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Abstract. In the present study, the RNA sequencing 
(RNA‑seq) data of uterine corpus endometrial carcinoma 
(UCEC) samples were collected and analyzed using bioin-
formatics tools to identify potential genes associated with 
the development of UCEC. UCEC RNA‑seq data were 
downloaded from The Cancer Genome Atlas database. 
Differential analysis was performed using edgeR software. 
A false discovery rate <0.01 and |log2(fold change)|>1 
were set as the cut‑off criteria to screen for differentially 
expressed genes (DEGs). Differential gene co‑expression 
analysis was performed using R/EBcoexpress package in R. 
DEGs in the gene co‑expression network were subjected to 
Gene Ontology analysis using the Database for Annotation, 
Visualization and Integration Discovery. Kyoto Encyclopedia 
of Genes and Genomes pathway enrichment analysis was 
also performed on the DEGs using KOBAS 2.0 software. 
The ConnectivityMap database was used to identify novel 
drug candidates. A total of 3,742 DEGs were identified 
among the 552 UCEC samples and 35 normal controls, 
and comprised 2,580 upregulated and 1,162 downregulated 
genes. A gene co‑expression network consisting of 129 
DEGs and 368 edges was constructed. Genes were associ-
ated with the cell cycle and the tumor protein p53 signaling 
pathway. Three modules were identified, in which genes 
were associated with the mitotic cell cycle, nuclear division 
and the M phase of the mitotic cell cycle. Multiple key hub 
genes were identified, including cell division cycle 20, cyclin 
B2, non‑SMC condensin I complex subunit H, BUB1 mitotic 
checkpoint serine/threonine kinase, cell division cycle asso-
ciated 8, maternal embryonic leucine zipper kinase, MYB 

proto‑oncogene like 2, TPX2, microtubule nucleation factor 
and non‑SMC condensin I complex subunit G. In addition, 
the small molecule drug esculetin was implicated in the 
suppression of UCEC progression. Overall, the present study 
identified multiple key genes in UCEC and clinically relevant 
small molecule agents, thereby improving our understanding 
of UCEC and expanding perspectives on targeted therapy for 
this type of cancer.

Introduction

Endometrial cancer is the most commonly diagnosed 
female genital cancer and, in 2012, was ranked the fourth 
most common cancer in women worldwide, after breast, 
lung and colorectal cancer  (1). In China, an estimated 
63,400 new cases and 21,800 mortalities were reported for 
endometrial cancer in 2015 (2). Uterine corpus endome-
trial carcinoma (UCEC) is a common type of endometrial 
cancer. The incidence of UCEC increases with age and it 
is most frequently diagnosed in women aged between 45 
and 65 years (3). Previous studies have sought to identify 
tumor biomarkers and have identified multiple UCEC 
biomarkers, including activated leukocyte cell adhesion 
molecule (4), sperm‑associated antigen 9 (5), L1 cell adhe-
sion molecule  (6), progestogen‑associated endometrial 
protein (7), heat shock protein family A (Hsp70) member 
5  (8) and CD151 molecule (Raph blood group)  (9). To 
enhance our understanding of UCEC and explore more 
effective and targeted therapies, the present study aimed 
to identify gene co‑expression networks, hub genes and 
small molecule drugs associated with the development of 
UCEC.

The Cancer Genome Atlas (TCGA) is a comprehensive 
genomic database that holds data for >20 types of cancer 
obtained from thousands of patients. Data in TCGA includes 
whole‑genome measurements of multiple genomic features, 
including DNA copy numbers, DNA methylation, and gene 
and microRNA expression, thereby assisting researchers 
in assessing cancer mechanisms at multiple molecular and 
regulatory levels  (10). Furthermore, TGGA data is open 
access and available to all researchers in individual work 
settings. 

In the present study, UCEC RNA sequencing data 
were collected and analyzed using bioinformatics tools. 
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Differentially expressed genes (DEGs) were identified and 
a gene co‑expression network was constructed, enabling the 
hub genes to be identified. Relevant small molecule drugs 
were also assessed. The results of the present study may 
provide novel insights into the pathogenesis of UCEC and 
thereby expand perspectives on the treatment of this type of 
tumor.

Materials and methods

Gene expression data. The RNA expression data (level 3) 
of UCEC patients and normal controls without UCEC were 
downloaded from the TCGA data portal up until December 
2016 (http://cancergenome.nih.gov/) (11). A total of 552 UCEC 
samples and 35 normal control samples were included in the 
dataset. The exclusion criteria were as follows: A histological 
diagnosis not of UCEC; and samples without complete data 
for analysis.

DEG screening. The DEGs between UCEC and normal control 
tissues were screened using edgeR software (v..5; http://www.
bioconductor.org/packages/release/bioc/html/edgeR.html). A 
false discovery rate <0.01 and |log2(fold change)|>1 were set as 
the cut‑off values to identify the DEGs.

Cluster analysis. Bidirectional hierarchical clustering according 
to the expression of the DEGs was performed using the pheatmap 
package (v.1.0.8; https://CRAN.R‑project.org/package=pheatmap) 
in R, as previously described (12). A heat map was used to repre-
sent the data (Fig. 1).

Gene co‑expression network construction. Correlations 
among the DEGs were calculated using the R/EBcoexpress 
package in R (version 3.5; http://www.bioconductor.
org/packages/release/bioc/html/EBcoexpress.html), as previ-
ously described  (13). Genes with a correlation coefficient 
>0.9 were included in the gene co‑expression network, which 
was visualized using Cytoscape software (version 3.5.1; 
http://www.cytoscape.org/).

Functional enrichment analysis. A Gene Ontology (GO) 
analysis  (14) was performed on the DEGs in the gene 
co‑expression network using the Database for Annotation, 
Visualization and Integration Discovery (http://david.abcc.
ncifcrf.gov/) (15). P<0.05 was set as the cut‑off criteria. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis (16) was performed using KOBAS 2.0 
software (http://kobas.cbi.pku.edu.cn/) (17), with P<0.05 set 
as the threshold.

Module analysis. Modules were identified using the 
MCODE plug‑in in Cytoscape with the cut‑off criteria 
of degree ≥2 and k‑core ≥3. Each module was function-
ally annotated using the Cytoscape plug‑in BiNGO 
based on hypergeometric distribution (adjusted P‑value 
<0.01).

Screening of relevant small molecule drugs. ConnectivityMap 
(cMap)  (18) is a public database containing >7,000 
expression profiles representing 1,309 compounds 

(www.broad.mit.edu/cmap/). Relevant small molecule drugs 
were predicted using the cMap tool and those with a |score|>0.6 
were included.

Results

DEGs among UCEC and control samples. The differential 
expression analysis identified 3,742 DEGs, comprising 2,580 
upregulated and 1,162 downregulated genes. The results of 
bidirectional hierarchical clustering of the 3,742 DEGs in 
the 587 samples (552 UCEC and 35 normal control samples) 
that were screened were provided (Fig.  1). The UCEC 
and control samples differed in gene expression pattern, 
suggesting that DEGs could distinguish between the two 
types of sample.

GO annotations of DEGs. The GO annotations of the DEGs 
were provided (Fig. 2). Cancer‑associated processes, including 
cell adhesion, ion transport and biological adhesion, were 
among the significantly associated terms.

Gene co‑expression network. Correlated genes with a 
correlation coefficient >0.9 were included in the gene 
co‑expression network (Fig. 3). A total of 129 DEGs (nodes) 
and 368 edges (lines between nodes) were included, divided 
into 110 upregulated and 19 downregulated genes. The sizes 
of the nodes were proportional to the number of genes in 
the gene set, and a number of hub genes (nodes with degrees 
≥8) were highlighted, including cell division cycle 20 
(CDC20), cyclin B2, non‑SMC condensin I complex subunit 
H, BUB1 mitotic checkpoint serine/threonine kinase, cell 
division cycle‑associated 8, maternal embryonic leucine 
zipper kinase, MYB proto‑oncogene like 2, TPX2, micro-
tubule nucleation factor and non‑SMC condensin I complex  
subunit G. 

Co‑expression network functional enrichment analysis. GO 
enrichment analysis identified 20 significantly overrepre-
sented terms for gene function in the co‑expression network 
(Table I), including M phase, nuclear division, mitosis and 
the M phase of the mitotic cell cycle. KEGG pathway enrich-
ment analysis indicated that pathways such as those of the 
cell cycle, oocyte meiosis, progesterone‑mediated oocyte 
maturation and tumor protein p53 signaling were signifi-
cantly enriched among genes in the co‑expression network 
(Table II). 

Modules and functions. Three modules (designated A‑C) 
were identified from the gene co‑expression network (Fig. 4). 
Module A included 11 DEGs implicated in the mitotic cell 
cycle and cell cycle phases. Module B contained 6 DEGs 
associated with nuclear division. Module C comprised 7 
DEGs associated with the M phase of the mitotic cell cycle 
(Table III).

Relevant small molecule drugs. A total of 7 small molecule 
drugs were identified, including esculetin, antazoline and 
isometheptene. Esculetin had the highest negative connectivity 
score compared with the 6 other small molecule drugs (‑0.844; 
Table IV).
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Figure 1. Bidirectional hierarchical clustering of the 3,742 differentially expressed genes within the 587 samples (552 uterine corpus endometrial carcinoma 
and 35 control) in the dataset.

Figure 2. Gene Ontology annotations of the differentially expressed genes. 
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Discussion

The results of the present study indicated that multiple 
DEGs are associated with UCEC pathophysiology. Matrix 

metalloproteinases (MMPs) serve an important func-
tion in degrading the extracellular matrix and basement 
membrane components  (19). Karahan et al identified that 
MMP‑9 was expressed in a high percentage of primary 

Figure 3. Gene co‑expression network of differentially expressed genes. Red, upregulated genes; green, downregulated genes.

Figure 4. Modules identified from the gene co‑expression network.
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endometrial carcinoma tissues and that MMP‑9 expres-
sion was potentially associated with parameters of tumor 
aggressiveness (20). Furthermore, MMP‑9 has been revealed 
to be overexpressed in UCEC and associated with UCEC 
progression (21). Topoisomerase 2α, a key enzyme in DNA 
replication, has been implicated as a predictive marker 
in treating endometrial cancer with taxane‑containing 
adjuvant chemotherapy (22). Enhancer of zeste homolog 2 

(EZH2), a critical component of the polycomb repressive 
complex 2, is associated with cell proliferation, invasion, 
adhesion and metastasis in several cancer types (23), and is 
overexpressed in numerous types of cancer, including breast 
cancer (24), colorectal cancer (25), ovarian cancer (26) and 
nasopharyngeal cancer (27). A previous study indicated that 
EZH2 may predict a more aggressive endometrial carcinoma 
and may therefore potentially represent a therapeutic target 
for this type of cancer (28). Baculoviral inhibitor of apoptosis 
(IAP) repeat containing 5 gene (BIRC5), a member of the 
IAP gene family, may inhibit the activation of caspase to 
negatively regulate apoptosis  (29). In endometrial cancer, 
increased BIRC5 expression has been associated with poor 
progression‑free survival and may serve as an independent 
prognostic factor (30).

It is well established that CDC20 is an essential devel-
opmental gene; disrupting CDC20 function in mice induces 
mortality in embryos  (31). Previous studies have also 
suggested that CDC20 functions oncogenically in human 
tumorigenesis. CDC20 serves important functions in the cell 
cycle (32), cell apoptosis (33) and in targeting downstream 
substrates for ubiquitination and subsequent degradation (34). 
Furthermore, CDC20 has been revealed to be upregulated and 
may represent a useful prognostic biomarker in endometrial 
cancer (35).

In the present study, esculetin was identified as a signifi-
cant small molecule drug in the development of UCEC. 
Esculetin (6,7‑dihydroxycoumarin), a coumarin derived 
from natural plants, inhibits cancer cells from prolifer-
ating and induces multiple types of human cancer cells to 

Table I. GO terms significantly overrepresented in the genes from the gene co‑expression network.

GO category	 GO term	 Count	 P‑value	 FDR

GO:0000279	 M phase	 45	 1.27x10‑46	 1.93x10‑43

GO:0000280	 Nuclear division	 40	 5.98x10‑46	 9.07x10‑43

GO:0007067	 Mitosis	 40	 5.98x10‑46	 9.07x10‑43

GO:0000087	 M phase of the mitotic cell cycle	 40	 1.27x10‑45	 1.93x10‑42

GO:0048285	 Organelle fission	 40	 3.20x10‑45	 4.85x10‑42

GO:0022403	 Cell cycle phase	 46	 1.33x10‑43	 2.02x10‑40

GO:0000278	 Mitotic cell cycle	 43	 3.22x10‑41	 4.89x10‑38

GO:0007049	 Cell cycle	 53	 2.40x10‑40	 3.63x10‑37

GO:0022402	 Cell cycle process	 48	 3.05x10‑40	 4.62x10‑37

GO:0051301	 Cell division	 35	 4.17x10‑33	 6.33x10‑30

GO:0005819	 Spindle	 24	 8.32x10‑27	 9.68x10‑24

GO:0015630	 Microtubule cytoskeleton	 35	 2.86x10‑26	 3.33x10‑23

GO:0007059	 Chromosome segregation	 18	 3.26x10‑21	 4.94x10‑18

GO:0044430	 Cytoskeletal part	 37	 1.25x10‑20	 1.45x10‑17

GO:0005856	 Cytoskeleton	 41	 5.11x10‑19	 5.94x10‑16

GO:0043228	 Non‑membrane‑bounded organelle	 52	 5.37x10‑18	 6.24x10‑15

GO:0043232	 Intracellular non‑membrane‑bounded organelle	 52	 5.37x10‑18	 6.24x10‑15

GO:0000775	 Chromosome, centromeric region	 17	 2.29x10‑17	 2.67x10‑14

GO:0000793	 Condensed chromosome	 17	 4.39x10‑17	 5.10x10‑14

GO:0000779	 Condensed chromosome, centromeric region	 14	 8.86x10‑17	 1.33x10‑13

GO, Gene Ontology; FDR, false discovery rate.

Table II. Kyoto Encyclopedia of Genes and Genomes path-
ways significantly overrepresented in the genes from the gene 
co‑expression network.

Term	 Count	 P‑value

hsa04110: Cell cycle	 13	 3.65x10‑16

hsa04114: Oocyte meiosis	 11	 3.06x10‑13

hsa04914: Progesterone‑mediated	 7	 3.60x10‑8

oocyte maturation
hsa04115: p53 signaling pathway	 4	 8.02x10‑5

hsa05166: HTLV‑I infection	 5	 1.41x10‑3

hsa04270: Vascular smooth muscle	 3	 7.17x10‑3

contraction
hsa04068: FoxO signaling pathway	 3	 9.19x10‑3

HTLV‑I, human T‑cell lymphotropic virus type 1; FoxO, forkhead 
box O; p53, tumor protein 53.
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apoptose, including breast  (36), colon  (37,38) and gastric 
cancer (39), malignant melanoma (40), hepatocellular carci-
noma (41,42) and oral squamous cancer (43,44). Esculetin 
has also been reported to assist in inducing cancer cells to 
apoptose (45,46). In the present study, esculetin had a higher 
negative connectivity score compared with the 6 other small 
molecule drugs, suggesting that esculetin could inhibit 
UCEC from progressing. To the best of our knowledge, no 
study has yet reported on the association between esculetin 
and endometrial cancer. Verifying whether esculetin repre-
sents a novel therapeutic agent in treating UCEC requires 
further studies. Overall, the present study identified multiple 
key genes in UCEC and clinically relevant small molecule 
agents, thereby improving our understanding of UCEC 

Table III. Functional terms of the three modules.

GO‑ID	 P‑value	 FDR	 No. of genes

Module A			 
  GO:0000279~M phase	 9.60x10‑7	 1.12x10‑3	 6
  GO:0000278~mitotic cell cycle	 1.71x10‑6	 2.01x10‑3	 6
  GO:0022403~cell cycle phase	 2.98x10‑6	 3.50x10‑3	 6
  GO:0007067~mitosis	 8.04x10‑6	 9.43x10‑3	 5
  GO:0000280~nuclear division	 8.04x10‑6	 9.43x10‑3	 5
  GO:0000087~M phase of mitotic cell cycle	 8.64x10‑6	 1.01x10‑2	 5
  GO:0048285~organelle fission	 9.43x10‑6	 1.11x10‑2	 5
  GO:0022402~cell cycle process	 1.37x10‑5	 1.60x10‑2	 6
  GO:0007059~chromosome segregation	 1.69x10‑5	 1.98x10‑2	 4
  GO:0000793~condensed chromosome	 3.41x10‑5	 3.10x10‑2	 4
  GO:0005819~spindle	 5.04x10‑5	 4.59x10‑2	 4
  GO:0005694~chromosome	 5.32x10‑5	 4.83x10‑2	 5
Module B			 
  GO:0000280~nuclear division	 3.36x10‑7	 3.63x10‑4	 5
  GO:0007067~mitosis	 3.36x10‑7	 3.63x10‑4	 5
  GO:0000087~M phase of mitotic cell cycle	 3.61x10‑7	 3.90x10‑4	 5
  GO:0048285~organelle fission	 3.95x10‑7	 4.27x10‑4	 5
  GO:0000279~M phase	 1.69x10‑6	 1.82x10‑3	 5
  GO:0000278~mitotic cell cycle	 2.69x10‑6	 2.93x10‑3	 5
  GO:0015630~microtubule cytoskeleton	 3.37x10‑6	 2.94x10‑3	 5
  GO:0022403~cell cycle phase	 4.22x10‑6	 4.56x10‑3	 5
  GO:0022402~cell cycle process	 1.46x10‑5	 1.57x10‑2	 5
Module C			 
  GO:0000280~nuclear division	 3.36x10‑7	 3.63x10‑4	 5
  GO:0007067~mitosis	 3.36x10‑7	 3.63x10‑4	 5
  GO:0000087~M phase of mitotic cell cycle	 3.61x10‑7	 3.90x10‑4	 5
  GO:0048285~organelle fission	 3.95x10‑7	 4.27x10‑4	 5
  GO:0000279~M phase	 1.69x10‑6	 1.82x10‑3	 5
  GO:0000278~mitotic cell cycle	 2.69x10‑6	 2.91x10‑3	 5
  GO:0015630~microtubule cytoskeleton	 3.37x10‑6	 2.94x10‑3	 5
  GO:0022403~cell cycle phase	 4.22x10‑6	 4.56x10‑3	 5
  GO:0022402~cell cycle process	 1.46x10‑5	 1.57x10‑2	 5

GO‑ID, Gene Ontology identification; FDR, false discovery rate.

Table IV. Relevant small molecule drugs.

cMap name	 Correlation	 P‑value

Esculetin	‑ 0.844	 7.55x10‑3

Antazoline	‑ 0.729	 1.07x10‑2

Isometheptene	‑ 0.722	 1.20x10‑2

Oxamniquine	 0.717	 1.31x10‑2

Pyrimethamine	‑ 0.642	 1.49x10‑2

Carmustine	‑ 0.795	 1.75x10‑2

Cefapirin	 0.636	 4.28x10‑2

cMap, connectivity map.
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and expanding perspectives on targeted therapy for this  
type of cancer.
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