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Abstract. The crosstalk of multiple cellular signaling path-
ways is crucial in animal development and tissue homeostasis, 
and its dysregulation may result in tumor formation and metas-
tasis. The Hedgehog (Hh) and Wnt signaling pathways are 
both considered to be essential regulators of cell proliferation, 
differentiation and oncogenesis. Recent studies have indicated 
that the Hh and Wnt signaling pathways are closely associated 
and involved in regulating embryogenesis and cellular differ-
entiation. Hh signaling acts upstream of the Wnt signaling 
pathway, and negative regulates Wnt activity via secreted 
frizzled‑related protein 1 (SFRP1), and the Wnt/β‑catenin 
pathway downregulates Hh activity through glioma‑associated 
oncogene homolog 3 transcriptional regulation. This evidence 
suggests that the imbalance of Hh and Wnt regulation serves 
a crucial role in cancer‑associated processes. The activation 
of SFRP1, which inhibits Wnt, has been demonstrated to be 
an important cross‑point between the two signaling pathways. 
The present study reviews the complex interaction between the 
Hh and Wnt signaling pathways in embryogenesis and tumori-
genicity, and the role of SFRP1 as an important mediator 
associated with the dysregulation of the Hh and Wnt signaling 
pathways.
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1. Introduction

Cancer is one of the predominant causes of human mortality 
worldwide. Despite several decades of unremitting efforts 
towards preventing and curing cancer, the translation of 
detailed molecular knowledge into more efficient cancer 
therapies remains a significant medical challenge. Cancer 
cells harbor a considerable number of genetic and epigenetic 
alterations; however, only a limited number of these alterations 
drive cancer progression. Tumor formation and metastasis is 
dependent on intracellular and intercellular signal transduc-
tion (1‑5). Emerging data indicate that the crosstalk of multiple 
signaling pathways may account for malignant proliferation 
and metastasis  (6‑9). However, recent research has mainly 
focused on single pathways, ignoring the complexity of 
signaling networks. Exploration of the cross‑regulation of 
signaling pathways may provide a more comprehensive under-
standing of the dissemination of information in such networks.

The most active field of research is that of the Hedgehog 
(Hh) and Wnt signaling pathways, which represent essential 
regulators of cell proliferation and differentiation during 
embryogenesis and tumorigenicity (10,11). Convergence of 
the two pathways involving secreted frizzled‑related protein 1 
(SFRP1) has been demonstrated (12,13). Nevertheless, studies 
regarding the interactions among signaling pathways are rare. 
The current review summarizes the most relevant literature 
regarding the cooperative interaction between the Hh and Wnt 
signaling pathways, and the role of SFRP1 as an important 
mediator of certain oncogenic and pro‑metastatic activities 
that are associated with the Hh and Wnt signaling pathways. 
The targeted inhibition of this key point in the pathways has 
potential with regard to the development of therapies for 
cancer.

2. The Hh signaling pathway

The Hh signaling pathway is an important cascade for cellular 
growth and differentiation during the embryonic development. 
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The pathway was first identified in Drosophila fruit flies, and 
has been shown to be highly conserved in vertebrates and 
invertebrates (14‑16). The Hh signaling pathway is complex 
and involves numerous regulatory proteins. In vertebrates, 
three Hh homologs have been identified: Sonic Hh (Shh), 
Indian Hh (Ihh), and desert Hh (Dhh) (17‑19). Notably, the three 
Hh ligands activate the same signal transduction pathway, but 
regulate different organ systems: Shh is most widely expressed 
in the central nervous system, lungs, teeth, gut and hair 
follicles (20‑24), while Ihh is involved in endochondral bone 
formation (25), and Dhh is expressed mostly in the gonads (26).

To initiate the signaling pathway, the Hh ligand binds to 
its receptor, a 12‑transmembrane Patched (PTCH) protein, 
which also has two known human homologs, PTCH1 and 
PTCH2. In the absence of Hh, PTCH forms an inactive 
complex with the downstream protein Smoothened (SMO), 
and works as a suppressor or inhibitory protein of SMO. When 
Hh is activated, binding of the Hh ligand to PTCH results in 
endocytosis of the PTCH‑ligand complex, followed by migra-
tion of activated SMO to the cytoplasm and association with 
glioma‑associated oncogene homolog (GLI) proteins. The GLI 
proteins subsequently migrate into the nucleus and promote 
the transcription of target genes, which are responsible for 
cellular growth and differentiation during embryonic develop-
ment, and are involved in tissue repair and cancer occurrence 
and development in adults (Fig. 1) (7,27).

Dysregulation of the Hh signaling pathway has now been 
implicated in various types of human malignancy, including 
gastrointestinal, bladder and ovarian carcinomas, lung cancer, 
and hematological malignancies (28‑35). Aberrant activation of 
the Hh signaling pathway in human cancers can occur in three 
ways. In the first, mutated component proteins can be secreted 
from cells and constantly activate Hh signaling pathway. An 
example of this is the inactivation of PTCH or oncogenic acti-
vation of SMO, which have been demonstrated to be common 
features in a high proportion of tumors. To date, this mode 
of Hh signaling is considered the most important for tumor 
development (36‑40). The second mode of aberrant activation 
is autocrine: The Hh ligand is secreted by tumor cells and also 
affects the tumor cells themselves (41,42). In the third mode, 
which is paracrine activation, tumor cells secrete Hh ligands 
to act on peripheral stroma cells, which activates vascular 
endothelial growth factor, insulin‑like growth factor and Wnt 
signaling pathways to promote self‑proliferation (43,44). A 
paracrine pattern in which stromal cells secret Hh ligands, 
thus contributing to the activation of Hh signaling in the tumor 
cells, has also been described (45).

Based on the etiological study of the Hh signaling 
pathway, molecular targeted therapy is considered a promising 
therapeutic strategy for cancer. For example, methods for 
increasing the inhibitory action of PTCH or suppressing the 
activation of SMO may be utilized the treatment of tumors 
with a hyper‑activated Hh pathway. A number of small mole-
cule SMO antagonists have been evaluated in clinical trials 
and demonstrated promising therapeutic benefits  (46,47). 
Vismodegib, a small 2‑pyridyl amide molecule, blocks Hh 
signaling by selectively inhibiting SMO, and thus prevents 
the consequent induction of target genes (48). The therapeutic 
success of Hh inhibitors also depends on their appropriate 
combination with other drugs that target cooperative signaling 

pathways (49‑51); therefore, the points of interaction between 
Hh and other signaling pathways in malignancies may be 
potential therapeutic targets.

3. The Wnt signaling pathway

The Wnt signaling pathway participates in the physiological 
processes of embryonic development, cellular proliferation 
and differentiation, and also plays an important role in the 
occurrence and development of various malignancies (52‑55). 
Wnt signaling is conducted via three pathways, as follows. The 
canonical Wnt/β‑catenin signaling pathway, which is consid-
ered the most important pathway, results in the accumulation 
of β‑catenin in the nucleus and initiates the expression of target 
genes. In normal organisms, Wnt pathway is inactivated, and 
unconjugated β‑catenin is scarce; the majority of the β‑catenin 
molecules are combined with glycogen synthase kinase 3β 
(GSK‑3β), adenomatous polyposis coli (APC) and Axin, which 
lead to the phosphorylation and degradation of β‑catenin 
via the ubiquitin pathway. Conversely, activation of the Wnt 
signaling pathway inhibits the GSK‑3β/APC/Axin complex, 
inducing the abnormal accumulation and translocation to 
the nucleus of β‑catenin, and resulting in gene transcription 
(Fig. 2) (56‑58). In another pathway, Wnt5a and Wnt11 activate 
cyclin‑dependent kinase 2 and protein kinase C to increase 
cellular Ca2+ concentration, and promote nuclear factor of 
activated T‑cells‑induced gene transcription; this pathway 
is designated the Wnt/Ca2+ pathway (59). The third pathway, 
Wnt/planar cell polarity signaling pathway mainly participates 
in the regulation of cytoskeletal rearrangement during embry-
onic development (60). The present review primarily focuses on 
the functional interaction between the canonical Wnt/β‑catenin 
signaling pathway and the Hh signaling pathway.

Inappropriate activation of the Wnt signaling pathway 
is associated with a variety of malignant diseases, such as 
gallbladder, lung and breast cancers (61‑63); therefore, the 
development of drugs targeting this pathway is an area of 
interest with regard to cancer therapy research. Several Wnt 
inhibitors have been investigated in preclinical studies; for 
example, Lu et al  (64) demonstrated that salinomycin is a 
potent inhibitor of the Wnt signaling pathway and acts by 
interfering with lipoprotein‑related receptor 6 phosphoryla-
tion, and an anti‑Frizzled antibody is currently being tested as 
potential cancer therapy (65,66). Although therapies targeting 
the Wnt signaling pathway are attractive in theory, in practice 
it has been difficult to create specific therapeutic agents, as 
numerous components of the Wnt signaling pathways are 
also involved in other cellular processes. The Wnt/β‑catenin 
signaling pathway has been demonstrated to have crosstalk 
with other signaling pathways, such as the Hh, NOTCH, Hippo 
and mammalian target of rapamycin pathways (12,13,67‑69). 
Elucidating the regulatory mechanisms and biological func-
tions of these pathways may reveal potential therapeutic 
targets for the treatment of tumors.

4. Interaction between Hh and Wnt signaling promotes 
embryogenesis and cellular differentiation

The network of signaling pathways, including Hh, Wnt, signal 
transducer and transcription activator (STAT) and NOTCH, 
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contributes to cellular proliferation and differentiation, 
and to maintaining the stability of the internal environ-
ment (14‑16,52‑55). In invertebrates and lower vertebrates, 
activation of Wnt and Hh signaling pathways is crucial in 
embryogenesis and cellular differentiation (70,71). Previous 
evidence has indicated that the expression of myogenic basic 
helix‑loop‑helix genes in embryonic somites can be induced 
by the Wnt and Shh signaling pathways (65). Despite complete 
truncation, the limbs of amphibians show remarkable regen-
eration through wound healing, blastema formation and 
tissue differentiation (72‑74). Pharmacological research has 
revealed the integration between Hh and Wnt signaling via 
active and inhibitory drugs. The Hh pathway acts upstream 
of Wnt to inhibit the activation of Wnt signaling; however, 

Wnt activation may rescue the suppressive signaling of Hh in 
regulating amphibian limb regeneration (75). The synergetic 
interaction was postulated by Day et al (76), who reported 
that Ihh signaling is activated at an early stage of osteoblast 
maturation during fracture repair, and that Wnt signaling is 
subsequently upregulated in differentiated osteoblasts. Further 
research has indicated that the deletion of the motor protein 
kinesin family member 3A in dental mesenchyme results in 
the suppression of Hh and activation of Wnt, affecting incisor 
and molar development (77). These findings may reveal as 
association between the two signaling pathways at the gene 
level. In addition, Oberhofer et al (78) investigated Hh and 
Wnt signaling in the head anlagen and growth zone of early 
insect embryos, and indicated that Wnt/β‑catenin signaling 

Figure 1. Activation of the Hh signaling pathway results in the activation of SMO and migration of GLI into nucleus. Hh, Hedgehog; SMO, Smoothened; GLI, 
glioma‑associated oncogene homolog; PTCH, Patched; Sufu, Suppressor of fused; STK3, serine/threonine kinase 3.

Figure 2. The Wnt signaling pathway leads to the accumulation of β‑catenin in nucleus. LRP, lipoprotein receptor‑related protein; GSK‑3β, glycogen synthase 
kinase 3β; APC, adenomatous polyposis coli; P, phosphate.
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acts upstream of Hh in the growth zone, yet downstream of Hh 
in the head, anlagen, suggesting the different roles of Hh and 
Wnt in these two regions (78).

Shin et al (79) reported a proliferative response to bacterial 
infection and chemical injury within the bladder in a mouse 
model, and demonstrated that the response is regulated by 
signal feedback between basal cells and stromal cells. In bacte-
rial injury, Shh expression in the basal cells is activated and 
induces increased Wnt protein expression in the stromal cells. 
The increased activity of this signal circuit may help prevent 
the further spread of infection, and stimulate the restoration of 
urothelial and stromal cells (79). These findings demonstrate 
an interaction between the Hh and Wnt signaling pathways. 
Thus, there is evidence to suggest that organisms require a 
precise balance of these signaling pathways to control prolif-
eration and differentiation.

5. The Hh signaling pathway attenuates Wnt activity 
through activated SFRP1

Although a number of studies have demonstrated that synergy 
between the two pathways promotes embryogenesis and 
cellular differentiation, conflicting data has also been reported 
that the Hh and Wnt signaling pathways are functionally 
antagonistic in vertebrates and invertebrates  (80‑84). The 
crosstalk protein SFRP1, which acts as an antagonist of Wnt 
signaling, was initially identified in 1998, and has subsequently 
been shown to be regulated by Hh in the developing spinal 
cord and gastric cancer cells  (12,80‑82). Borday et al (83) 
investigated the potential cross‑regulation between the Wnt 
and Hh signaling pathways in neural stem/progenitor cells in 
the ciliary marginal zones using pharmacological tools. They 
detected Wnt activity and subsequently Hedgehog inhibition 
by 6‑bromoindirubin‑3'‑oxime treatment, which worked as a 

selective activator of the canonical Wnt pathway. By contrast, 
Hedgehog signaling restricts Wnt activity, using Smoothened 
agonist purmorphamine, which was sufficient for activation 
of Hedgehog signaling. Furthermore, Hh signaling pathway 
negatively regulates Wnt activity via transcriptional regula-
tion of SFRP1, and the Wnt/β‑catenin pathway downregulates 
Hedgehog activity through Gli3 transcriptional regulation. 
The reciprocal inhibition between Hh and Wnt signaling path-
ways regulates a delicate balance between proliferation and 
differentiation of neural stem cells (83).

Although the Wnt and Hh signaling pathways participate 
in the physiological processes of cellular proliferation and 
differentiation, recent research has indicated that the two path-
ways also serve a crucial role in the pathological processes 
of various diseases, particularly malignancies. For example, 
enhanced Shh signaling restricts canonical Wnt signaling in 
the lambdoidal region by promoting the expression of genes 
encoding Wnt inhibitors, which is involved in the develop-
ment of cleft lip  (85). In addition, downregulation of Ihh 
expression may contribute to the activation of Wnt signaling 
via APC mutation, and subsequently lead to the development 
of colorectal tumors (86). Further studies have indicated that 
Wnt signaling may be a downstream pathway of Hh signaling, 
and that SFRP1 acts as an important cross‑point to repress 
the canonical Wnt signaling pathway and restrict the expres-
sion of Wnt target genes. A gene chip assay of squamous cell 
carcinoma of the uterine cervix revealed that the expression of 
Hh signaling molecules was significantly increased in cervical 
intraepithelial neoplasia II/III and carcinoma, while SFRP1 
gene expression was silent or low, which strongly suggests that 
the differential activation of the Wnt and Hh pathways may be 
involved in the development of uterine cervical carcinoma (87).

Kim et al (84) investigated differentiation‑associated signal 
interactions between the Wnt and Hh signaling pathways in 

Figure 3. Crosstalk between the Hh and Wnt pathways forms regulatory loops. The Hh signaling pathway negative regulates Wnt activity via SFRP1, and 
Wnt/β‑catenin pathway feedback regulates Hh activity via GLI3 transcriptional regulation. Hh, Hedgehog; SFRP1, secreted frizzled‑related protein 1; GLI, 
glioma‑associated oncogene homolog; PTCH, Patched; SMO, Smoothened; Sufu, Suppressor of fused; STK3, serine/threonine kinase 3; LRP, lipoprotein 
receptor‑related protein; GSK‑3β, glycogen synthase kinase 3β; APC, adenomatous polyposis coli; HCNR2/3, highly conserved non‑coding DNA region 2/3; 
TCF, T cell factor.
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gastric cancer cells, and indicated that the expression levels of 
Shh signaling components were increased, whereas those of 
the Wnt signaling pathway were decreased. Further research 
indicated that ectopic expression of GLI1 increased the level 
of SFRP1 transcript, and that increased expression of GLI1 
decreased nuclear β‑catenin staining. By contrast, inhibition 
of GLI1 reduced SFRP1 expression. Thus, the Shh and Wnt 
pathways are differentially involved according to the differ-
entiation of gastric cancer cells (84) (Fig. 3). Clinical studies 
have also demonstrated that the upregulation of Shh protein is 
associated with age, pathological status, tumor differentiation, 
depth of invasion, and nodal metastasis of gastric cancer, and 
Shh protein overexpression is considered a significant inde-
pendent prognostic factor in gastric cancer (88).

6. Wnt/β‑catenin pathway feedback regulates Hh activity 
through transcriptional regulation of GLI3

GLI3 is known to be a transcriptional repressor of the Hh 
signaling pathway in the absence of ligand stimulation (89). 
Alvarez‑Medina et al (90) investigated dorsoventral neuron 
development, which is achieved by the combined activity of 
signaling pathways. In their study, the canonical Wnt signaling 
pathway was demonstrated to be important in dorsoventral 
patterning of the spinal cord, and this role was largely dependent 
on GLI activity. Furthermore, the study revealed that the expres-
sion of GLI3 within the dorsal neural tube is directly controlled 
by Wnt activity, as mice with mutated Wnt1 and Wnt3a exhibited 
diminished GLI3 expression, and gain and loss of β‑catenin/T 
cell factor (β‑catenin/Tcf) function in chick embryos also 
directly regulated GLI3 expression (90). Furthermore, previous 
studies characterized four highly conserved non‑coding DNA 
regions (HCNRs) within the human GLI3 locus that work as 
potential enhancer modules; it was demonstrated that HCNR2 
and HCNR3 contain sufficient information to direct the expres-
sion of GLI3 in the dorsal spinal cord, and that the activity of 
these two modules is dependent on β‑catenin/Tcf transcrip-
tional activity (90‑92). Collectively, these data demonstrate that 
the Wnt/β‑catenin pathway downregulates GLI3 expression, 
indicating an indirect mechanism initiated by Wnt signaling to 
repress Shh activity in the dorsal neural tube (90‑92).

Borday et al (83) performed a pharmacological study using 
6‑bromoindirubin‑3'‑oxime (BIO) to selectively inhibit GSK‑3, 
which resulted in a significant increase in GLI3 expression. In 
addition, treatment with IWR‑1, which prevents Axin protein 
degradation, led to the opposite phenotype. Furthermore, 
morpholino‑mediated GLI3 knockdown could rescue the 
decreased PTCH1 expression observed in BIO‑treated 
tadpoles (83). This evidence suggests that GLI3 represents 
a key downstream effector of the Wnt pathway, which may 
account for its negative effect on Hh activity (82,93,94). Based 
on the research into the etiological roles of Wnt/β‑catenin inhi-
bition of Hh signaling, the preclinical study of Shh‑dependent 
medulloblastoma is in progress, with the aim of developing 
novel therapeutic strategies for patients (95).

7. Conclusion

As a whole, the network of signaling pathways, such as Hh, 
Wnt, STAT and NOTCH, is crucial in cellular differentiation 

and tissue homeostasis, and its dysregulation may result in 
tumor occurrence and metastasis. Studies from numerous labo-
ratories have made great efforts in exploring the complexity of 
the regulatory networks and the interaction between the Hh 
and Wnt signaling pathways. Inappropriate activation of Hh 
and Wnt signaling has been demonstrated in certain types 
of cancer. However, the mechanism of interaction between 
the two signaling pathways remains unclear, and several 
key questions remain to be addressed. Firstly, research has 
mainly been limited to cell and animal experiments, and the 
findings reviewed in the present study must be demonstrated 
in appropriate preclinical investigations. Secondly, some of 
the apparently conflicting reports regarding the interactions 
between the different signaling pathways must be studied and 
discussed in greater depth.

More than 20 years after the discovery of the Hh and Wnt 
pathways, we have entered an exciting era of research into 
these signaling pathways. A single pathway is susceptible to 
be affected by other pathways, and does not fully represent the 
entire signaling network. Therefore, further investigation of 
the crosstalk between different transcriptional signals could 
overcome this limitation of single pathways, and provide a 
more comprehensive understanding of the importance of 
these signaling pathways in the development of cancer. The 
therapeutic benefits of pathway antagonists are gradually 
being revealed in clinical studies, and the outcomes may have a 
far‑reaching impact on the design of novel cancer therapies. In 
summary, the interactions between the Hh and Wnt signaling 
pathways in malignancies may provide a theoretical basis for 
potential cancer therapies.
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