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Abstract. Breast cancer (BCa) is the most common cancer 
affecting women worldwide. Overexpression of human 
epidermal growth factor receptor 2 (HER2) occurs in 
~20-25% of invasive ductal breast carcinomas and is asso-
ciated with the more aggressive phenotype. Herceptin, a 
humanized antibody against HER2, is a standard therapy 
in HER2-overexpressing cases. Approximately one-third 
of patients relapse despite treatment. Therefore numerous 
studies have investigated the molecular mechanisms asso-
ciated with Herceptin resistance. An interaction between 
HER2 signalling and steroid hormone receptor signalling 
pathways has been previously investigated, but the effect 
of this relationship on Herceptin resistance has never been 
studied. The present study analysed an impact of the steroid 
hormone, progesterone (PG), on Herceptin-dependent cell 
growth inhibition. Results indicated that Herceptin-inhibited 
proliferation of breast cancer cell lines overexpressing HER2 
(BT474 and MCF/HER2) in 3D culture is abolished by PG. 
Furthermore, results demonstrated that PG led to the acti-
vation of HER2/HER3-mediated signalling. Moreover, PG 
treatment induced a shift of Herceptin-dependent cell cycle 
arrest in G1 phase towards S and G2 phases with concomi-
tant upregulation of cyclin-dependent kinase 2 (CDK2) and 
downregulation of CDK inhibitor p27Kip1. These results 
demonstrate for the first time PG involvement in the failure 
of Herceptin treatment in vitro. The present observations 
suggest that cross-talk between PG- and HRG/HER2-initiated 
signalling pathways may lead to the acquisition of resistance 
to Herceptin in patients with BCa.

Introduction

Overexpression of human epidermal growth factor receptor 2 
(HER2) occurs in approximately 20-25% of invasive ductal 
breast carcinomas (BCa). It is associated with increased meta-
static potential and poor prognosis (1). HER2 belongs to the 
receptor tyrosine kinases (RTK) HER family that comprises 
three other members (HER1/EGFR, HER3, HER4), which 
require specific ligand binding for activation. In contrast, 
no ligand has been identified for HER2 yet. Overexpressed 
HER2 was found to be constitutively phosphorylated in both 
BCa cell lines and tumours (2). HER2 forms homodimers or 
heterodimers with other ligand-activated members of the HER 
family (3). HER2/HER3 heterodimer has been demonstrated 
as the most potent oncogenic unit in HER2-positive BCa (4).

Herceptin (Trastuzumab) is a humanized antibody directed 
against the extracellular domain of HER2 and routinely used 
for the treatment of HER2-overexpressing BCa patients. The 
mechanism of Herceptin-mediated cell death is complex 
and involves antibody-dependent cell-mediated cytotoxicity, 
induction of apoptosis, inactivation of HER2 homodimerization 
and abrogation of HER2-triggered cell signalling (5-7). 
Clinical data showed that some patients either originally 
do not respond to Herceptin or become resistant during the 
treatment (8,9). There is a growing evidence demonstrating 
the interaction between HER2 signalling and estrogen 
receptor (ER) pathway (10). PR (progesterone receptor), 
one of the ER-dependent genes, together with its cognate 
ligand-progesterone (PG), play a critical role in breast cancer 
development and progression (11-13). A cross-talk between 
steroid hormones and RTK (e.g., HER receptor)-initiated 
signalling has a bidirectional nature. Steroid hormone receptors 
may activate either RTKs or their downstream signalling 
pathways (14,15). Balañá et al (16) demonstrated in MPA 
(medroxyprogesterone acetate-synthetic progestin)-induced 
mice mammary adenocarcinomas, an interaction between 
progestins- and heregulin (HRG) (HER1/EGFR and HER3 
ligand)-dependent signalling. Conversely, RTK-triggered 
pathways are able to modulate steroid receptor's activity (17). 
HER2 overexpression has been linked with resistance to 
endocrine therapies both in vitro and in vivo (10). Consistently, 
there are studies showing that ER activity can function as an 
escape pathway for ER+/HER2+ cells exposed to anti-HER2 
treatment (18). The role of PG/PR in the process of resistance 
to anti-HER2 therapies remains elusive. Taking into 
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consideration reciprocal interactions between steroid hormone 
receptors and HER2-mediated signalling, we hypothesised 
that PG may affect anti-proliferative effect of Herceptin.

Herein we showed for the first time that PG may attenuate the 
efficacy of HER2-targeted anticancer compounds. We demon-
strated that PG impaired Herceptin-mediated anti-proliferative 
action in HER2-overexpressing cell lines and led to activation 
of HER2/HER3-triggered signalling. Moreover, PG reversed 
Herceptin-induced cell cycle arrest in G0/G1 cell cycle phase 
with concomitant upregulation of cyclin-dependent kinase 2 
(CDK2) and downregulation of CDK inhibitor p27Kip1. These 
findings indicate complexity of the mechanism responsible for 
resistance to Herceptin and suggest that targeting of multiple 
signalling pathways may result in better therapeutic effects.

Materials and methods

Cell lines, antibodies, reagents. BT474 (cat. no. HTB-20™) 
and MCF7 (cat. no. HTB-22™) cell lines were obtained 
from ATCC, cells from passages 86 through 106 and 71 
through 91, respectively, were used in these investigations. 
BT474 cells were maintained in RPMI-1640 supplemented 
with 5 µg/ml insulin, whereas MCF7 cells were grown in 
DMEM. Media contained 10% of FBS and penicillin/strep-
tomycin (100 U/ml/100 µg/ml). All cell culture reagents 
were purchased from Sigma-Aldrich (St. Louis, MO, USA) 
or HyClone (Logan, UT, USA). Cells were cultured for a 
maximum of 3-4 months post resuscitation and regularly 
tested for mycoplasma contamination.

Mouse monoclonal antibody against β-actin (A5316, 
dilution 1:1,000) was obtained from Sigma-Aldrich. All the 
remaining antibodies were from Cell Signaling Technology, 
Inc. (Danvers or Beverly, MA, USA): Rabbit monoclonal 
anti-CDK2 (no. 2546, dilution 1:1,000), rabbit monoclonal 
anti-HER2/ErbB2 (no. 4290, dilution 1:1,000), rabbit poly-
clonal anti-HER2/ErbB2-Tyr877 (no. 2241, dilution 1:1,000), 
rabbit polyclonal anti-HER2/ErbB2-Tyr1221/1222 (no. 2249, 
dilution 1:1,000), rabbit polyclonal anti-HER2/ErbB2-Tyr1248 
(no.  2247,  d i lut ion 1:1,000),  rabbit  monoclona l 
anti-HER3/ErbB3 (no. 4754, dilution 1:1,000), rabbit mono-
clonal anti-HER3/ErbB3-Tyr1289 (no. 4791, dilution 1:1,000), 
rabbit polyclonal anti-heregulin (no. 2573, dilution 1:1,000) and 
rabbit monoclonal anti-p27Kip1 (no. 3686, dilution 1:1,000). PG 
was purchased from Sigma-Aldrich. Herceptin was obtained 
from Genetech.

Western blot analysis. Cells were grown in monolayer to 
60-70% confluency, scraped in cold PBS and lysed with 
Laemmli buffer (2X concentrated) supplemented with: 2 mM 
PMSF, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 5 mM EGTA, 
1 mM EDTA, 2 mM Na4P2O7, 5 mM NaF and 5 mM Na3VO4. 
Samples containing equal amounts of protein per lane were 
loaded, resolved in SDS-PAGE and then transferred onto 
nitrocellulose membrane. The membranes were incubated for 
1 h in 5% skimmed milk and probed overnight with specific 
primary antibodies at 4˚C. Secondary goat anti-rabbit (A9169, 
1:20,000) or rabbit anti-mouse (A9044, 1:10,000) antibodies 
conjugated with HRP (Sigma-Aldrich) and Western Lightning 
Plus-ECL (PerkinElmer, Inc., Waltham, MA, USA) were used 
to visualize specific proteins.

Cell growth in three‑dimensional Matrigel. The three-dimen-
sional cell growth assay was performed in a Matrigel matrix 
(BD Biosciences, Heidelberg, Germany) as previously 
described (19). Briefly, 1x103 cells were resuspended in 40 µl 
of Matrigel (~2 mg of total protein/ml), placed into 12-well 
tissue culture plates followed by 30 min incubation at 37˚C 
for Matrigel to solidify. 3D cultures were then covered with 
regular medium supplemented, when appropriate, with PG 
(100 nM) and/or Herceptin (10 µg/ml). Media were refreshed 
every 3 days. To evaluate cell growth, a mean colony diameter 
was measured for, at least, 50 randomly chosen colonies after 
10 days of culture with ZEISS PrimoVert microscope and 
ImageJ software and the mean colony volume was determined. 
Each experiment was repeated, at least, three times.

Development of HER2 overexpression in MCF7 cells. MCF7 
cells were plated in 60 mm plates and grown in the monolayer 
to approximately 50% confluency. Medium was refreshed 1 h 
before transfection. Cells were transfected with 1 µg of pBABE-
puro-ERBB2 plasmid (no. 40978; Addgene, Inc., Cambridge, 
MA, USA) (20) containing full-length HER2 cDNA coding 
region) in serum free DMEM applying TurboFect reagent, 
according to the manufacturer's instructions (Thermo Fisher 
Scientific, Waltham, MA, USA). Selection of MCF7 stably 
expressing ERBB2 was carried out in 2 µg/µl puromycin 
(Gibco, Grand Island, NY, USA).

Flow cytometry. Cells were grown in 12-well plates in the 
monolayer up to 50% of confluency and serum starved 
overnight. Then cells were treated with PG (100 nM) and/or 
Herceptin (10 µg/ml), 24 h after stimulation, cells were tryp-
sinized, washed twice with ice-cold PBS, fixed in 70% ethanol 
at -20˚C for 15 min, resuspended in RNaseA 1 mg/ml (EURX 
Ltd. Gdansk, Poland) and stained with propidium iodide 
(2,5 µg/ml). Cell cycle was analysed with BD LSR II flow 
cytometer (BD Biosciences).

Stimulation with growth factors, treatment with Herceptin, 
signalling analyses. For analysis of growth factors-triggered 
signalling, cells were serum-starved overnight before growth 
factors were added. Cells were stimulated with PG (100 nM), 
Herceptin (10 µg/ml) for indicated periods of time.

Statistical analysis. Data are expressed as means ± SD from 
at least three independent experiments. Comparative data 
were analysed with the unpaired Student's t-test using the 
STATISTICA software (v.10; StatSoft, Inc., Tulsa, OK, USA). 

Table I. Effect of PG and/or Herceptin treatment on cell cycle.

BT474 % of cells in G0-G1

CTR 72,85±2,31
PG 66,47±3,80
HERCEPTIN 79,91±1,63
PG+HERCEPTIN 73,12±2,51

CTR, untreated cells; PG, progesterone.
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Two-sided P<0.05 was considered to indicate a statistically 
significant difference.

Results

PG impairs Herceptin effect on HER2‑overexpressing 
cells growth. To investigate the potential impact of PG on 
HER2-overexpressing cells response to Herceptin treat-
ment we evaluated BT474 BCa cells (PR+, HER2++) growth 
in three-dimensional Matrigel. We found a modest (~28%) 
PG-triggered stimulation of cell proliferation (reflected in 
colony size) (Fig. 1A, left panel). As expected Herceptin 
significantly inhibited colonies growth (~88%, P<0,05). 
Importantly, Herceptin-mediated inhibition of growth was 
impaired by PG (Fig. 1A, right panel). To confirm these 
results we developed a HER2-overexpressing variant 
(MCF/HER2) of MCF7 BCa cells (representing luminal A 
subtype, ER+/PR+/HER2low) by transient transfection with 
plasmid coding erbB2 gene (Fig. 1B). Growth analysis in 
three-dimensional Matrigel revealed that overexpression of 

HER2 resulted in sensitization of MCF7 cells to Herceptin 
(Fig. 1C). Although PG had modest growth stimulatory effect 
on both MCF7 and MCF7/HER2 cells, it clearly exerted a 
significant protective effect against Herceptin treatment 
(*P<0,05).

PG induces both activation and expression of HER2/HER3 
signalling. To analyse mechanisms of PG action on HER2 and 
HER3 function we treated BT474 cells with PG (up to 60 min) 
and analysed HER2/HER3 activation. It was observed that PG 
triggered rapid phosphorylation of Tyr1221/1222, Tyr1248 and 
Tyr877 of HER2 (Fig. 2A). In addition, PG induced Tyr1289 
HER3 phosphorylation. Prolonged exposure of BT474 cells to 
PG (up to 72 h) showed that PG not only regulated the activa-
tion of HER2 and HER3 but also caused a gradual increase 
in their expression (Fig. 2B). In addition, PG enhanced the 
expression of heregulin β-1, a HER3 ligand, the binding of 
which is known to promote HER2/HER3 heterodimeriza-
tion (21). Heregulin β-1 reached the peak of expression after 
48 h of exposure to PG (Fig. 2B).

Figure 1. PG affects Herceptin-mediated cell growth inhibition. (A) BT474 cells were cultured in 3D Matrigel in the presence of PG (100 nM) and/or Herceptin 
(10 µg/ml). (B) HER2-overexpressing cell line variant termed MCF7/HER2 was derived from MCF7 cells (transfected with pBABEpuro-ERBB2). Expression 
level of HER2 was analysed by western blotting in MCF7 and MCF7/HER2 cells. (C) MCF7 and MCF7/HER2 cells were cultured in 3D Matrigel in the 
presence of PG (100 nM) and/or Herceptin (10 µg/ml). Representative pictures of colonies (for A and C) were taken after 10 days of growth. Magnification x200. 
Colonies size was determined with ImageJ software. The values presented are means of ± SD (n=3), *P<0,05; **P<0,01. Scale bar 100 µm. 1Relative unit=ratio 
to control (mean colony size of untreated cells).
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PG reverses Herceptin‑induced cell cycle arrest. To further 
assess the impact of PG on cell response to Herceptin, cell 
cycle was analysed. Herceptin promoted the accumulation of 
cells in G0/G1 phase (Fig. 3A; Table I), which was reverted 
by the PG treatment (observed as a shift towards S and 
G2/M phase). Analysis of PG-mediated mechanism of cell 
transition through G1 to S demonstrated that PG attenuated 
both Herceptin-induced upregulation of p27Kip1 and down-
regulation of CDK2 (Fig. 3B). These findings indicate that 
Herceptin-triggered cell cycle arrest at G1 phase, which is most 
likely mediated by p27Kip1, is abrogated by PG.

Discussion

HER2 gene amplification and protein overexpression have 
been found to be an adverse prognostic factor in invasive 
ductal breast cancer. Herceptin, a monoclonal antibody 
directed against domain IV of HER2, was approved in 1998 
for the treatment of HER2-amplified cancers (8,9). Despite the 
undisputed benefits of Herceptin-based therapy, clinical data 
show that the development of resistance to the drug remains an 
unsolved problem. Herceptin anticancer mechanism is complex 
and not fully elucidated. It has been well documented that 
resistance to Herceptin arises from the activation of alternative 
pathways, including ER-dependent signalling, which becomes 
the dominant driver of cell proliferation and survival (22-25). 
Wang et al (18) demonstrated that in ER+/HER2+ tumor cells, 
increased expression of ER as well as its downstream target 
Bcl2, was associated with resistance to anti-HER2 therapy. 
ER was proved to enhance PR expression (26) and physi-
cally interact with PR, which promoted breast cancer cells 
proliferation (27). As ER and PR share similar signalling 
pathways (28), we hypothesized that PR activity may affect 
Herceptin anti-proliferative action. Herein, we demonstrated 
for the first time that Herceptin-mediated growth inhibition 
was significantly impaired by PG. We observed that a short 
stimulation with PG (up to 60 min) led to HER2/HER3 activa-
tion in BT474 cells. On the other hand, prolonged stimulation 

(up to 72 h) induced not only the expression of both receptors 
(i.e., HER2 and HER3) but also that of heregulin, a ligand for 
HER3. Our results are in accordance with the data presenting 
upregulation of heregulin in MPA (synthetic PG)-induced 
mammary tumours (16) and its impact on cell proliferation. 
Taken together, it can be speculated that PG action towards 
the anti-proliferative effect of Herceptin may involve 
PG-promoted increase of expression of heregulin, which, by 
binding to HER3, induces HER2/HER3 heterodimerization 
and subsequent activation of downstream signals. Our data 
demonstrated that PG also abolished Herceptin-mediated 
cell-cycle arrest in G0-G1 phase. PG-promoted cell shift 
towards S and G2/M phase was observed with a concomitant 
upregulation of CDK2 and downregulation of p27Kip1. There 
seems to be a reciprocal regulation of PR-CDK2 activities, as 
CDK2 was shown to phosphorylate PR (8 out of 14 PR phos-
phorylation sites are known to be targeted by CDK2) (29,30) 
and increase PR transcriptional function (31).

Steroid hormones play a critical role in breast carcino-
genesis (32-34). Although the relationship between the level 
of circulating estrogen/PG and breast cancer risk has been 
extensively studied, the effect of steroids on the efficacy of 
anti-HER2 BCa therapy has not been greatly explored. Our 
findings provide support for the hypothesis that, in steroid 
hormone receptors-positive BCa, acquisition of resistance to 
Herceptin might be triggered by PG. This finding seems to 
be important especially for premenopausal women, who are 
exposed to periodically increased level of PG. Our results 

Figure 3. Cell cycle analysis of PG and/or Herceptin treated cells. BT474 
cells were serum starved and stimulated with PG (100 nM) and/or Herceptin 
(10 µg/ml) for 24 h. (A) Cells were stained with propidium iodide and cell cycle 
was analysed by flow cytometry. Data from three experiments. (B) CDK2 and 
p27Kip1 expression levels were evaluated by western blot analysis.

Figure 2. PG impact on HER2/HER3 activation and expression. (A) Level 
of HER2, HER3 phosphorylation was analysed by western blotting in serum 
starved BT474 cells treated with PG (100 nM) for 10, 20, 30 and 60 min. 
(B) Expression levels of HER2, HER3 and heregulin β-1 were evaluated by 
western blotting in serum-starved BT474 cells treated with PG (100 nM) for 
12, 24, 48 and 72 h.
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reveal a new level of complexity of resistance to Herceptin 
mechanisms and suggest that combined therapy involving 
Herceptin and PR antagonists may have potential benefits for 
HER2-overexpressing BCa in premenopausal patients.
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