
ONCOLOGY LETTERS  15:  2726-2734,  20182726

Abstract. Axl receptor tyrosine kinase (hereafter Axl) is a 
member of the tyrosine‑protein kinase receptor Tyro3, Axl 
and proto‑oncogene tyrosine‑protein kinase Mer family of 
receptor tyrosine kinases, possessing multiple different func-
tions in normal cells. Axl is overexpressed and activated in 
numerous different human cancer types, triggering several 
signaling pathways and enhancing tumor progression. The 
present review assesses previous studies on the function of Axl 
in non‑small cell lung cancer (NSCLC). Axl is overexpressed 
in the tumor tissues of a number of patients with NSCLC and is 
associated with poorer clinical outcomes; it promotes NSCLC 
tumor growth, invasion/metastasis, drug resistance and the 
epithelial‑mesenchymal transition, thus providing a survival 
advantage to tumor cells. Therefore, Axl may be a promising 
target in NSCLC treatment.
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1. Introduction

Axl receptor tyrosine kinase (hereafter Axl) is a member 
of the tyrosine‑protein kinase receptor Tyro3 (hereafter 

Tyro3), Axl and proto‑oncogene tyrosine‑protein kinase Mer 
(hereafter Mer) (TAM) family of receptor tyrosine kinases 
(RTKs)  (1). The TAM family is distinguished from other 
RTKs by a conserved sequence, KW(I/L)A(I/L)ES, within the 
kinase domain and two immunoglobulin (Ig)‑like domains 
plus two fibronectin type III domains, which comprise nearly 
the entire ectodomain of each family member (1,2). In adult 
tissues, Tyro3, Axl and Mer are widely distributed (1), and 
have notable functions in tissue repair, clearance of apoptotic 
material and immune regulation (1,3‑5). TAM receptors were 
initially considered to be orphan receptors (6); however, it 
has since been revealed that there are diverse ligands for this 
family of receptors (6‑10). Growth arrest‑specific 6 (Gas6) 
and protein S were identified to be ligands for TAMs in 
the 1990s (6,7). These proteins are members of the vitamin 
K‑dependent protein family, and demonstrated significant 
homology with each other (8). Gas6 binds to all three TAM 
RTKs (Axl>Tyro3>Mer), whereas protein S interacts with 
Mer and Tyro3, but not Axl. Previously, tubby, tubby‑like 
protein 1 (Tulp‑1) and galectin‑3 have been revealed to be 
ligands for TAM receptors, and Tulp‑1 binds to all three RTKs 
with differing levels of affinity, whereas tubby only binds to 
Mer (9,10).

The name Axl is derived from the Greek word anexelekto, 
which means ‘uncontrolled’. The human Axl gene is located 
on chromosome 19q13.2 and has 20 exons (11). It was origi-
nally identified as a transforming gene in the cells of patients 
with chronic myelogenous leukemia (12) and had transforming 
potential when overexpressed in NIH/3T3 fibroblasts (13,14). 
As with other RTKs, Axl is composed of an extracellular 
domain, a transmembrane domain and an intracellular domain. 
A soluble Axl has also been reported (15), which may possess a 
diagnostic value for early‑stage hepatocellular carcinoma (16). 
Axl is ubiquitously expressed in human tissues (1,17), with 
notable levels identified in the kidney  (1,18), brain  (19), 
heart (1), testis (1), skeletal muscle (1), liver (1,20), endothelial 
cells (21,22), monocytes/macrophages (23) and platelets (24). 
This wide expression pattern of Axl indicates that this protein 
exerts a notable function in normal cell function, including cell 
survival, proliferation, migration and adhesion (17). However, 
usually, more than one TAM receptor is expressed in a given 
cell type simultaneously that may be activated by one common 
ligand; for example, all three TAM members may be activated 
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by Gas6 (25), thus making it difficult to elucidate the function 
of Axl on its own in one cell type.

2. Axl activation and signaling

Axl is activated by Gas6. The activation of RTKs involves 
ligand binding to the extracellular domain, which induces 
receptor dimerization and subsequent trans‑autophosphoryla-
tion of the tyrosine residues within the cytoplasmic domain (2). 
Axl is activated by the binding of its ligand Gas6, which 
was identified as the ligand for Axl in 1995 by two separate 
studies (6,7). Prior to that, the Gas6 gene was first identified as 
one of several genes to be upregulated in NIH/3T3 fibroblasts 
under serum starvation‑induced growth arrest (26). Gas6 was 
later revealed to be a common ligand for Axl, Tyro3 and Mer, 
with Axl possessing the highest affinity for Gas6 (3). Gas6 is 
widely expressed and has been identified in the lung, heart, 
kidney, intestine, endothelial cells, bone marrow, vascular 
smooth muscle cells and monocytes and at low levels in the 
liver and human blood plasma (27). It has cell‑type‑specific 
functions, including platelet aggregation and hematopoiesis, 
proliferation, survival and phagocytosis.

Gas6 possesses an N‑terminal region containing a 
modified γ‑carboxyglutamic acid (Gla) residue, which has 
the ability to interact with negatively charged membrane 
phospholipids to mediate the binding of Gas6 to apoptotic 
cells. The Gla domain is followed by a loop region, four 
epidermal growth factor (EGF)‑like repeats and a C‑terminal 
sex‑hormone‑binding globulin (SHBG)‑like structure that is 
composed of two globular laminin G‑like domains (28). The 
SHBG domain binds directly to the Ig domains of Axl, which 
results in the formation of a Gas6/Axl complex with a 1:1 
ratio (29). The lateral diffusion of these complexes would then 
result in the formation of a minimal 2:2 Gas6/Axl signaling 
complex, which induces activation of Axl (29). Additionally, 
the γ‑carboxylation of Gas6 and anionic phospholipids, 
including the externalized phosphatidylserine on apoptotic 

cells and enveloped viruses, possesses vital functions for the 
activation of Axl (3,30,31).

Atypical activation of Axl. In addition to conventional activa-
tion, atypical activation of Axl has been reported, including 
activation by crosstalk between receptors (1). Meyer et al (32) 
revealed that EGF receptor (EGFR) activation associated with 
Axl and EGF stimulation may activate Axl through EGFR 
in triple‑negative breast cancer cells. In non‑small cell lung 
cancer (NSCLC), head and neck squamous cell carcinoma 
(HNSCC) (33,34) and esophageal squamous cell carcinomas 
(ESCC) cells (34), this physical association between Axl and 
EGFR was also observed. This interaction has the potential 
to activate EGFR (33,34) and Axl (32,33). The ability of Axl 
to form complexes with other RTKs may make certain cancer 
types resistant to tyrosine kinase inhibitors (TKIs), as will be 
discussed further in the present review.

Three tyrosine residues, Y‑779, Y‑821 and Y‑866, within 
the C‑terminal domain of Axl have been proposed as poten-
tial autophosphorylation sites and putative docking sites for 
a variety of signaling proteins  (1), including the p85a and 
p85b subunits of phosphatidylinositol 3‑kinase (PI3K) (35,36), 
growth factor receptor‑bound protein 2 (25,26), phospholipase 
Cγ (PLCγ) (36), c‑src and lck (36) (Fig. 1). Additionally, the 
engulfment and cell motility (Elmo) scaffold protein has 
been reported to directly interact with Axl, and serves vital 
functions in Axl‑induced breast cancer invasion (37). Notably, 
mutation of the three tyrosine residues did not abrogate the 
Axl‑Elmo2 association, indicating that other docking sites 
may exist (37).

Activation of Axl regulates a number of signal transduction 
pathways, depending on the cell types in question, primarily 
PI3K/protein kinase B (Akt) and mitogen‑activated protein 
kinase (MEK)/extracellular‑signal‑regulated kinase (ERK), 
nuclear factor‑κB (NF‑κB), signal transducer and activator 
of transcription 3 (STAT3) (17,38,39) [references (1,3,17,40) 
contain further information on Axl signaling]. The activation of 

Figure 1. Schematic representation of the Axl signaling pathway. Activation of Axl by Gas6 binding results in the autophosphorylation of several tyrosine 
residues in the intracellular domain, including Y‑779, Y‑821 and Y‑866, which provide docking sites for signaling proteins and consequently result in the 
activation of the PI3K/Akt pathway, RAS/ERK pathway, STAT3 pathway, NF‑κB pathway, PLCγ‑Ca2+/PKC pathway and Elmo2‑Rac pathway, promoting 
tumor proliferation, survival and migration. The question mark represents the tyrosine sites responsible for JAK and Elmo2 activation remain unknown. 
Gas6, growth arrest‑specific 6; PI3K, phosphoinositide 3‑kinase; Akt, protein kinase B; ERK, extracellular signal‑regulated kinase; STAT3, signal transducer 
and activator of transcription 3; NF‑κB, nuclear factor‑κB; PLCγ, phosphoinositide phospholipase Cγ; PKC, protein kinase C; Elmo2, engulfment and cell 
motility 2; JAK, Janus kinase.
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these pathways elicits different responses in different cells, 
including cell proliferation, migration or survival (3,17) (Fig. 1).

3. Function of Axl in NSCLC

Axl is overexpressed in a subset of NSCLC, and is associated 
with poorer clinical outcomes. The expression of Axl and Gas6 
in normal lung cells is not well documented. Studies aimed at 
detecting Axl expression in lung cancer cells demonstrated that 
Axl is not expressed in normal lung alveolar cells or the bron-
chial epithelium adjacent to a tumor (41,42). Axl is expressed 
in lung airway macrophages, but not interstitial macrophages 
and other lung leukocytes under homeostatic conditions and is 
constitutively ligated to Gas6 (43). Axl was believed to serve 
notable functions in mediating immune homeostasis through 
the clearance of apoptotic cells during inflammation (43) and 
promoting an antiviral response through maintaining the 
appropriate production of type I interferon (44). Axl and Gas6 
are also expressed in the blood endothelial cells of lung (45), 
in which they maintaining the integrity of the vasculature and 
vascular remodeling under pathological conditions (27).

Axl is expressed in NSCLC, with expression rates varying 
from ~33.0 to ~93.2% detected by different groups (Table I). 
This inconsistency may be caused by different Axl antibodies 
used, and different evaluation methods. The varying clinico-
pathological characteristics of patients with NSCLC studied 
may also contribute to this inconsistence. These studies suggest 
a number of patients with NSCLC express Axl, and it may be 
associated with a poorer prognosis. Consistently, patients with 
NSCLC that exhibit high Axl mRNA expression had a shorter 
disease‑free survival time than patients exhibiting low Axl 
mRNA expression (46).

Axl and tumor growth in NSCLC. Similar to other RTKs, Axl 
overexpression may provide survival and growth advantages 
to tumor cells (3). In NSCLC cell lines, the small interfering 
RNA (siRNA)‑mediated downregulation of Axl results 
in decreased cell growth in  vitro and in xenograft mouse 
models (41,47), in addition to the suppression of Akt and ERK 
activation  (34). Similarly, the proliferation of H226 cells, 
which express moderate levels of Axl, may be suppressed by 
the anti‑Axl monoclonal antibody MAb173 or the specific Axl 
inhibitor R428 (33). These studies indicate that Axl is involved 
in maintaining the proliferation of NSCLC cells.

Axl and the epithelial‑mesenchymal transition (EMT) in 
NSCLC. EMT is a process by which epithelial cells lose their 
cell polarity and cell‑cell adhesion, and gain mesenchymal 
cell‑like migratory and invasive properties (48). Axl is recog-
nized as having vital functions in NSCLC EMT. Firstly, Axl 
is a marker for the mesenchymal phenotype in NSCLC. From 
the RNA‑sequencing data of 643 cancer cell lines, including 
NSCLC, Axl expression was markedly associated with a mesen-
chymal phenotype (49). It was further revealed that in 45 NSCLC 
cell lines, higher Axl protein expression tends to be associated 
with a higher protein expression of vimentin, a mesenchymal 
marker (49). Similarly, Axl expression was higher in NSCLC 
mesenchymal cancer cells than in epithelial cancer cells, based 
on the mRNA expression profile of 54 NSCLC cell lines and 
the protein expression data of 49 patients with NSCLC (50). 

Furthermore, in the transforming growth factor β‑induced EMT 
model, Axl is upregulated, similar to vimentin (49). In addition, 
Axl aids the maintenance of the EMT state in NSCLC cells. 
A549 and H460 are mesenchymal NSCLC cells (50); in these 
cell lines, Axl downregulation results in the increased expres-
sion of E‑cadherin and decreased expression of vimentin and 
N‑cadherin, which are features of the reverse of EMT (47).

Axl and NSCLC invasion and migration. Patients with cancer 
that have solid tumors primarily succumb to mortality due to 
metastatic lesions rather than from the primary tumors (51). 
Axl has been implicated in metastasis in multiple tumor 
types (3). In patients with NSCLC, Axl expression is associated 
with lymph node metastasis  (52‑54). Cisplatin‑ and gefi-
tinib‑resistant HCC4006 cells express high levels of Axl, and 
siRNA‑mediated Axl downregulation suppressed the migra-
tory capacity of these cells (55). Lay et al (56) established a 
series of cell lines with different invasive abilities by the selec-
tion of increasingly invasive cancer cell populations from a cell 
line of human lung adenocarcinoma (CL1‑0) using a Transwell 
invasion chamber assay. It was revealed that Axl expression 
was highly associated with the migratory ability of these cell 
lines. NF‑κB signaling was responsible for Axl‑enhanced 
migration, with its suppression blunting Axl‑induced migra-
tion. Huang et al (57) additionally reported that Axl mediates 
H2O2‑induced migration by activating PI3K/Akt/Ras‑related 
C3 botulinum toxin substrate 1 signaling. Furthermore, the first 
Ig‑like domain and the intracellular domain were vital for the 
function of Axl in these two models. These studies indicated 
that Axl may not only activate migration‑promoting signals 
itself, but additionally mediate the effect of other molecules to 
increase migration. Mechanistically, Axl increases the expres-
sion of matrix metalloproteinase‑9 (MMP9) and MMP2, 
which promote tissue remodeling and cancer invasion (58‑61). 
Additionally, as discussed above, Axl promotes the EMT of 
cancer cells (62,63), a process associated with migratory and 
invasive properties (48). Axl has also been associated with 
invasion through the modification of the cytoskeleton regu-
lator Rac (37,57,64), leading to cytoskeletal reorganization and 
increased migration and invasion.

Axl and cancer drug resistance in NSCLC. Drug resistance 
is the main reason for the failure of cancer treatments. Axl 
serves a notable function in the drug resistance of a number 
of different cancer types (34,65‑67); its function in NSCLC 
drug resistance has been studied intensively (68). Evidence is 
primarily derived from in vitro cell line studies (Table II), with 
limited data from mouse models (33,69) and the tumor tissues 
of patients with cancer (69,70) (Table III). Thus, these results 
may require further confirmation, particularly in human 
tumors in vivo.

The majority of cell line‑based studies use drug‑resistant 
cells, obtained by the long‑term treatment of cancer cells with 
increasing doses of drugs, and such studies have revealed that 
Axl is upregulated in drug‑resistant cancer cells (Table II). 
One study additionally revealed that suppression of Axl with 
genomic or pharmaceutical methods may restore the sensitivity 
of cancer cells to drugs, further informing on the function of 
Axl in these drug‑resistant models (69). Other studies down-
regulated Axl expression in Axl‑overexpressed NSCLC cancer 
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cells, including A549 and H462, to survey the change of the half 
maximal inhibitory concentration of cancer cells to drugs, and it 
was observed that the silencing of Axl enhanced the sensitivity 
of cancer cells to drugs, including several chemotherapeutic 
drugs and erlotinib (41,47). Zhang et al (69) used a combination 
of strategies, including mouse models and matched NSCLC 
tumor tissues (tissues from the same patient prior to treatment 
and following the development of drug resistance), providing 
convincing evidence supporting the involvement of Axl in 
the mechanisms underlying NSCLC EGFR TKI resistance, 
and that targeting this molecule may restore the sensitivity 
of resistant cells. Similarly, Brand  et  al  (33) used several 
differing strategies, including the ectopic overexpression of Axl, 
siRNA‑mediated downregulation of Axl and mouse models, to 
demonstrate that Axl serves a notable function in NSCLC resis-
tance to cetuximab, a chimeric monoclonal antibody targeting 
EGFR. In addition to the work of Zhang et al (69), Ji et al (70) 
provides further evidence using the tumor tissue of patients with 
NSCLC demonstrating that Axl upregulation is an independent 
mechanism of NSCLC resistance to EGFR‑TKI (Table III).

A detailed mechanism for Axl‑mediated drug resistance 
is yet to be elucidated. However, a number of studies have 
provided notable information. As previously discussed, the 
overexpression of Axl is linked to EMT status, which was 
associated with drug resistance  (71,72). Additionally, Axl 
impedes therapeutically induced apoptosis by exerting 
anti‑apoptotic effects by modulating the expression or 
activation of apoptosis regulators, including B‑cell lymphoma 
extra large, survivin  (41), B‑cell lymphoma‑2 (Bcl‑2) 
associated agonist of cell death (73), Bh3 interacting‑domain 
death agonist (74) and Bcl‑2 (75). Additionally, a number of 
previous studies have suggested that the ability of Axl to form 
complexes with other RTKs may be one key aspect of this 
function. Cetuximab‑resistant NSCLC cell line H226 cells 
exhibited upregulation of Axl signaling, which was further 
elucidated to form a physical complex with EGFR  (33). 
Furthermore, treatment with EGF or tumor necrosis factor 
resulted in H226 cells resistant to cetuximab, with the formation 
of a physical complex between Axl and EGFR, similar to that 
in resistant cells. This indicates that the Axl‑EGFR complex 
serves a role in eliciting a drug‑resistant phenotype of cancer 

cells. These studies further demonstrated that Axl and EGFR 
were involved in maintaining the growth of these resistant 
cells. Additionally, silencing the expression of either Axl or 
EGFR with siRNA decreased the growth of these cells. The 
Axl‑EGFR complex was also observed in other drug resistant 
cancer models. For example, as mentioned above, HNSCC 
and ESCC cells induced to be resistant to PI3K inhibitor 
BYL719 additionally displayed this Axl‑EGFR complex (34). 
In sensitive parental cells, EGFR activated the PI3K/Akt 
pathway, which maintained mechanistic target of rapamycin 
(mTOR) activity  (76). In resistant cells, the Axl‑EGFR 
complex activated PLCγ‑protein kinase C (PKC) signaling, 
which in turn activated mTOR (76). Thus, tumor cells became 
less dependent on PI3K/Akt signaling and resistant to PI3K 
inhibitor BYL719. Combining BYL719 and R428 may reverse 
the resistant phenotype. This complex additionally formed in 
breast cancer cells, and Axl in this complex amplified and 
diversified EGFR signaling (32). Thus, it may be that this 
complex increased the resistance of cancer cells to EGFR 
inhibitors and that the suppression of Axl may enhance the 
efficacy of EGFR inhibitors. Further studies revealed that 
the suppression of Axl activation with R428 significantly 
increased the killing ability of erlotinib (32). Furthermore, 
Wu et al (54) revealed that Axl and EGFR are co‑expressed 
in a subset of NSCLC tumor tissues. This may allow this 
complex to form readily, promoting drug resistance. Other 
receptors, including human epidermal growth factor receptor 
2 (HER2), HER3, MET proto‑oncogene and platelet‑derived 
growth factor receptor‑β have been reported to be associated 
with Axl (32). This association of Axl with other receptors 
may have implications for targeted therapies, as these 
complexes may change the response of RTKs to TKIs, or 
make cancer cells less dependent on the signaling pathways 
that were targeted  (34), which may result in cancer cells 
resistant to TKIs.

There are additional reports indicating a minimal function of 
Axl in the resistance of NSCLCs to TKIs. For example, the suppres-
sion of Axl with siRNA or chemical inhibitors in erlotinib‑resistant 
H358  (77) and HCC827  (49) cells, which demonstrated an 
increased expression of Axl, could not restore the sensitivity of 
the cells to drug treatment.

Table III. Patient tumor tissue‑based evidence to demonstrate that Axl upregulation is an independent mechanism of NSCLC 
drug resistance.

Author, year	 Tumor tissues description	 Patients, n	 Main results	 (Refs.)

Zhang et al, 2012 	Matched EGFR mutant NSCLC specimens	 35	 Compared with the treatment‑native	 (69)
	 obtained prior to treatment with EGFR TKIs		  tumor tissues, a higher expression
	 erlotinib or gefitinib and following the		  level of Axl and Gas6 were detected in
	 development of resistance to these		  7/35 (20%) and 7/28 (25%) of
	 compounds.		  TKI‑resistant tissues, respectively.
Ji et al, 2013 	 Matched EGFR mutant NSCLC specimens	 26	 Increased Axl expression was observed	 (70)
	 obtained prior to treatment with EGFR TKIs		  in 5/26 (19.2%) of patients with
	 erlotinib or gefitinib and following the		  TKI‑resistant NSCLC.
	 development of resistance to these compounds.

NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor; EGFR, epidermal growth factor receptor; Gas6, growth arrest-specific 6.
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4. Conclusion

Axl is a promising therapeutic target, considering that it serves 
notable functions in NSCLC tumor growth, EMT, invasion and 
drug resistance. A number of Axl inhibitors have been developed 
and a number are in clinical trials, including foretinib (XL880, 
GSK1363089), cabozantinib, crizotinib, ASLAN002 and 
BGB324 (R428) (3,78‑81). It is important to note that although 
a wide range of Axl kinase inhibitors have been described, 
a majority of them are nonspecific multi‑kinase inhibitors. 
BGB324 (R428) was the first selective Axl inhibitor to be 
developed (82). Oral treatment with BGB324 (R428) in mouse 
xenograft models revealed that it reduced breast cancer metas-
tasis and prolonged survival. It entered phase 1 clinical trials 
in 2013 (83). At present, clinical trials including patients with 
melanoma, NSCLC and acute myeloid leukemia are ongoing to 
determine the safety and efficiency of BGB324 (https://clinical-
trials.gov/ct2/results?cond=&term=BGB324&cntry1=&state1=
&Search=Search). The identification of appropriate biomarkers 
for the selection of patients is another key issue for the develop-
ment of Axl‑targeted therapies. Immunohistochemistry appears 
to be the most feasible strategy for identifying appropriate 
biomarkers, with other strategies including the detection of Axl 
expression in vivo by single‑photon emission computed tomog-
raphy imaging using a 125I‑labled Axl antibody (84). With the 
development of AXL inhibitors, and an increase in the under-
standing of the underlying molecular mechanisms responsible 
for NSCLC, patients who are suitable for AXL‑targeted thera-
pies could be screened and treated with this form of therapy.
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