative inhibition of TGFBRI and 
TGFBRII (71,72). The TGFB‑specific approaches inhibited 
radiation‑dependent TGFB1 secretion, the phosphorylation 
of SMAD and reporter gene activity, indicating that autocrine 
production of TGFB and the subsequent activation of TGFB1 
induced these changes (54). After administering a single dose 
of 1.0 mg/kg anti‑TGFB1 antibody, delivered with the final 
fraction of the right hemithorax irradiation, to Fischer rats, 
Anscher et al (72) demonstrated that, compared with in the rats 
receiving radiation alone, inhibited fibrosis, TGFB1 expression 
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and TGFB1‑induced signaling were observed in the rats treated 
with a combination of radiation and an anti‑TGFB1 antibody. 
A TGFBRI inhibitor was also administered daily to a group 
of Sprague‑Dawley rats with irradiated right lungs (72). The 
drug was administered from 7 days prior to irradiation until 
sacrifice, or for 3 weeks. There was significantly decreased 
fibrosis, TGFB1 expression and chronic oxidative stress in the 
treated irradiated group as compared with in the untreated 
irradiated group (72).

A prior study indicated that the TGFB1 signaling pathway 
may induce the overproduction of fibrous tissue in response 
to radiation through SMAD‑independent signaling path-
ways, including the ABL proto‑oncogene (ABL)1 signaling 
pathway (71). The drug imatinib, which inhibits the ABL1 
signaling pathway, was reported to inhibit the development 
of pulmonary fibrosis in NIH‑3T3 and AKR‑2B MEFs and 
in mice models (73). TGFB1 was also revealed to signal via 
the Ras homolog family member D (RHOD)/Rho associated 
coiled‑coil containing protein kinase (ROCK) signaling 
pathway, independent of the SMAD signal transduction 
cascade  (74,75). Targeting of the RHOD/ROCK signaling 
pathway has been revealed to protect against radiation enter-
itis. In addition, administering superoxide dismutase mimics 
has been revealed to decrease the severity of lung injury in 
a Fisher‑344 rat model (49). Radiation sensitized cells and 
further upregulated the expression of TGFBRI and TGFBRII, 
resulting in an increase in lung and pancreatic carcinoma cell 
migration via EMT (54). Strategies for inhibiting EMT and 
inhibitors of TGFBRI and TGFBRII should be taken into 
consideration for minimizing radiotherapy side‑effects in 
clinical practice. Otherwise, deregulation of the TGFB1 
signaling pathway may be induced by oscillating miRNA 
levels, such as miR‑183. Therefore, the use of therapeutic 
agents that facilitate the TGFB1 signaling pathway and silence 
the expression of miR‑183 may represent a promising strategy 
for activating the immune system in lung therapy (62). These 
types of approach result in decreased activation of TGFB1 and 
the SMAD‑dependent TGFB1 signaling pathway, and inhibit 
ROS production.

6. Conclusions 

To conclude, information regarding multiple aspects of the 
TGFB1 signaling pathway in carcinogenesis has increased 
over the past years. TGFB1 is considered a critical cytokine 
in the development of late normal tissue injury following 
lung cancer radiotherapy  (37‑39). Monitoring TGFB1 in 
the plasma and screening for TGFB1 polymorphisms may 
assist in identifying normal tissue injury risk in patients with 
lung cancer (38,52,55). Although the molecular mechanisms 
underlying the TGFB1 signaling pathway and the SMAD 
effector complex have been previously established (24,25), 
upstream regulators of the TGFB1 signaling pathway and 
the mechanisms by which they regulate the components of 
the pathway as the tumor develops require further study. 
Strategies targeting TGFB1 have been demonstrated to 
decrease the severity of normal tissue injury in animal 
models (41,76). However, determining how such strategies 
may be effectively and safely applied in humans requires 
further clinical assessment.
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