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Abstract. Hexa-D-arginine (D6R), an inhibitor of furin, has 
potential therapeutic applications in different types of human 
tumor. However, the function of D6R in targeting pancreatic 
cancer cells remains to be elucidated. In the present study, the 
proliferation, invasion and migration abilities of SW1990 and 
PaTu8988 cells were examined using a Cell Counting Kit-8, 
and Transwell and wound healing assays. Subsequently, the 
expression of proteins associated with epithelial-mesenchymal 
transition (EMT) and the Hippo-yes-associated protein (YAP) 
pathway were detected using western blot analysis. It was 
revealed that D6R significantly inhibited the proliferation, 
migration and invasion abilities of SW1990 and PaTu8988 
cells. Additionally, D6R led to the upregulation of E-cadherin 
(an epithelial marker), and the downregulation of N-cadherin 
and vimentin (mesenchymal markers) in SW1990 and 
PaTu8988 cells. Furthermore, the results of the present study 
revealed that D6R significantly affected the YAP phosphory-
lation level and the total YAP protein level, indicating that 
D6R was functionally involved in the Hippo-YAP signaling 
pathway. It has been suggested that D6R-suppressed EMT in 
SW1990 and PaTu8988 cells may occur via the Hippo-YAP 
pathway and that it may be a feasible drug to ameliorate the 
malignant phenotype of SW1990 and PaTu8988 cells.

Introduction

Furin is a member of the pro-protein convertase (PC) family 
that activates precursor proteins by cleaving a specific 
recognition sequence, and has served an important function 
in the activation of bacterial toxins and viral glycoproteins, 
in addition to the metastatic progression of certain types of 
tumor (1,2). It was revealed that furin may be a target for the 
development of potent and selective antiproteolytic agents, 
owing to the notable function of furin in the proteolytic acti-
vation of numerous pathogenic precursor proteins, including 
the pro‑toxins of bacteria and viruses, such as influenza A, 
Ebola virus and anthrax infection (3-5). Furthermore, furin 
may process molecules associated with tumor aggression and 
metastatic potential, including transforming growth factor-β 
(TGF-β), membrane type 1 matrix metalloproteinase (MMP) 
and vascular endothelial growth factor (6-8). Furin is required 
for the activation of numerous pathogenic precursor proteins 
and therefore, furin inhibition is a logical approach to inhib-
iting the activation of those proteins.

In previous studies, a variety of putative inhibitors of furin 
have been identified, the most attractive among these being small 
molecule compounds, including decanoyl-RVKR-chloromethyl-
ketone (CMK) (9), α1-antitrypsin Portland (α1-PDX) (10), CCG 
8294 (11) and hexa-D-arginine (D6R) (12). D6R, a type of small 
synthetic inhibitor, is less toxic and more effective compared with 
other small molecule compounds in vitro, including α1-PDX, 
furin propeptide and proteinase inhibitor-8 (12), with inhibitory 
constant values for furin, PACE4 and PC1 being 0.106, 0.580 
and 13.200 µM, respectively. It has been reported that D6R 
may be a treatment for bacterial and viral infections (4,13,14). 
For example, D6R appeared to block the cleavage of pseudo‑
monas aeruginosa exotoxin A in vitro and in vivo (15), to reduce 
hepatitis B e-antigen secretion in patients with chronic hepatitis 
B viral infection and to facilitate the decrease of immune toler-
ance (9). However, little is known regarding the function of D6R 
in the progression of a tumor.

Pancreatic cancer is a highly fatal disease with a high 
mortality rate and a 5-year survival rate of ~5% (16). Pancreatic 
cancer lacks noticeable symptoms, progresses rapidly, and is 
characterized by early dissemination and poor prognosis (17). 
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The present study revealed that D6R is able to suppress the 
proliferation and epithelial-mesenchymal transition (EMT) 
of pancreatic cancer cells. The results of the present study 
indicated that D6R may function as an ideal compound for 
anti-pancreatic cancer treatment.

Materials and methods

Cell culture. Pancreatic cancer SW1990 and PaTu8988 cell lines 
were obtained from the Second Military Medical University 
(Shanghai, China). Cells were cultured in Dulbecco's modi-
fied Eagle's medium (DMEM; Hyclone; GE Healthcare Life 
Sciences, Logan, UT, USA) with 10% fetal bovine serum (FBS; 
Invitrogen; Thermo Fisher Scientific, Inc, Waltham, MA, USA) 
at 37˚C in a humidified incubator with a 5% CO2 supply. Cells 
were treated with or without D6R (Fumeisi Biotechnology Co., 
Ltd., Nanjing, China) (1 µg/ml) for 48‑72 h.

Cell proliferation assay. A Cell Counting Kit-8 (CCK-8, Beijing 
Solarbio Science & Technology Co., Ltd., Beijing, China) was 
used to analyze cell viability. Briefly, cells were seeded onto a 
96-well plate at 2,000 cells/well. A CCK-8 assay was used to 
assess the cells viability at the first, second, third, fourth and fifth 
day. Briefly, 10 µl CCK‑8 was added to each well respectively and 
cells were incubated in the dark at 37˚C for 2 h, and absorbance 
measured at 490 nm with a iMark™ microplate absorbance 
reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Colony formation assay. A colony formation assay was 
then used to detect the anchorage-independent growth of 
SW1990 and PaTu8988 cells. Cells were incubated in 6-well 
culture plates at 1,000 cells/well. The cell colonies were 
formed following incubation for 1-2 weeks, and then they 
were fixed with 4% paraformaldehyde (http://www.aladdin‑e.
com, Aladdin Shanghai Biochemical Technology Co., Ltd., 
Shanghai, China) for 20 min and stained with crystal violet 
(Aladdin Shanghai Biochemical Technology Co., Ltd.) for 
30 min at room temperature. The numbers of colonies were 
counted and a graph was constructed.

Scratch wound healing assay. A scratch wound healing 
assay was used to detect the migration ability of SW1990 
and PaTu8988 cells. Cells were seeded in a 24-well plate at 
2x105 cells/well and incubated for 6 h, then a 10-µl pipette 
tip was used to disrupt the confluent monolayer and the cell 
layer was washed with PBS three times. The width of scratch 
was visualized using a light microscope (magnification, x4; 
Olympus Corporation, Tokyo, Japan). Cells were then cultured 
in DMEM with or without 1 µg/ml D6R for 24 h. The wounded 
monolayer was visualized using a light microscope (magnifi-
cation, x4; Olympus Corporation, Tokyo, Japan).

Cell invasion assay. Cell invasion assays were performed using 
Transwell chambers (Corning, NY, USA) according to the 
manufacturer's protocol. A total of 4 µl BD Matrigel Basement 
Membrane matrix (BD Biosciences, Franklin Lakes, NJ, USA) 
was placed in each chamber. Cells were seeded at a density 
of 1x105 cells/well in Matrigel chambers in DMEM, and 10% 
FBS was added to the lower chambers. Following incubation 
for 24 h, with or without 1 µg/ml D6R, cells that remained on 

top of the filter were wiped off, and cells that had invaded to 
the lower chamber were stained and counted. Cells were fixed 
with 4% paraformaldehyde for 20 min and stained with 1% 
crystal violet for 30 min at room temperature. The numbers of 
invaded cells were counted and a graph was constructed.

Western blotting. Cells were rinsed with PBS 3 times on ice 
prior to treatment with radioimmunoprecipitation assay lysis 
buffer (Shanghai BioSun Sci&Tech Co., Ltd., Shanghai, China) 
at 100˚C for 10 min. The mixture was then centrifuged at 4˚C 
at 9,000 x g/min (Heal Force Development Ltd, Hong Kong, 
SAR, China) for 10 min. The supernatant was removed and 
the total cellular protein concentration was measured using the 
BCA method. Approximately 30 µg of protein was loaded in 
each lane and separated using SDS-PAGE (10% gel) and trans-
ferred onto polyvinylidene fluoride membranes. Membranes 
were blocked with 5% non-fat milk at room temperature for 
1 h, then incubated with the primary antibodies at 4˚C for 8 h 
and then secondary horseradish peroxidase (HRP)-conjugated 
antibodies at room temperature for 1 h. Bands were detected 
using an enhanced chemiluminescence system (Minichemill, 
SageCreation, Beijing, China). Primary antibodies included; 
rabbit anti‑Furin (1:500; cat no. 18413‑1‑AP; Proteintech 
Group, Inc., Chicago, IL, USA) and mouse anti-β-Tubulin 
(1:10,000, cat no. 6181), rabbit anti‑N‑Cadherin (1:1,000; cat 
no. 13116), rabbit anti‑E‑Cadherin (1:1,000; cat no. 3195), 
rabbit anti‑Vimentin (1:1,000; cat no. 5741), rabbit anti‑DBF2 
kinase activator protein MOB1 (Mob1; 1:1,000, cat no. 13730), 
rabbit anti-p-Mob1 (1:1,000, cat no. 8699), rabbit anti-yes-asso-
ciated protein (YAP; 1:1,000; cat no. 8418), rabbit anti‑p‑YAP 
(1:1,000, cat no. 13619) (all purchased from Cell Signaling 
Technology, Inc., Danvers, MA, USA). The secondary 
HRP-conjugated antibodies were goat anti-rabbit IgG (H+L) 
secondary antibodies (1:10,000; cat. no. 31460; Invitrogen; 
Thermo Fisher Scientific) and goat anti-mouse IgG (H+L) 
(1:5,000; cat. no. 31430; Invitrogen; Thermo Fisher Scientific).

Statistical analysis. All data were presented as the mean ± the 
standard deviation. All statistical analyses were carried 
out using SPSS Statistical software (version 19; IBM Corp., 
Armonk, NY, USA). An unpaired Student's t-test was used to 
compare the significance between the experimental group and 
the control. P<0.05 was considered to indicate a statistically 
significant difference.

Results

D6R inhibits the proliferation of SW1990 and PaTu8988 cells. 
CCK-8 assays were used to examine the relative proliferation 
rates in SW1990 and PaTu8988 cells. As presented in Fig. 1, 
D6R treatment resulted in decreased relative rates of prolif-
eration in SW1990 and PaTu8988 cells, indicating that D6R 
inhibited the proliferation of SW1990 and PaTu8988 cells. 
Furthermore, a colony-forming assay revealed that the number 
of colonies were 468±21 and 173±14 in the D6R‑free and D6R 
treated groups of SW1990 cells, respectively, and 603±21 and 
234±19 in D6R-free and D6R-treated groups of PaTu8988 cells, 
respectively (Fig. 2). D6R treated cells demonstrated a signifi-
cantly decreased number of colonies (P<0.05) for SW1990 
and PaTu8988 cell lines compared with the untreated groups, 
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suggesting that D6R suppresses anchorage-independent 
growth. This data suggests that D6R inhibited the proliferation 
ability of SW1990 and PaTu8988 cells.

D6R reduces cell invasiveness in SW1990 and PaTu8988 cells. 
A Transwell invasion assay was used to examine the effect of 
D6R on the invasive abilities of SW1990 and PaTu8988 cells. As 
presented in Fig. 3, the numbers of invaded cells were 610±27 
and 306±15 in D6R-free and D6R treated groups of SW1990 
cells, respectively, and 203±16 and 87±20 in D6R‑free and D6R 
treated groups of PaTu8988 cells, respectively. The number of 
invaded cells was significantly lower in the D6R treated groups 
for SW1990 and PaTu8988 cell lines (P<0.05) compared with 
the untreated groups. This data suggests that D6R inhibited the 
invasion ability of SW1990 and PaTu8988 cells.

D6R inhibits the migration ability of SW1990 and PaTu8988 
cells. To determine the function of D6R in cell migration, a 
wound-healing assay was used to detect the migration ability 
of SW1990 and PaTu8988 cells. The width of the scratch at 
the beginning was 0.890±0.106 and 1.043±0.210 in D6R-free 
and D6R treated groups of SW1990 cells, respectively, 
and 0.893±0.182 and 1.228±0.201 in D6R-free and D6R 
treated groups of PaTu8988 cells. The migration rates were 
0.864±0.011 and 0.543±0.017 in D6R‑free and D6R treated 
groups of SW1990 cells, respectively, and 0.595±0.035 and 
0.450±0.020 in D6R-free and D6R treated groups of PaTu8988 
cells, respectively. The relative migration rate was significantly 
lower in the D6R treated groups of cells for SW1990 and 
PaTu8988 cell lines (P<0.05) compared with untreated groups. 

These results suggest that D6R inhibited the migration ability 
of SW1990 and PaTu8988 cells (Fig. 4).

D6R inhibits EMT in SW1990 and PaTu8988 cells. EMT 
serves a key function in allowing primary tumor cells to be 
capable of metastasizing. To determine whether D6R affects 
EMT, the expression of EMT relative proteins were examined 
with or without D6R treatment. Fig. 5A demonstrates that D6R 
resulted in the downregulation of N-cadherin and vimentin, 
and the upregulation of E-cadherin in SW1990 and PaTu8988 
cells. Mature furin expression was slightly increased in cells 
treated with D6R, thus suggesting that D6R suppressed the 
activity of furin, and may have caused to some extent an 

Figure 1. D6R treatment inhibits cell proliferation in SW1990 and PaTu8988 
cells. A Cell Counting Kit-8 assay revealed that D6R inhibited the cell prolif-
eration rate in SW1990 and PaTu8988 cells. D6R, hexa-D-arginine.

Figure 2. D6R inhibits anchorage-independent growth in SW1990 and 
PaTu8988 cells. A colony-forming assay revealed a significantly lower 
number of colonies formed in D6R treated cells compared with untreated 
cells for the two cell lines, revealing that D6R inhibited SW1990 and 
PaTu8988 cell anchorage-independent growth. *P<0.05 vs. the D6R-free 
group. D6R, hexa-D-arginine.

Figure 3. D6R reduced the cell invasiveness of SW1990 and PaTu8988 cells. 
Invasive ability was detected using a Transwell assay, and the migration 
cell number was significantly lower in the D6R treated cells compared with 
untreated cells for the two cell lines. *P<0.05 vs. the D6R-free group. D6R, 
hexa‑D‑arginine. (magnification, x20).

Figure 4. D6R inhibits the migration ability of SW1990 and PaTu8988 cells. 
Migration ability was detected using a wound healing assay, and the relative 
migration rate was significantly lower in the D6R treated cells compared 
with untreated cells for the two cell lines. *P<0.05 vs. the D6R-free group. 
D6R, hexa-D-arginine.

Figure 5. D6R affects the epithelial-mesenchymal transition and the 
Hippo-YAP pathway in SW1990 and PaTu8988 cells. (A) The protein levels 
of E-cadherin, N-cadherin and vimentin were measured using western blot-
ting. (B) The protein levels of YAP, p-YAP, Mob1 and p-Mob1 were measured 
using western blotting. D6R, hexa‑D‑arginine; YAP, yes‑associated protein; 
Mob1, DBF2 kinase activator protein MOB1; p, phosphorylated.
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accumulation of the enzyme. This data confirms that D6R 
suppressed EMT in SW1990 and PaTu8988 cells.

D6R affects the Hippo‑YAP pathway in SW1990 and PaTu8988 
cells. It has been reported that Hippo-YAP signaling is associated 
with EMT (2,6,7). To explore whether the Hippo-YAP pathway 
reacted to D6R inhibiting EMT in SW1990 and PaTu8988 cells, 
the expression of the relevant proteins in the Hippo-YAP pathway 
was examined with or without D6R treatment in SW1990 and 
PaTu8988 cells. The results of the present study revealed that 
D6R resulted in the downregulation of total YAP and p-Mob1, 
and the upregulation of p-YAP and Mob1 protein levels. This data 
suggests that D6R affected the Hippo-YAP signaling pathway in 
SW1990 and PaTu8988 cells (Fig. 5B).

Discussion

In the present study, it was identified that D6R, functioning as 
a furin inhibitor, suppressed the proliferation, migration and 
invasion of SW1990 and PaTu8988 cells, and characterized 
furin as an oncogene. Notably, D6R inhibited EMT potentially 
via the Hippo-YAP signaling pathway.

Differing types of small molecule components, including 
α1-PDX, Furin propeptide and proteinase inhibitor-8, which 
function as competitive furin inhibitors, have been well 
characterized. A number of them demonstrated the potential 
to be used for the treatment of certain infections, including 
bacterial and viral infections, such as Pseudomonas aerugi-
nosa exotoxin A, Bacillus anthraci and Hepatitis B (4,13,14). 
Additionally, a number of them have been reported to reduce 
the growth and invasiveness of numerous types of tumor 
cells (10,11,18,19). α1-PDX resulted in the reduction of the 
growth and invasive ability, and malignant phenotypes of 
HT-29 human colon carcinoma cells (18), glioma tumor 
cells (20) and head and neck squamous cell carcinoma 
cells (10). A small-molecule inhibitor of furin named 
CCG 8294 and decRVKR-CMK inhibited the maturation 
of MMPs and the invasiveness of human fibrosarcoma 
cells (11,21). However, collective studies have demonstrated 
the limitations of these inhibitors. It has been revealed that 
polyarginines were characterized by high potency, specificity 
and low toxicity (12,22), compared with other small mole-
cules. Previous studies have demonstrated the potency of 
D6R treatment on viral and bacterium infections, but little is 
known about the anti-metastatic potential of D6R. Therefore, 
the migration and invasion potential were measured using 
treatments of D6R at a concentration of 1 µg/ml in SW1990 
and PaTu8988 cells. It was demonstrated that D6R inhibited 
the migration and invasion ability and EMT in SW1990 and 
PaTu8988 cells.

EMT, a crucial cellular mechanism in tumor metas-
tasis, is a developmental process in which cells lose their 
epithelial features and develop a mesenchymal phenotype 
allowing cells to escape and spread to distant sites (23). 
Accumulating evidence indicates that substrate molecules 
processed by furin, including MMPs and TGF-β, are critical 
for the promotion of EMT, which contributes to cancer 
metastasis (6,7,24‑26). From the results of the present study, 
it may be concluded that D6R suppressed EMT and served 
a crucial function in pancreatic cancer metastasis. In the 

present study, it was confirmed that D6R treatment resulted 
in the downregulation of N-cadherin and vimentin, and 
the upregulation of E-cadherin, consistent with the reduc-
tion in the invasion and migration ability of SW1990 and 
PaTu8988 cells. Furthermore, it was conclusively demon-
strated that D6R inhibited EMT in line with alterations in 
YAP phosphorylation levels and the total YAP protein level, 
suggesting that YAP was involved in the regulation of EMT 
suppressed by D6R in SW1990 and PaTu8988 cells. Despite 
these notable findings, further investigations are required to 
elucidate the mechanism of D6R in the regulation of EMT 
via the Hippo-YAP pathway.

In summary, the present study indicates that D6R reduced 
the proliferation, migration and invasive ability of SW1990 and 
PaTu8988 cells, and that D6R-suppressed EMT may be regu-
lated via the Hippo-YAP signaling pathway. Altogether, D6R 
has the potential to be used as a drug candidate to ameliorate a 
malignant phenotype in SW1990 and PaTu8988 cells.
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